首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The steroid hormone progesterone regulates proliferation and differentiation in the mammary gland and uterus by cell cycle phase-specific actions. The long-term effect of progestins on T-47D breast cancer cells is inhibition of cellular proliferation. This is accompanied by decreased G(1) cyclin-dependent kinase (CDK) activities, redistribution of the CDK inhibitor p27(Kip1) among these CDK complexes, and alterations in the elution profile of cyclin E-Cdk2 upon gel filtration chromatography, such that high-molecular-weight complexes predominate. This study aimed to determine the relative contribution of CDK inhibitors to these events. Following progestin treatment, the majority of cyclin E- and D-CDK complexes were bound to p27(Kip1) and few were bound to p21(Cip1). In vitro, recombinant His(6)-p27 could quantitatively reproduce the effects on cyclin E-Cdk2 kinase activity and the shift in molecular weight observed following progestin treatment. In contrast, cyclin D-Cdk4 was not inhibited by His(6)-p27 in vitro or p27(Kip1) in vivo. However, an increase in the expression of the Cdk4/6 inhibitor p18(INK4c) and its extensive association with Cdk4 and Cdk6 were apparent following progestin treatment. Recombinant p18(INK4c) led to the reassortment of cyclin-CDK-CDK inhibitor complexes in vitro, with consequent decrease in cyclin E-Cdk2 activity. These results suggest a concerted model of progestin action whereby p27(Kip1) and p18(INK4c) cooperate to inhibit cyclin E-Cdk2 and Cdk4. Since similar models have been developed for growth inhibition by transforming growth factor beta and during adipogenesis, interaction between the Cip/Kip and INK4 families of inhibitors may be a common theme in physiological growth arrest and differentiation.  相似文献   

2.
Mechanisms of Cyclin-Dependent Kinase Inactivation by Progestins   总被引:6,自引:2,他引:6       下载免费PDF全文
The steroid hormone progesterone regulates proliferation and differentiation in the mammary gland and uterus by cell cycle phase-specific actions. In breast cancer cells the predominant effect of synthetic progestins is long-term growth inhibition and arrest in G1 phase. Progestin-mediated growth arrest of T-47D breast cancer cells was preceded by inhibition of cyclin D1-Cdk4, cyclin D3-Cdk4, and cyclin E-Cdk2 kinase activities in vitro and reduced phosphorylation of pRB and p107. This was accompanied by decreases in the expression of cyclins D1, D3, and E, decreased abundance of cyclin D1- and cyclin D3-Cdk4 complexes, increased association of the cyclin-dependent kinase (CDK) inhibitor p27 with the remaining Cdk4 complexes, and changes in the molecular masses and compositions of cyclin E complexes. In control cells cyclin E eluted from Superdex 200 as two peaks of ~120 and ~200 kDa, with the 120-kDa peak displaying greater cyclin E-associated kinase activity. Following progestin treatment, almost all of the cyclin E was in the 200-kDa, low-activity form, which was associated with the CDK inhibitors p21 and p27; this change preceded the inhibition of cell cycle progression. These data suggest preferential formation of this higher-molecular-weight, CDK inhibitor-bound form and a reduced number of cyclin E-Cdk2 complexes as mechanisms for the decreased cyclin E-associated kinase activity following progestin treatment. Ectopic expression of cyclin D1 in progestin-inhibited cells led to the reappearance of the 120-kDa active form of cyclin E-Cdk2 preceding the resumption of cell cycle progression. Thus, decreased cyclin expression and consequent increased CDK inhibitor association are likely to mediate the decreases in CDK activity accompanying progestin-mediated growth inhibition.  相似文献   

3.
Estrogens induce proliferation of estrogen receptor (ER)-positive MCF-7 breast cancer cells by stimulating G(1)/S transition associated with increased cyclin D1 expression, activation of cyclin-dependent kinases (Cdks), and phosphorylation of the retinoblastoma protein (pRb). We have utilized blockade of cyclin D1-Cdk4 complex formation through adenovirus-mediated expression of p16(INK4a) to demonstrate that estrogen regulates Cdk inhibitor expression and expression of the Cdk-activating phosphatase Cdc25A independent of cyclin D1-Cdk4 function and cell cycle progression. Expression of p16(INK4a) inhibited G(1)/S transition induced in MCF-7 cells by 17-beta-estradiol (E(2)) with associated inhibition of both Cdk4- and Cdk2-associated kinase activities. Inhibition of Cdk2 activity was associated with delayed removal of Cdk-inhibitory activity in early G(1) and decreased cyclin A expression. Cdk-inhibitory activity and expression of both p21(Cip1) and p27(Kip1) was decreased, however, in both control and p16(INK4a)-expressing cells 20 h after estrogen treatment. Expression of Cdc25A mRNA and protein was induced by E(2) in control and p16(INK4a)-expressing MCF-7 cells; however, functional activity of Cdc25A was inhibited in cells expressing p16(INK4a). Inhibition of Cdc25A activity in p16(INK4a)-expressing cells was associated with depressed Cdk2 activity and was reversed in vivo and in vitro by active Cdk2. Transfection of MCF-7 cells with a dominant-negative Cdk2 construct inhibited the E(2)-dependent activation of ectopic Cdc25A. Supporting a role for Cdc25A in estrogen action, antisense CDC25A oligonucleotides inhibited estrogen-induced Cdk2 activation and DNA synthesis. In addition, inactive cyclin E-Cdk2 complexes from p16(INK4a)-expressing, estrogen-treated cells were activated in vitro by treatment with recombinant Cdc25A and in vivo in cells overexpressing Cdc25A. The results demonstrate that functional association of cyclin D1-Cdk4 complexes is required for Cdk2 activation in MCF-7 cells and that Cdk2 activity is, in turn, required for the in vivo activation of Cdc25A. These studies establish Cdc25A as a growth-promoting target of estrogen action and further indicate that estrogens independently regulate multiple components of the cell cycle machinery, including expression of p21(Cip1) and p27(Kip1).  相似文献   

4.
The mechanism by which the bradykininB1 receptor (B1R) inhibits platelet-derived growth factor(PDGF)-stimulated proliferation was investigated in cultured ratmesenteric arterial smooth muscle cells. The B1R agonistdes-Arg9-bradykinin (DABK) was found to inhibitPDGF-mediated activation of the cyclin E-cyclin-dependent kinase 2 (Cdk2) complex and to prevent hyperphosphorylation of retinoblastomaprotein. DABK did not inhibit upregulation of cyclin E expression butincreased expression of the Cdk2 inhibitor p27Kip1 and the associationof p27Kip1 with the cyclin E-Cdk2 complex. In addition, DABK inhibited the PDGF-stimulated expression of cyclin D that would otherwise siphonp27Kip1 away from inhibition of cyclin E-Cdk2. The signaling mechanismby which DABK regulated p27Kip1 was explored. DABK was found tostimulate the activity of mitogen-activated protein kinase kinase (MEK)and extracellular signal-regulated kinase (ERK) and to prolongactivation of MEK and ERK by PDGF. Inhibition of ERK activation withthe MEK inhibitors PD-98059 and U-0126 as well as the Src family kinaseinhibitor PP2 completely blocked the effect of DABK to increase p27Kip1and partially reversed the DABK-mediated inhibition of PDGF-stimulatedproliferation. These studies demonstrate that the B1R inhibitsPDGF-stimulated mitogenesis in part by prolonged activation of ERKleading to increased expression of p27Kip1.

  相似文献   

5.
Estrogen antagonists inhibit cell cycle progression in estrogen-responsive cells, but the molecular mechanisms are not fully defined. Antiestrogen-mediated G(0)/G(1) arrest is associated with decreased cyclin D1 gene expression, inactivation of cyclin D1-cyclin dependent kinase (Cdk) 4 complexes, and decreased phosphorylation of the retinoblastoma protein (pRb). We now show that treatment of MCF-7 breast cancer cells with the pure estrogen antagonist ICI 182780 results in inhibition of cyclin E-Cdk2 activity prior to a decrease in the G(1) to S phase transition. This decrease was dependent on p21(WAF1/Cip1) since treatment with antisense oligonucleotides to p21 attenuated the effect. Recruitment of p21 to cyclin E-Cdk2 complexes was in turn dependent on decreased cyclin D1 expression since it was apparent following treatment with antisense cyclin D1 oligonucleotides. To define where within the G(0) to S phase continuum antiestrogen-treated cells arrested, we assessed the relative abundance and phosphorylation state of pocket protein-E2F complexes. While both pRb and p107 levels were significantly decreased, p130 was increased 4-fold and was accompanied by the formation of p130.E2F4 complexes and the accumulation of hyperphophorylated E2F4, putative markers of cellular quiescence. Thus, ICI 182780 inhibits both cyclin D1-Cdk4 and cyclin E-Cdk2 activity, resulting in the arrest of MCF-7 cells in a state with characteristics of quiescence (G(0)), as opposed to G(1) arrest.  相似文献   

6.
Overexpression of the ErbB2 receptor, a major component of the ErbB receptor signaling network, contributes to the development of a number of human cancers. ErbB2 presents itself, therefore, as a target for antibody-mediated therapies. In this respect, anti-ErbB2 monoclonal antibody 4D5 specifically inhibits the growth of tumor cells overexpressing ErbB2. We have analyzed the effect of 4D5-mediated ErbB2 inhibition on the cell cycle of the breast tumor cell line BT474. 4D5 treatment of BT474 cells resulted in a G(1) arrest, preceded by rapid dephosphorylation of ErbB2, inhibition of cytoplasmic signal transduction pathways, accumulation of the cyclin-dependent kinase inhibitor p27(Kip1), and inactivation of cyclin-Cdk2 complexes. Time courses demonstrated that 4D5 treatment redirects p27(Kip1) onto Cdk2 complexes, an event preceding increased p27(Kip1) expression; this correlates with the downregulation of c-Myc and D-type cyclins (proteins involved in p27(Kip1) sequestration) and the loss of p27(Kip1) from Cdk4 complexes. Similar events were observed in ErbB2-overexpressing SKBR3 cells, which exhibited reduced proliferation in response to 4D5 treatment. Here, p27(Kip1) redistribution resulted in partial Cdk2 inactivation, consistent with a G1 accumulation. Moreover, p27(Kip1) protein levels remained constant. Antisense-mediated inhibition of p27(Kip1) expression in 4D5-treated BT474 cells further demonstrated that in the absence of p27(Kip1) accumulation, p27(Kip1) redirection onto Cdk2 complexes is sufficient to inactivate Cdk2 and establish the G(1) block. These data suggest that ErbB2 overexpression leads to potentiation of cyclin E-Cdk2 activity through regulation of p27(Kip1) sequestration proteins, thus deregulating the G(1)/S transition. Moreover, through comparison with an ErbB2-overexpressing cell line insensitive to 4D5 treatment, we demonstrate the specificity of these cell cycle events and show that ErbB2 overexpression alone is insufficient to determine the cellular response to receptor inhibition.  相似文献   

7.
Glucocorticoids inhibit cell proliferation by inducing cell cycle lengthening. In this report, we have analyzed, in normal peripheral blood lymphocytes, the involvement of p27Kip1 in this slowing of proliferation. Following dexamethasone (DXM) treatment, p27Kip1 expression and regulation varied differently with the level of lymphocyte stimulation. In quiescent cells, DXM inhibited p27Kip1 protein expression by decreasing its rate of synthesis, whereas its half-life and mRNA steady state remained constant. In contrast, in stimulated lymphocytes, DXM increased p27Kip1 expression by enhancing its mRNA steady state. This increase is not only a consequence of the DXM-induced interleukin 2 inhibition: we also found an increase in p27Kip1 mRNA stability that was not observed in quiescent lymphocytes. Cyclin/cyclin-dependent kinase (CDK) complexes immunoprecipitated with p27Kip1 are differentially modified by DXM addition: (a) G1 kinasic complexes (cyclin D/CDK4 or CDK6) associated with p27Kip1 are strongly decreased by DXM, (b) S-phase complexes (CDK2/cyclin E and A) remained stable or increased, and (c) the association of p27Kip1 with the phosphorylated forms of CDK1 is increased by DXM. In addition, CDK2 kinase activity was decreased in DXM-treated cells: we suggest that p27Kip1 might participate in inhibiting its catalytic activity. These results indicated that, in normal lymphoid cells, p27Kip1 may be involved in DXM antiproliferative effects. The increase of p27Kip1 expression and a decrease in G1 mitogenic factors, together with the redistribution of p27Kip1 to S/G2-M regulatory complexes, may explain the lengthening of G1 and S/G2 after DXM treatment in lymphocytes.  相似文献   

8.
Decreased expression of the cyclin-dependent kinase (CDK) inhibitor p27(Kip1) is common in breast cancer and is associated with poor prognosis. p27 is also an important mediator of steroidal regulation of cell cycle progression. We have therefore investigated the role of p27 in mammary epithelial cell proliferation. Examination of the two major functions of p27, assembly of cyclin D1-Cdk4 complexes and inhibition of Cdk2 activity, revealed that cyclin D1-Cdk4 complex formation was not impaired in p27-/- mammary epithelial cells in primary culture. However, cyclin E-Cdk2 activity was increased approximately 3-fold, indicating that the CDK inhibitory function of p27 is important in mammary epithelial cells. Increased epithelial DNA synthesis was observed during pregnancy in p27-/- mammary gland transplants, but this was paralleled by increased apoptosis. During pregnancy and at parturition, development and differentiation of p27+/+ and p27-/- mammary tissue were indistinguishable. These results demonstrate a role for p27 in both the proliferation and survival of mammary epithelial cells. However, the absence of morphological and cellular defects in p27-/- mammary tissue during pregnancy raises the possibility that loss of p27 in breast cancer may not confer an overall growth advantage unless apoptosis is also impaired.  相似文献   

9.
Retinoids are promising agents for the prevention and treatment of several human malignancies including lung cancer. In this study, the effect of retinoic acid (RA) on cell growth and the mechanism of growth modulation were examined in human lung squamous carcinoma CH27 cells. Here we report that RA mediated the dose- and time-dependent growth arrest in G1 phase, accompanied by the up-regulation of p27(Kip1) and the down-regulation of the cyclin-dependent kinase 3 (Cdk3) and p21(CIP1/Waf1) proteins. Furthermore, RA-induced growth arrest of CH27 cells was also associated with increased retinoic acid receptor beta (RARbeta) and reduced c-Myc expression. However, RA had no effect on the levels of cyclins A, D1, D3, E, or H, or on Cdk2, Cdk4, Cdk5, CDk6, Cdk7, p16(Ink4A), p15(Ink4B), p53, or pRb proteins in CH27 cells. Evaluation of the kinase activity of cyclin-Cdk complexes showed that RA increases p27(Kip1) expression in CH27 cells leading to markedly reduced cyclin A/Cdk2 kinase activity and slightly reduced cyclin E/Cdk2 kinase activity, with no effect on cyclin D/Cdk4 and cyclin D/Cdk6 activities. Moreover, coincident with the decrease in kinase activity was a drastic increase in cyclin A-bound p27(Kip1). These results suggest that increases in the levels of p27(Kip1) and its binding to cyclin A, as well as reduction of Cdk3 protein expression, are strong candidates for the cell cycle regulator that prevents the entry into the S phase in RA-treated CH27 cells, with prolongation of G1 phase and inhibition of DNA synthesis.  相似文献   

10.
Insulin-like Growth Factor-1 (IGF-1) plays a key role in breast cancer development and cell cycle regulation. It has been demonstrated that IGF-1 stimulates cyclin expression, thus regulating the G1 to S phase transition of the cell cycle. Potassium (K+) channels are involved in the G1 phase progression of the cell cycle induced by growth factors. However, mechanisms that allow growth factors to cooperate with K+ channels in order to modulate the G1 phase progression and cyclin expression remain unknown. Here, we focused on hEag1 K+ channels which are over-expressed in breast cancer and are involved in the G1 phase progression of breast cancer cells (MCF-7). As expected, IGF-1 increased cyclin D1 and E expression of MCF-7 cells in a cyclic manner, whereas the increase of CDK4 and 2 levels was sustained. IGF-1 stimulated p21WAF1/Cip1 expression with a kinetic similar to that of cyclin D1, however p27Kip1 expression was insensitive to IGF-1. Interestingly, astemizole, a blocker of hEag1 channels, but not E4031, a blocker of HERG channels, inhibited the expression of both cyclins after 6-8 h of co-stimulation with IGF-1. However, astemizole failed to modulate CDK4, CDK2, p21WAF1/Cip1 and p27Kip1 expression. The down-regulation of hEag1 by siRNA provoked a decrease in cyclin expression. This study is the first to demonstrate that K+ channels such as hEag1 are directly involved in the IGF-1-induced up-regulation of cyclin D1 and E expression in MCF-7 cells. By identifying more specifically the temporal position of the arrest site induced by the inhibition of hEag1 channels, we confirmed that hEag1 activity is predominantly upstream of the arrest site induced by serum-deprivation, prior to the up-regulation of both cyclins D1 and E.  相似文献   

11.
p27 phosphorylation by Src regulates inhibition of cyclin E-Cdk2   总被引:7,自引:0,他引:7  
Chu I  Sun J  Arnaout A  Kahn H  Hanna W  Narod S  Sun P  Tan CK  Hengst L  Slingerland J 《Cell》2007,128(2):281-294
The kinase inhibitor p27Kip1 regulates the G1 cell cycle phase. Here, we present data indicating that the oncogenic kinase Src regulates p27 stability through phosphorylation of p27 at tyrosine 74 and tyrosine 88. Src inhibitors increase cellular p27 stability, and Src overexpression accelerates p27 proteolysis. Src-phosphorylated p27 is shown to inhibit cyclin E-Cdk2 poorly in vitro, and Src transfection reduces p27-cyclin E-Cdk2 complexes. Our data indicate that phosphorylation by Src impairs the Cdk2 inhibitory action of p27 and reduces its steady-state binding to cyclin E-Cdk2 to facilitate cyclin E-Cdk2-dependent p27 proteolysis. Furthermore, we find that Src-activated breast cancer lines show reduced p27 and observe a correlation between Src activation and reduced nuclear p27 in 482 primary human breast cancers. Importantly, we report that in tamoxifen-resistant breast cancer cell lines, Src inhibition can increase p27 levels and restore tamoxifen sensitivity. These data provide a new rationale for Src inhibitors in cancer therapy.  相似文献   

12.
Estrogen-induced progression through G1 phase of the cell cycle is preceded by increased expression of the G1-phase regulatory proteins c-Myc and cyclin D1. To investigate the potential contribution of these proteins to estrogen action, we derived clonal MCF-7 breast cancer cell lines in which c-Myc or cyclin D1 was expressed under the control of the metal-inducible metallothionein promoter. Inducible expression of either c-Myc or cyclin D1 was sufficient for S-phase entry in cells previously arrested in G1 phase by pretreatment with ICI 182780, a potent estrogen antagonist. c-Myc expression was not accompanied by increased cyclin D1 expression or Cdk4 activation, nor was cyclin D1 induction accompanied by increases in c-Myc. Expression of c-Myc or cyclin D1 was sufficient to activate cyclin E-Cdk2 by promoting the formation of high-molecular-weight complexes lacking the cyclin-dependent kinase inhibitor p21, as has been described, following estrogen treatment. Interestingly, this was accompanied by an association between active cyclin E-Cdk2 complexes and hyperphosphorylated p130, identifying a previously undefined role for p130 in estrogen action. These data provide evidence for distinct c-Myc and cyclin D1 pathways in estrogen-induced mitogenesis which converge on or prior to the formation of active cyclin E-Cdk2-p130 complexes and loss of inactive cyclin E-Cdk2-p21 complexes, indicating a physiologically relevant role for the cyclin E binding motifs shared by p130 and p21.  相似文献   

13.
Exposure of hematopoietic cells to DNA-damaging agents induces p53-independent cell cycle arrest at a G(1) checkpoint. Previously, we have shown that this growth arrest can be overridden by cytokine growth factors, such as erythropoietin or interleukin-3, through activation of a phosphatidylinositol 3-kinase (PI 3-kinase)/Akt-dependent signaling pathway. Here, we show that gamma-irradiated murine myeloid 32D cells arrest in G(1) with active cyclin D-cyclin-dependent kinase 4 (Cdk4) but with inactive cyclin E-Cdk2 kinases. The arrest was associated with elevated levels of the Cdk inhibitors p21(Cip1) and p27(Kip1), yet neither was associated with Cdk2. Instead, irradiation-induced inhibition of cyclin E-Cdk2 correlated with absence of the activating threonine-160 phosphorylation on Cdk2. Cytokine treatment of irradiated cells induced Cdk2 phosphorylation and activation, and cells entered into S phase despite sustained high-level expression of p21 and p27. Notably, the PI 3-kinase inhibitor, LY294002, completely blocked cytokine-induced Cdk2 activation and cell growth in irradiated 32D cells but not in nonirradiated cells. Together, these findings demonstrate a novel mechanism underlying the DNA damage-induced G(1) arrest of hematopoietic cells, that is, inhibition of Cdk2 phosphorylation and activation. These observations link PI 3-kinase signaling pathways with the regulation of Cdk2 activity.  相似文献   

14.
We have reported previously that the expression of focal adhesion kinase (FAK) is elevated in glioblastomas and that expression of FAK promotes the proliferation of glioblastoma cells propagated in either soft agar or in the C.B.17 severe combined immunodeficiency (scid) mouse brain. We therefore determined the effect of FAK on cell cycle progression in these cells. We found that overexpression of wild-type FAK promoted exit from G(1) in monolayer cultures of glioblastoma cells, enhanced the expression of cyclins D1 and E while reducing the expression of p27(Kip1) and p21(Waf1), and enhanced the kinase activity of the cyclin D1-cyclin-dependent kinase-4 (cdk4) complex. Transfection of the monolayers with a FAK molecule in which the autophosphorylation site is mutated (FAK397F) inhibited exit from G(1) and reduced the expression of cyclins D1 and E while enhancing the expression of p27(Kip1) and p21(Waf1). Small interfering RNA (siRNA)-mediated down-regulation of cyclin D1 inhibited the enhancement of cell cycle progression observed on expression of wild-type FAK, whereas siRNA-mediated down-regulation of cyclin E had no effect. siRNA-mediated down-regulation of p27(Kip1) overcame the inhibition of cell cycle progression observed on expression of FAK397F, whereas down-regulation of p21(Waf1) had no effect. These results were confirmed in vivo in the scid mouse brain xenograft model in which propagation of glioblastoma cells expressing FAK397F resulted in a 50% inhibition of tumor growth and inhibited exit from G(1). Taken together, our results indicate that FAK promotes proliferation of glioblastoma cells by enhancing exit from G(1) through a mechanism that involves cyclin D1 and p27(Kip1).  相似文献   

15.
Although it is evident that BCR-ABL can rescue cytokine-deprived hematopoietic progenitor cells from cell cycle arrest and apoptosis, the exact mechanism of action of BCR/ABL and interleukin (IL)-3 to promote proliferation and survival has not been established. Using the pro-B cell line BaF3 and a BaF3 cell line stably overexpressing BCR-ABL (BaF3-p210), we investigated the proliferative signals derived from BCR-ABL and IL-3. The results indicate that both IL-3 and BCR-ABL target the expression of cyclin Ds and down-regulation of p27(Kip1) to mediate pRB-related pocket protein phosphorylation, E2F activation, and thus S phase progression. These findings were further confirmed in a BaF3 cell line (TonB.210) where the BCR-ABL expression is inducible by doxycyclin and by using the drug STI571 to inactivate BCR-ABL activity in BaF3-p210. To establish the functional significance of cyclin D2 and p27(Kip1) expression in response to IL-3 and BCR-ABL expression, we studied the effects of ectopic expression of cyclin D2 and p27(Kip1) on cell proliferation and survival. Our results demonstrate that both cyclin D2 and p27(Kip1) have a role in BaF3 cell proliferation and survival, as ectopic expression of cyclin D2 is sufficient to abolish the cell cycle arrest and apoptosis induced by IL-3 withdrawal or by BCR-ABL inactivation, while overexpression of p27(Kip1) can cause cell cycle arrest and apoptosis in the BaF3 cells. Furthermore, our data also suggest that cyclin D2 functions upstream of p27(Kip1), cyclin E, and cyclin D3, and therefore, plays an essential part in integrating the signals from IL-3 and BCR-ABL with the pRB/E2F pathway.  相似文献   

16.
Estrogens and insulin/insulin-like growth factor-I (IGF-I) are potent mitogens for breast epithelial cells and, when co-administered, induce synergistic stimulation of cell proliferation. To investigate the molecular basis of this effect, a MCF-7 breast cancer cell model was established where serum deprivation and concurrent treatment with the pure estrogen antagonist, ICI 182780, inhibited growth factor and estrogen action and arrested cells in G(0)/G(1) phase. Subsequent stimulation with insulin or IGF-I alone failed to induce significant S-phase entry. However, these treatments increased cyclin D1, cyclin E, and p21 gene expression and induced the formation of active Cdk4 complexes but resulted in only minor increases in cyclin E-Cdk2 activity, likely due to recruitment of the cyclin-dependent kinase (CDK) inhibitor p21(WAF1/Cip1) into these complexes. Treatment with estradiol alone resulted in a greater increase in cyclin D1 gene expression but markedly decreased p21 expression, with a concurrent increase in Cdk4 and Cdk2 activity and subsequent synchronous entry of cells into S phase. Co-administration of insulin/IGF-I and estrogen induced synergistic stimulation of S-phase entry coincident with synergistic activation of high molecular mass (approximately 350 kDa) cyclin E-Cdk2 complexes lacking p21. To determine if the ability of estrogen to deplete p21 was central to these effects, cells stimulated with insulin and estradiol were infected with an adenovirus expressing p21. Induction of p21 to levels equivalent to those following treatment with insulin alone markedly inhibited the synergism between estradiol and insulin on S-phase entry. Thus the ability of estradiol to antagonize the insulin-induced increase in p21 gene expression, with consequent activation of cyclin E-Cdk2, is a central component of the synergistic stimulation of breast epithelial cell proliferation induced by simultaneous activation of the estrogen and insulin/IGF-I signaling pathways.  相似文献   

17.
1,25-(OH)2 vitamin D3 (1,25-(OH)2D3) exerts antiproliferative effects via cell cycle regulation in a variety of tumor cells, including prostate. We have previously shown that in the human prostate cancer cell line LN-CaP, 1,25-(OH)2D3 mediates an increase in cyclin-dependent kinase inhibitor p27Kip1 levels, inhibition of cyclin-dependent kinase 2 (Cdk2) activity, hypophosphorylation of retinoblastoma protein, and accumulation of cells in G1. In this study, we investigated the mechanism whereby 1,25-(OH)2D3 increases p27 levels. 1,25-(OH)2D3 had no effect on p27 mRNA levels or on the regulation of a 3.5-kb fragment of the p27 promoter. The rate of p27 protein synthesis was not affected by 1,25-(OH)2D3 as measured by luciferase activity driven by the 5'- and 3'-untranslated regions of p27 that regulate p27 protein synthesis. Pulse-chase analysis of 35S-labeled p27 revealed an increased p27 protein half-life with 1,25-(OH)2D3 treatment. Because Cdk2-mediated phosphorylation of p27 at Thr187 targets p27 for Skp2-mediated degradation, we examined the phosphorylation status of p27 in 1,25-(OH)2D3-treated cells. 1,25-(OH)2D3 decreased levels of Thr187 phosphorylated p27, consistent with inhibition of Thr187 phosphorylation-dependent p27 degradation. In addition, 1,25-(OH)2D3 reduced Skp2 protein levels in LNCaP cells. Cdk2 is activated in the nucleus by Cdk-activating kinase through Thr160 phosphorylation and by cdc25A phosphatase via Thr14 and Tyr15 dephosphorylation. Interestingly, 1,25-(OH)2D3 decreased nuclear Cdk2 levels as assessed by subcellular fractionation and confocal microscopy. Inhibition of Cdk2 by 1,25-(OH)2D3 may thus involve two mechanisms: 1) reduced nuclear Cdk2 available for cyclin binding and activation and 2) impairment of cyclin E-Cdk2-dependent p27 degradation through cytoplasmic mislocalization of Cdk2. These data suggest that Cdk2 mislocalization is central to the antiproliferative effects of 1,25-(OH)2D3.  相似文献   

18.
p27(Kip1) associates with cyclin/cdk complexes and inhibiting cdk activity, and overexpression of p27(Kip1) induces G1 arrest. We found that p27(Kip1) overexpression inhibits cdk2 kinase activity, but not cdk6 kinase activity in HeLa cells. The amount of p27(Kip1) associated with cdk2 was significantly higher than that associated with cdk6. cdk6 complexes contained detectable amounts of p27(Kip1) in all human cell lines examined, except in HeLa cells where p27(Kip1) preferentially associated with cdk2. It appears that in HeLa cells overexpressed p27(Kip1) fails to inhibit cdk6 kinase activity because of low binding affinity of cdk6 to p27(Kip1). The low binding affinity is due to a low level of the cdk6/cyclin D complexes. Functional inactivation of pRb has an effect on p27(Kip1) association with cdk6/cyclin D complexes.  相似文献   

19.
Retinoids are promising agents for the prevention and treatment of several human malignancies including lung cancer. In this study, the effect of retinoic acid (RA) on cell growth and the mechanism of growth modulation were examined in human lung squamous carcinoma CH27 cells. Here we report that RA mediated the dose- and time-dependent growth arrest in G1 phase, accompanied by the up-regulation of p27Kip1 and the down-regulation of the cyclin-dependent kinase 3 (Cdk3) and p21CIP1/Waf1 proteins. Furthermore, RA-induced growth arrest of CH27 cells was also associated with increased retinoic acid receptor β (RARβ) and reduced c-Myc expression. However, RA had no effect on the levels of cyclins A, D1, D3, E, or H, or on Cdk2, Cdk4, Cdk5, CDk6, Cdk7, p16Ink4A, p15Ink4B, p53, or pRb proteins in CH27 cells. Evaluation of the kinase activity of cyclin–Cdk complexes showed that RA increases p27Kip1 expression in CH27 cells leading to markedly reduced cyclin A/Cdk2 kinase activity and slightly reduced cyclin E/Cdk2 kinase activity, with no effect on cyclin D/Cdk4 and cyclin D/Cdk6 activities. Moreover, coincident with the decrease in kinase activity was a drastic increase in cyclin A-bound p27Kip1. These results suggest that increases in the levels of p27Kip1 and its binding to cyclin A, as well as reduction of Cdk3 protein expression, are strong candidates for the cell cycle regulator that prevents the entry into the S phase in RA-treated CH27 cells, with prolongation of G1 phase and inhibition of DNA synthesis.  相似文献   

20.
BACKGROUND: Eukaryotic initiation factor 4E (eIF4E) is essential for cap-dependent initiation of translation. Cell proliferation is associated with increased activity of eIF4E and elevated expression of eIF4E leads to tumorigenic transformation. Many tumors express very high levels of eIF4E and this may be a critical factor in progression of the disease. In contrast, overexpression of 4EBP, an inhibitor of eIF4E, leads to cell cycle arrest and phenotypic reversion of some transformed cells. RESULTS: A constitutively active form of 4EBP-1 was inducibly expressed in the human breast cancer cell line MCF7. Induction of constitutively active 4EBP-1 led to cell cycle arrest. This was not associated with a general inhibition of protein synthesis but rather with changes in specific cell cycle regulatory proteins. Cyclin D1 was downregulated while levels of the CDK inhibitor p27Kip1 were increased. The levels of cyclin E and CDK2 were unaffected but the activity of CDK2 was significantly reduced due to increased association with p27Kip1. The increase in p27Kip1 did not reflect changes in p27Kip1 mRNA or degradation rates. Rather, it was associated with enhanced synthesis of the protein, even though 4EBP-1 is expected to inhibit translation. This could be explained, at least in part, by the ability of the p27Kip1 5'-UTR to mediate cap-independent translation, which was also enhanced by expression of constitutively active 4EBP-1. CONCLUSIONS: Expression of active 4EBP-1 in MCF7 leads to cell cycle arrest which is associated with downregulation of cyclin D1 and upregulation of p27Kip1. Upregulation of p27Kip1reflects increased synthesis which corresponds to enhanced cap-independent translation through the 5'-UTR of the p27Kip1 mRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号