首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chromosome 5A of wheat is known to carry a number of genes affecting adaptability and productivity. To localize quantitative trait loci (QTLs) controlling grain yield and its components, an RFLP map was constructed from 118 single-chromosome recombinant lines derived from the F1 between Chinese Spring (Cappelle-Desprez 5A) and Chinese Spring (Triticum spelta 5A). The map was combined with the field-trial data scored over 3 years. A total of five regions in chromosome 5A contributed effects on yield traits. Increases in grain yield, 50-grain weight and spikelet number/ear were determined by complementary QTL alleles from both parents. The effects associated with the vernalization requirement gene Vrn-A1 or a closely linked QTL were significant only in the favorable growing season where the later-flowering vrn-A1 allele from Cappelle-Desprez 5A produced a higher tiller number/plant and spikelet number/ear. The effects of the ear morphology gene q or closely linked QTL(s) were detected for grain yield and ear grain weight. Three other QTLs with minor effects were dispersed along chromosome 5A. These QTLs had large interactions with years due to changes in the magnitude of the significant response. The alleles from T. spelta, however, conferred a higher yield performance. Received: 18 August 1999 / Accepted: 25 March 2000  相似文献   

2.
The amylose/amylopectin ratio and the pasting properties of wheat starch are important in producing marketable flour products, especially Japanese noodles. To determine if null mutations at the three Wx loci confer differences in starch-pasting viscosity, we analyzed the variation associated with the null mutations in three separate sets of recombinant substitution lines of chromosomes 7A, 4A and 7D produced from crosses between Chinese Spring and three single-chromosome substitution lines carrying the null Wx alleles. Differential effects of null alleles at the three Wx loci on starch-pasting properties were revealed. With respect to chromosome 4A, the effect of the Wx-B1b allele, giving a higher peak and breakdown viscosity, was unambiguous. In addition, a QTL of minor effect was identified near the centromere on the short arm. The presence or absence of the Wx-A1 protein gave some variation in peak and breakdown viscosity, but the effects of Wx-Alb were much smaller than those of the Wx-Blb allele. Associated effects of the Wx-D1 locus were detected for the breakdown viscosity as the null Wx-D1b allele produced a higher viscosity than the wild-type Wx-D1a. While negative correlations between amylose content and breakdown viscosity were common in the three populations, the null mutations at the Wx loci produced some variation independent of amylose content. The genetic variation detected for breakdown viscosity was more evident than that for peak viscosity in all three recombinant populations. Received: 20 July 1999 / Accepted: 7 October 1999  相似文献   

3.
Waxy (Wx) protein is a granule-bound starch synthase (GBSS) responsible for amylose production in cereal endosperm. Eight isolines of wheat (Triticum aestivum L.) having different combinations of presence and absence of three Wx proteins, Wx-A1, -B1, and -D1, were produced in order to elucidate the effect of Wx protein deficiencies on the apparent amylose content and starch-pasting properties. An improved SDS gel electrophoresis showed that ’Bai Huo’ (a parental wheat) carried a variant Wx-B1 protein from an allele, Wx-B1e. Thus, wheat lines of types 1, 2, 4, and 6 examined in this study contained a variant Wx-B1 allele and not the standard allele, Wx-B1a. The results from 3 years of experiments using 176 lines derived from two cross-combinations showed that apparent amylose content increased the least in type 8 (waxy) having no Wx proteins and, in ascending order, increased in type 5 (only the Wx-A1 protein is present) <type 7 (Wx-D1) <type 6 (Wx-B1) <type 3 (Wx-A1 and -D1) <type 4 (Wx-A1 and -B1) <type 2 (Wx-B1 and -D1) <type 1 (three Wx proteins). However, Tukey’ s studentized range test did not detect significant differences in some cases. Densitometric analysis suggested that the amylose content was related to the amount of the Wx protein in the eight types. Parameters in the Rapid Visco-Analyzer test and swelling power were correlated to amylose content. Consequently, amylose content and pasting properties of starch were determined to be influenced the most by the lack of the Wx-B1 protein, followed by a lack of Wx-D1, and leastly by the Wx-A1 deficiency, which indicated the presence of differential effects of the three null alleles for the Wx protein. Received: 1 February 1999 / Accepted: 10 April 1999  相似文献   

4.
 Chromosome painting enabled the study of homologous chromosome behaviour prior to and during meiosis. Total genomic DNA from rye, used as a probe for in situ hybridization, identified the rye chromosome arm in a wheat-rye translocation line (T5AS·5RL) at meiotic prophase and the preceding interphase. Accurate staging of the development of the meiocytes was attained by parallel studies of chromatin morphology, nucleolar behaviour and synaptonemal complex formation in electron microscopy thin sections and silver-stained surface spreads. Three stages of pairing were identified for the large cereal genomes that are organized in a Rabl configuration: first, cognition occurs during the long interphase before leptotene, bringing the homologous chromosome domains into close proximity and possibly starting at the centromere; second, homologous chromosome segments align at late leptotene; and third, zygotene synapsis initiates near the telomere, although it was also observed to occur near the centromere. A pairing model is proposed for wheat, with a genome size of 17000 Mbp, that shows prallels to and notable differences from yeast and mammalian models of meiosis. Received: 25 January 1997 / Revision accepted: 14 July 1997  相似文献   

5.
Clusters of four simple sequence repeats (SSRs), AAC, AAG, AG and CAT, have been mapped physically to hexaploid wheat chromosomes; 15—24-bp synthetic oligonucleotides were labelled by random-primer labelling and used as probes for fluorescent in situ hybridization with standard formamide and low-salt conditions. AAC hybridized strongly to the pericentromeric regions and several intercalary sites of all seven chromosomes of the B-genome corresponding to N bands and enabling their identification. Most of the AAC sites also co-localize with AAG, although the strength of the AAC and AAG signal was often different at the same location. Not all heterochromatic bands showed AAC signals and a few AAC sites were detected that are neither AAG nor N band positive, revealing the complex and heterogeneous genome organization of wheat and identifying the four most frequent classes of banded chromatin. Clusters characterised by a high concentration of AG repeats were detected on chromosome arms 3BS, 4BL, 5BS and 5BL, adjacent to AAG sites. The only detectable CAT cluster was found on chromosome arm 3BL, making this oligonucleotide valuable in identifying this particular chromosome. SSR in situ hybridization is useful as a diagnostic tool in cytogenetics and for understanding genome organization in wheat. Received: 21 September 1999 / Accepted: 19 March 2000  相似文献   

6.
Grain-mould is a major problem in grain sorghum utilization as mouldy grain has a reduced quality due to the deterioration of the endosperm and reduced embryo viability. Here, our objective was to use genome mapping to improve knowledge of genetic variation and co-variation for grain-mould incidence and other inter-related agronomic traits. Grain-mould incidence, kernel-milling hardness, grain density, plant height, panicle peduncle length, foliar-disease incidence, and plant color were measured on 125 F5 genotypes derived from a cross of Sureño and RTx430. Quantitative trait loci were detected by means of 130 mapped markers (44 microsatellites, 85 AFLPs, one morphological-trait locus) distributed among ten linkage groups covering 970 cM. One to five QTLs affected each trait, with the exception of grain density for which no QTLs were detected. Grain-mould incidence was affected by five QTLs each accounting for between 10 and 23% of the phenotypic variance. The effects and relative positions of QTLs for grain-mould incidence were in accordance with the QTL distribution of several inter-related agronomic traits (e.g., plant height, peduncle length) and with the correlation between these phenotypic traits and grain-mould incidence. The detection of QTLs for grain-mould incidence was dependent on the environment, which is consistent with heritibility estimates that show strong environmental and genotype × environment effects. Several genomic regions affected multiple traits including one region that affected grain-mould incidence, plant height, panicle peduncle length, and grain-milling hardness, and a second region that influenced grain-mould (in four environments) and plant height. One genomic region, which harbors loci for plant color, influenced the severity of foliar disease symptoms and the incidence of grain-mould in one environment. Collectively QTLs detected in the present population explained between 10% and 55% of the phenotypic variance observed for a given trait.  相似文献   

7.
The near-isogenic Line TA523, containing a 40-cM introgression at the bottom of chromosome 1 from Lycopersicon hirsutum acc. LA1777, affects several agronomically important traits. A set of recombinant lines (subNILs) derived from the original NIL TA523 were developed in order to fine-map, by substitution mapping, the genetic factors included within the original introgression. In the current experiment, TA523 showed redder, rounded, less pigmented shoulder, lower-weighted fruits and higher brix, whereas higher yield and brix*yield was observed only in the hybrid TA253×TA209 suggesting heterosis for these traits. By substitution mapping we mapped independent genetic loci affecting brix, yield and fruit shape, whereas fruit weight, shoulder pigmentation and external color mapped to a position coincident with the brix locus. Analysis of the subNILs revealed that the gene action of most of the QTLs was additive or nearly additive. The exception was for the yield QTL which was dominant (d/a=0.7), eliminating the possibility that yield increase is due to true overdominance at a single gene locus. However, no negative yield effects were detected in other regions of the introgressed segment, as would be predicted by a dominance complementation model. Therefore, epistatic interactions among genetic factors along the introgressed segment are suggested as the cause of yield heterosis. Results from this study, combined with previous experiments involving different tomato wild species, demonstrate that the base of chromosome 1 of tomato contains multiple QTLs affecting various agronomic and fruit traits and that these effects can not be attributed to the pleiotropic effects of a single locus. Received: 21 April 1999 / Accepted: 17 June 1999  相似文献   

8.
 Two complete, independently maintained sets of 21 monosomic wheat lines derived from cv. ‘Chinese Spring’ were analyzed for their DNA content at the G1 stage with flow cytometry. The DNA content of individual chromosomes was estimated by subtracting the value of a monosomic line from that of euploid wheat. Our data show that the estimated 2C DNA of individual wheat chromosomes in 21 monosomics at the G1 stage ranges from about 0.58 pg in chromosome 1D to approximately 1.12 pg in chromosome 3A. The A genome (2C=6.15 pg) seems to contain more DNA than the B (2C=6.09 pg) and D (2C=5.05 pg) genomes. Analysis of variance showed significant differences (α=0.01) in DNA content both among homoeologous groups and among genomes. Our estimates of interphase DNA content of wheat chromosomes from monosomic lines were poorly correlated to the chromosome sizes at metaphase (r=0.622, P≤0.01). This poor correlation might be due to differential coiling among chromosomes during cell division, possible bias of fluorochrome binding to heterochromatin, or heterogeneity among monosomic lines. Finally, flow cytometry may aid but cannot replace cytological checks in aneuploid maintenance. Received: 21 January 1997 / Accepted: 23 June 1997  相似文献   

9.
 Chromosome 5A of wheat carries major gene loci for agronomic traits including the vernalization requirement (Vrn-A1) and ear morphology (Q). To determine whether the genetic variation for ear emergence time and plant height is attributable to either of these major genes as pleiotropic effects or independent QTL, we combined a RFLP map constructed from 120 recombinant substitution lines derived from a cross between ‘Chinese Spring’ (Cappelle-Desprez 5A) and CS(Triticum spelta 5A) with data collected from field trials over 3 years. For ear emergence time the main effects on flowering time were by Vrn-A1 and QEet.ocs-5A.1, the latter a QTL in the 28.6-cM Xcdo584/Q interval linked to Q by less than 10 cM. The CS(T. spelta 5A) allele at QEet.ocs-5A.1 contributed to an earlier ear emergence time by 2.7–6.0 days, which was approximately equal to the effects of Vrn-A1. For plant height, three QTLs were identified on the long arm and linked in repulsion. The CS(T. spelta 5A) allele at Vrn-A1 or closely linked to Xfba068 contributed to a height reduction of 3.5–6.1 cm, whereas both the Q allele and Qt.ocs-5A.1 allele within the Xcdo1088/Xbcd9 interval from CS(Cappelle-Desprez 5A) produced a shorter plant. When plant height was partitioned into culm length and ear length, the Vrn-A1 allele and CS(Cappelle-Desprez 5A) allele at QCl.ocs-5A.1 within the Xcd1088/Xbcd9 interval were found to contribute to a shorter culm. CS(T. spelta 5A) allele at q was a major determinant of a long ear, together with minor effects at QEl.ocs-5A.1 within the Xcdo1088/Xbcd9 interval. Received: 1 April 1998 / Accepted: 13 July 1998  相似文献   

10.
Uncovering the genetic basis of agronomic traits in wheat landraces is important for ensuring global food security via the development of improved varieties. Here, 723 wheat landraces from 10 Chinese agro‐ecological zones were evaluated for 23 agronomic traits in six environments. All accessions could be clustered into five subgroups based on phenotypic data via discriminant function analysis, which was highly consistent with genotypic classification. A genome‐wide association study was conducted for these traits using 52 303 DArT‐seq markers to identify marker‐trait associations and candidate genes. Using both the general linear model and the mixed linear model, 149 significant markers were identified for 21 agronomic traits based on best linear unbiased prediction values. Considering the linkage disequilibrium decay distance in this study, significant markers within 10 cM were combined as a quantitative trait locus (QTL), with a total of 29 QTL identified for 15 traits. Of these, five QTL for heading date, flag leaf width, peduncle length, and thousand kernel weight had been reported previously. Twenty‐five candidate genes associated with significant markers were identified. These included the known vernalization genes VRN‐B1 and vrn‐B3 and the photoperiod response genes Ppd and PRR. Overall, this study should be helpful in elucidating the underlying genetic mechanisms of complex agronomic traits and performing marker‐assisted selection in wheat.  相似文献   

11.
Sixteen crosses between eight winter wheat cultivars were screened for resistance to Septoria nodorum leaf and glume blotch in the F1 and F4 generations using artificial inoculation in the field. The F1 of most crosses showed dominance for susceptibility on both ear and leaf. The effects of general combining ability were of similar magnitude as the effects for specific combining ability. On the basis of the phenotypic difference of the parents, no prediction was possible about the amount and the direction of genetic variance in the segregating populations. The variation observed in this study both within and among the segregating populations suggests a quantitative inheritance pattern influencing the expression of the two traits. The components of variance between F2 families within a population were as high as (for S. nodorum blotch on the ear) or higher (for S. nodorum blotch on the leaf) than those between populations. Therefore, strong selection within a few populations may be as effective to obtain new resistant genotypes as selection in a large number of populations. In almost all crosses, progenies were found that were more resistant than the better parent. Thus transgression breeding may be a tool to breed for higher levels of resistance to S. nodorum blotch. Highly resistant genotypes were found even in combination with two susceptible parents. The genetic source for Septoria resistance is probably broader than is generally assumed and could be used to improve S. nodorum resistance by combination breeding followed by strong selection in large populations. Received: 18 January / Accepted: 30 April 1999  相似文献   

12.
Chlorotoluron is a selective phenylurea herbicide widely used for broad-leaved and annual grass weed control in cereals. Variation in the response to chlorotoluron (CT) was found in both hexaploid bread wheat (Triticum aestivum L.) and wild tetraploid wheat (Triticum dicoccoides KöRN.). Here, we describe the comparative mapping of the CT resistance gene (Su1) on chromosome 6B in bread and wild wheat using RFLP markers. In bread wheat, mapping was based on 58 F4 single-seed descent (SSD) plants of the cross between a genotype sensitive to chlorotoluron, ‘Chinese Spring’ (CS), and a resistant derivative, the single chromosome substitution line, CS (‘Cappele-Desprez’ 6B) [CS (CAP6B). In T dicoccoides, mapping was based on 37 F2 plants obtained from the cross between the CT-susceptible accession B-7 and the resistant accession B-35. Nine RFLP probes spanning the centromere were chosen for mapping. In bread wheat Su1 was found to be linked to α-Amy-1 (9.84 cM) and Xpsr371 (5.2 cM), both on the long arm of 6B, and Nor2 (2.74 cM) on the short arm. In wild wheat the most probable linkage map was Nor2-Xpsr312-Su1-Pgk2, and the genetic distances between the genes were 24.8cM, 5.3cM, and 6.8cM, respectively. These results along with other published map data indicate that the linear order of the genes is similar to that found in T. aestivum. The results of this study also show that the Su1 gene for differential response to chlorotoluron has evolved prior to the domestication of cultivated wheat and not in response to the development and use of chemicals.  相似文献   

13.
The development of alien addition lines is important both for transferring useful genes from related species into common wheat and for studying the relationship between alien chromosomes and those of wheat. Roegneria ciliaris (2n=4x=28, ScScYcYc) is reported to be a potential source of resistance to wheat scab, which may be useful in wheat improvement. The amphiploid common wheat-R. ciliaris and BC1F7 or BC2F6 derivatives were screened by C-banding, genomic in situ hybridization (GISH), fluorescent in situ hybridization (FISH) and restriction fragment length polymorphism (RFLP) for the presence of R. ciliaris chromatin introgressed into wheat. Six lines were identified as disomic chromosome additions (DA), one as a ditelosomic addition (Dt), two as double disomic additions (dDA) and one as a monosomic chromosome addition (MA). RFLP analysis using wheat homoeologous group-specific clones indicated that the R. ciliaris chromosomes involved in these lines belong to groups 1, 2, 3, 5 and 7. The genomic affinities of the added R. ciliaris chromosomes were determined by FISH analysis using the repetitive sequence pCbTaq4.14 as a probe. These data suggest that the R. ciliaris chromosomes in five lines belong to the Sc genome. Based on the molecular cytogenetic data, the lines are designated as DA2Sc#1, Dt2Sc#1L, DA3Sc#1, dDA1Sc#2+5Yc#1, DA5Yc#1, DA7Sc#1, DA7Yc#1 and MA?Yc#1. Based on the present and previous work, 8 of the 14 chromosomes of R. ciliaris have been transferred into wheat.  相似文献   

14.
 Flag-leaf angle (FLAngle), flag-leaf area (FLarea) and flag-leaf area duration (FLADuration) are important traits in determining yield in wheat (Triticum aestivum L). Genetic studies on these traits are very few. The objective of this study was to determine the gene action controlling those traits in four wheat crosses. Six generations were available for each cross: parents (P1 and P2), F1, F2 and backcrosses (BC(F1×P1) and BC(F1×P2)). The joint scaling test described by Mather and Jinks was used to test goodness of fit to eight genetic models. Models including additivity, dominance and interallelic interactions best fitted the data for the three traits and the four crosses. Additive effects were most prevalent for FLAngle. They were also significant for FLArea and FLADuration. Dominance and epistatic gene action were also found, but the degree and direction was both trait- and genotype-specific. Heritabilities values were intermediate. Genetic progress, although slow, can be expected when selecting for these traits; however, selection would be most effective if delayed to later generations because of dominance and epistatic effects. Received: 20 April 1998 / Accepted: 14 July 1998  相似文献   

15.
Bread wheat is a leading cereal crop worldwide. Limited amount of superior allele loci restricted the progress of molecular improvement in wheat breeding. Here, we revealed new allelic variation distribution for 13 yield‐related traits in series of genome‐wide association studies (GWAS) using the wheat 90K genotyping assay, characterized in 163 bread wheat cultivars. Agronomic traits were investigated in 14 environments at three locations over 3 years. After filtering SNP data sets, GWAS using 20 689 high‐quality SNPs associated 1769 significant loci that explained, on average, ~20% of the phenotypic variation, both detected already reported loci and new promising genomic regions. Of these, repetitive and pleiotropic SNPs on chromosomes 6AS, 6AL, 6BS, 5BL and 7AS were significantly linked to thousand kernel weight, for example BS00021705_51 on 6BS and wsnp_Ex_c32624_41252144 on 6AS, with phenotypic variation explained (PVE) of ~24%, consistently identified in 12 and 13 of the 14 environments, respectively. Kernel length‐related SNPs were mainly identified on chromosomes 7BS, 6AS, 5AL and 5BL. Plant height‐related SNPs on chromosomes 4DS, 6DL, 2DS and 1BL were, respectively, identified in more than 11 environments, with averaged PVE of ~55%. Four SNPs were confirmed to be important genetic loci in two RIL populations. Based on repetivity and PVE, a total of 41 SNP loci possibly played the key role in modulating yield‐related traits of the cultivars surveyed. Distribution of superior alleles at the 41 SNP loci indicated that superior alleles were getting popular with time and modern cultivars had integrated many superior alleles, especially for peduncle length‐ and plant height‐related superior alleles. However, there were still 19 SNP loci showing less than percentages of 50% in modern cultivars, suggesting they should be paid more attention to improve yield‐related traits of cultivars in the Yellow and Huai wheat region. This study could provide useful information for dissection of yield‐related traits and valuable genetic loci for marker‐assisted selection in Chinese wheat breeding programme.  相似文献   

16.
The visco-elastic properties of bread flour are firmly associated with the presence or absence of certain HMW subunits coded by the Glu-1 genes. Identifying allelic specific molecular markers (AS-PCR) associated with the presence of Glu-1 genes can serve as a valuable tool for the selection of useful genotypes. This paper reports the use of primers designed from nucleotide sequences of the Glu-D1 gene of wheat (AS-PCR for Glu-D1y10) that recognise and amplify homologous sequences of the Glu-R1 gene subunits of rye. The primers amplify the complete coding regions and provided two products of different size in rye, in wheats carrying the substitution 1R(1D) and in rye-wheat aneuploid lines carrying the long arm of chromosome 1R. The location, the molecular characterisation of these sequences and their expression during grain ripening seem to demonstrate that the amplification products correspond to structural genes encoding the high-molecular-weight (HMW) glutenins of rye. The homology of the rye gene to subunits encoding HMW glutenins in wheat was confirmed by Southern blots and sequencing. The amplification-products were cloned, sequenced and characterised, and the sequences compared with the main glutenin subunits of wheat and related species. Further, an RT-PCR experiment was performed using primers designed from the sequence of both amplified products. This assay demonstrated that both sequences are expressed in endosperm during grain ripening. The results of these analyses suggest that both gene subunits correspond to x- and y-type genes of the Glu-R1 locus of rye. Received: 11 December 2000 / Accepted: 17 April 2001  相似文献   

17.
 Advanced backcross QTL (AB-QTL) analysis is a new strategy for studying the effect of unadapted alleles on the agronomic performance of elite cultivated lines. In this paper we report results from the application of the AB-QTL strategy to cultivated tomato using the wild species Lycopersicon hirsutum LA1777 as the donor parent. RFLP genomic fingerprints were determined for 315 BC2 plants and phenotypic data were collected for 19 agronomic traits from approximately 200 derived BC3 lines which were grown in replicated field trials in three locations worldwide. Between 1 and 12 significant QTLs were identified for each of the 19 traits evaluated, with a total of 121 QTLs identified for all traits. For 25 of the QTLs (20%) corresponding to 12 traits (60%), the L. hirsutum allele was associated with an improvement of the trait from a horticultural perspective, despite the fact that L. hirsutum is overall phenotypically inferior to the elite parent. For example, L. hirsutum has fruit that remains green when ripe (lack of red pigment) yet alleles were found in this species that significantly increase red color when transferred into cultivated tomatoes. Wild alleles were also associated with increases in total yield and soluble solids (up to 15%) and brix×red yield (up to 41%). These results support the idea that one cannot predict the genetic potential of exotic germplasm based on phenotype alone and that marker-based methods, such as the AB-QTL strategy, should be applied to fully exploit exotic germplasm. Received: 27 October 1997 / Accepted: 25 November 1997  相似文献   

18.
Identification of new low-molecular-weight glutenin subunit genes in wheat   总被引:22,自引:0,他引:22  
To clarify the composition of low-molecular-weight glutenin subunits (LMW-GSs) in a soft wheat cultivar, we cloned and characterized LMW-GS genes from a cDNA library and genomic DNA in Norin 61. Based on alignment of the conserved N- and C- terminal domains of the deduced amino-acid sequences, these genes are classified into 12 groups. One of these groups (group 5), the corresponding gene of which has not been reported previously, contains two additional hydrophobic amino-acid clusters interrupting the N-terminal repetitive domain. Other groups (groups 11 and 12), which were not identified in other cultivars as a protein product, showed all eight cysteines in the C-terminal conserved domain. With specific primer sets for these groups it was revealed that Glu-D3 and Glu-A3 encoded the former and the latter, respectively. Both groups of genes were expressed in immature seeds. The presence of these groups of LMW-GSs may affect the dough strength of soft wheat. Received: 26 March 2001 / Accepted: 16 July 2001  相似文献   

19.
Aegilops tauschii is the diploid D-genome progenitor of bread wheat (Triticum aestivum L. em Thell, 2n=6x=42, AABBDD). A genetic linkage map of the Ae. tauschii genome was constructed, composed of 546 loci. One hundred and thirty two loci (24%) gave distorted segregation ratios. Sixty nine probes (13%) detected multiple copies in the genome. One hundred and twenty three of the 157 markers shared between the Ae. tauschii genetic and T. aestivum physical maps were colinear. The discrepancy in the order of five markers on the Ae. tauschii 3DS genetic map versus the T. aestivum 3D physical map indicated a possible inversion. Further work is needed to verify the discrepancies in the order of markers on the 4D, 5D and 7D Ae. tauschii genetic maps versus the physical and genetic maps of T. aestivum. Using common markers, 164 agronomically important genes were assigned to specific regions on Ae. tauschii linkage, and T. aestivum physical, maps. This information may be useful for map-based cloning and marker-assisted plant breeding. Received: 23 March 1998 / Accepted: 27 October 1998  相似文献   

20.
 We are reporting the successful isolation of wheat chromosome arm 1DS by flow cytometry. A chromosome suspension was prepared for the 1DS ditelosomic line and the normal ‘Chinese Spring’ (CS) by chopping 2-day-old root tip meristems, synchronized by hydroxyurea, in HEPES-magnesium sulfate buffer containing propidium iodide. Chromosomes were analyzed and sorted with a FACS Vantage flow cytometer and cell sorter. An extra peak was observed in the flow karyotype of the ditelosomic line that was absent in ‘CS’. The estimated size of chromosomes from the extra peak matched with the expected size of chromosome 1DS. Chromosomes from the putative 1DS peak were analyzed by both fluorescent microscopy and N-banding analysis. A total of 571 chromosomes from two separate experiments were analyzed, and all were observed to be telosomics except for 2 which were broken. About 82% of these telosomics showed the diagnostic N-band of 1DS, the remaining were unbanded and are probably also 1DS. This strategy can also be used to sort other wheat arms. Received: 30 September 1998 / Accepted: 2 November 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号