首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of environmental change on emerging parasitic diseases   总被引:17,自引:0,他引:17  
Ecological disturbances exert an influence on the emergence and proliferation of malaria and zoonotic parasitic diseases, including, Leishmaniasis, cryptosporidiosis, giardiasis, trypanosomiasis, schistosomiasis, filariasis, onchocerciasis, and loiasis. Each environmental change, whether occurring as a natural phenomenon or through human intervention, changes the ecological balance and context within which disease hosts or vectors and parasites breed, develop, and transmit disease. Each species occupies a particular ecological niche and vector species sub-populations are distinct behaviourally and genetically as they adapt to man-made environments. Most zoonotic parasites display three distinct life cycles: sylvatic, zoonotic, and anthroponotic. In adapting to changed environmental conditions, including reduced non-human population and increased human population, some vectors display conversion from a primarily zoophyllic to primarily anthrophyllic orientation. Deforestation and ensuing changes in landuse, human settlement, commercial development, road construction, water control systems (dams, canals, irrigation systems, reservoirs), and climate, singly, and in combination have been accompanied by global increases in morbidity and mortality from emergent parasitic disease. The replacement of forests with crop farming, ranching, and raising small animals can create supportive habitats for parasites and their host vectors. When the land use of deforested areas changes, the pattern of human settlement is altered and habitat fragmentation may provide opportunities for exchange and transmission of parasites to the heretofore uninfected humans. Construction of water control projects can lead to shifts in such vector populations as snails and mosquitoes and their parasites. Construction of roads in previously inaccessible forested areas can lead to erosion, and stagnant ponds by blocking the flow of streams when the water rises during the rainy season. The combined effects of environmentally detrimental changes in local land use and alterations in global climate disrupt the natural ecosystem and can increase the risk of transmission of parasitic diseases to the human population.  相似文献   

2.
Protozoan parasites are responsible for severe disease and suffering in humans worldwide. Apart from disease transmission via insect vectors and contaminated soil, food, or water, transmission may occur congenitally or by way of blood transfusion and organ transplantation. Several recent outbreaks associated with fresh produce and potable water emphasize the need for vigilance and monitoring of protozoan parasites that cause severe disease in humans globally. Apart from the tropical parasite Plasmodium spp., other protozoa causing debilitating and fatal diseases such as Trypanosoma spp. and Naegleria fowleri need to be studied in more detail. Climate change and socioeconomic issues such as migration continue to be major drivers for the spread of these neglected tropical diseases beyond endemic zones. Due to the complex life cycles of protozoa involving multiple hosts, vectors, and stringent growth conditions, studying these parasites has been challenging. While in vivo models may provide insights into host–parasite interaction, the ethical aspects of laboratory animal use and the challenge of ready availability of parasite life stages underline the need for in vitro models as valid alternatives for culturing and maintaining protozoan parasites. To our knowledge, this review is the first of its kind to highlight available in vitro models for protozoa causing highly infectious diseases. In recent years, several research efforts using new technologies such as 3D organoid and spheroid systems for protozoan parasites have been introduced that provide valuable tools to advance complex culturing models and offer new opportunities toward the advancement of parasite in vitro studies. In vitro models aid scientists and healthcare providers in gaining insights into parasite infection biology, ultimately enabling the use of novel strategies for preventing and treating these diseases.  相似文献   

3.
4.
Prion diseases are rare fatal neurological conditions of humans and animals, one of which (variant Creutzfeldt-Jakob disease) is known to be a zoonotic form of the cattle disease bovine spongiform encephalopathy (BSE). What makes one animal prion disease zoonotic and others not is poorly understood, but it appears to involve compatibility between the prion strain and the host prion protein sequence. Concerns have been raised that the United Kingdom sheep flock may have been exposed to BSE early in the cattle BSE epidemic and that serial BSE transmission in sheep might have resulted in adaptation of the agent, which may have come to phenotypically resemble scrapie while maintaining its pathogenicity for humans. We have modeled this scenario in vitro. Extrapolation from our results suggests that if BSE were to infect sheep in the field it may, with time and in some sheep genotypes, become scrapie-like at the molecular level. However, the results also suggest that if BSE in sheep were to come to resemble scrapie it would lose its ability to affect humans.  相似文献   

5.
Infectious disease risk is thought to increase in the tropics, but little is known about latitudinal gradients of parasite diversity. We used a comparative data set encompassing 330 parasite species reported from 119 primate hosts to examine latitudinal gradients in the diversity of micro and macroparasites per primate host species. Analyses conducted with and without controlling for host phylogeny showed that parasite species richness increased closer to the equator for protozoan parasites, but not for viruses or helminths. Relative to other major parasite groups, protozoa reported from wild primates were transmitted disproportionately by arthropod vectors. Within the protozoa, our results revealed that vector‐borne parasites showed a highly significant latitudinal gradient in species richness. This higher diversity of vector‐borne protozoa near the tropics could be influenced by a greater abundance or diversity of biting arthropods in the tropics, or by climatic effects on vector behaviour and parasite development. Many vector‐borne diseases, such as leishmaniasis, trypanosomiasis, and malaria pose risks to both humans and wildlife, and nearly one‐third of the protozoan parasites from free‐living primates in our data set have been reported to infect humans. Because the geographical distribution and prevalence of many vector‐borne parasites are expected to increase because of global warming, these results are important for predicting future parasite‐mediated threats to biodiversity and human health.  相似文献   

6.
Human African trypanosomiasis, also known as sleeping sickness, is caused by protozoan parasites of the genus Trypanosoma, and is a major cause of human mortality and morbidity. The East African and West African variants, caused by Trypanosma brucei rhodesiense and Trypanosoma brucei gambiense, respectively, differ in their presentation but the disease is fatal if untreated. Accurate staging of the disease into the early haemolymphatic stage and the late encephalitic stage is critical as the treatment for the two stages is different. The only effective drug for late stage disease, melarsoprol, which crosses the blood-brain barrier, is followed by a severe post-treatment reactive encephalopathy in 10% of cases of which half die. There is no current consensus on the diagnostic criteria for CNS involvement and the specific indications for melarsoprol therapy also differ. There is a pressing need for a quick, simple, cheap and reliable diagnostic test to diagnose Human African trypanosomiasis in the field and also to determine CNS invasion. Cerebrospinal fluid and plasma analyses in patients with Human African trypanosomiasis have indicated a role for both pro-inflammatory and counter-inflammatory cytokines in determining the severity of the meningoencephalitis of late stage disease, and, at least in T. b. rhodesiense infection, the balance of these opposing cytokines may be critical. Rodent models of Human African trypanosomiasis have proved very useful in modelling the post-treatment reactive encephalopathy of humans and have demonstrated the central role of astrocyte activation and cytokine balances in determining CNS disease. Such animal models have also allowed a greater understanding of the more direct mechanisms of trypanosome infection on CNS function including the disruption of circadian rhythms, as well as the immunological determinants of passage of trypanosomes across the blood-brain barrier.  相似文献   

7.
There is an urgent need for the development of new drugs for the treatment of neglected tropical diseases such as human African trypanosomiasis, Chagas disease and leishmaniasis. Azasterols, have been shown to have activity against the parasites which cause these diseases. In this paper we report synthesis of new azasterols and subsequent analysis of the SAR. The chemistry focused on variations in the ester at the 3β-position of the sterol and the position of the nitrogen in the side chain. The data allowed us to derive preliminary pharmacophore models for the activity of the azasterols against the parasites which cause these diseases.  相似文献   

8.
Vector‐borne parasites must succeed at three scales to persist: they must proliferate within a host, establish in vectors, and transmit back to hosts. Ecology outside the host undergoes dramatic seasonal and human‐induced changes, but predicting parasite evolutionary responses requires integrating their success across scales. We develop a novel, data‐driven model to titrate the evolutionary impact of ecology at multiple scales on human malaria parasites. We investigate how parasites invest in transmission versus proliferation, a life‐history trait that influences disease severity and spread. We find that transmission investment controls the pattern of host infectiousness over the course of infection: a trade‐off emerges between early and late infectiousness, and the optimal resolution of that trade‐off depends on ecology outside the host. An expanding epidemic favors rapid proliferation, and can overwhelm the evolutionary influence of host recovery rates and mosquito population dynamics. If transmission investment and recovery rate are positively correlated, then ecology outside the host imposes potent selection for aggressive parasite proliferation at the expense of transmission. Any association between transmission investment and recovery represents a key unknown, one that is likely to influence whether the evolutionary consequences of interventions are beneficial or costly for human health.  相似文献   

9.
Microbial parasites of animals include bacteria, viruses, and various unicellular eukaryotes. Because of the difficulty in studying these microorganisms in both humans and disease vectors, laboratory models are commonly used for experimental analysis of host-parasite interactions. Drosophila is one such model that has made significant contributions to our knowledge of bacterial, fungal, and viral infections. Despite this, less is known about other potential parasites associated with natural Drosophila populations. Here, we surveyed sixteen Drosophila populations comprising thirteen species from four continents and Hawaii and found that they are associated with an extensive diversity of trypanosomatids (Euglenozoa, Kinetoplastea). Phylogenetic analysis finds that Drosophila-associated trypanosomatids are closely related to taxa that are responsible for various types of leishmaniases and more distantly related to the taxa responsible for human African trypanosomiasis and Chagas disease. We suggest that Drosophila may provide a powerful system for studying the interactions between trypanosomatids and their hosts.  相似文献   

10.
The population biology of parasite-induced changes in host behavior   总被引:5,自引:0,他引:5  
The ability of parasites to change the behavior of infected hosts has been documented and reviewed by a number of different authors (Holmes and Bethel, 1972; Moore, 1984a). This review attempts to quantify the population dynamic consequences of this behavior by developing simple mathematical models for the most frequently recorded of such parasite life cycles. Although changes in the behavior of infected hosts do occur for pathogens with direct life cycles, they are most commonly recorded in the intermediate hosts of parasites with complex life cycles. All the changes in host behavior serve to increase rates of transmission of the parasites between hosts. In the simplest case the changes in behavior increase rates of contact between infected and susceptible conspecific hosts, whereas in the more complex cases fairly sophisticated manipulations of the host's behavioral repertory are achieved. Three topics are dealt with in some detail: (1) the behavior of the insect vectors of such diseases as malaria and trypanosomiasis; (2) the intermediate hosts of helminths whose behavior is affected in such a way as to make them more susceptible to predation by the definitive host in the life cycle; and (3) the behavior and fecundity of molluscs infected with asexually reproducing parasitic flatworms. In each case an expression is derived for R0, the basic reproductive rate of the parasite when first introduced into the population. This is used to determine the threshold numbers of definitive and intermediate hosts needed to maintain a population of the pathogen. In all cases, parasite-induced changes in host behavior tend to increase R0 and reduce the threshold number of hosts required to sustain the infection. The population dynamics of the interaction between parasites and their hosts are then explored using phase plane analyses. This suggests that both the parasite and intermediate host populations may show oscillatory patterns of abundance. When the density of the latter is low, parasite-induced changes in host behavior increase this tendency to oscillate. When intermediate host population densities are high, parasite population density is determined principally by interactions between the parasites and their definitive hosts, and changes in the behavior of intermediate hosts are less important in determining parasite density. Analysis of these models also suggests that both asexual reproduction of the parasite within a host and parasite-induced reduction in host fecundity may be stabilizing mechanisms when they occur in the intermediate hosts of parasite species with indirect life cycles.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Tsetse transmit African trypanosomiasis, which is a disease fatal to both humans and animals. A vaccine to protect against this disease does not exist so transmission control relies on eliminating tsetse populations. Although neurotoxic insecticides are the gold standard for insect control, they negatively impact the environment and reduce populations of insect pollinator species. Here we present a promising, environment-friendly alternative to current insecticides that targets the insect tyrosine metabolism pathway. A bloodmeal contains high levels of tyrosine, which is toxic to haematophagous insects if it is not degraded and eliminated. RNA interference (RNAi) of either the first two enzymes in the tyrosine degradation pathway (tyrosine aminotransferase (TAT) and 4-hydroxyphenylpyruvate dioxygenase (HPPD)) was lethal to tsetse. Furthermore, nitisinone (NTBC), an FDA-approved tyrosine catabolism inhibitor, killed tsetse regardless if the drug was orally or topically applied. However, oral administration of NTBC to bumblebees did not affect their survival. Using a novel mathematical model, we show that NTBC could reduce the transmission of African trypanosomiasis in sub-Saharan Africa, thus accelerating current disease elimination programmes.

This study shows that tsetse flies, vectors of African trypanosomiasis, are highly susceptible to killing by nitisinone, a tyrosine catabolism inhibitor currently used to treat human metabolic diseases; this environment-friendly drug could facilitate elimination of African trypanosomiasis and other diseases transmitted by blood feeding insects.  相似文献   

12.
Many phytoplankton species are susceptible to fungal parasitism. Parasitic fungi of phytoplankton mainly belong to the Chytridiomycetes (chytrids). Here, we discuss the progression made in the study of chytrids that parasitize phytoplankton species. Specific fluorescent stains aid in the identification of chytrids in the field. The established culturing methods and the advances in molecular science offer good potential to gain a better insight into the mechanisms of epidemic development of chytrids and coevolution between chytrids and their algal hosts. Chytrids are often considered to be highly host-specific parasites, but the extent of host specificity has not been fully investigated. Chytrids may prefer larger host cells, since they would gain more resources, but whether hosts are really selected on the basis of size is not clear. The dynamics of chytrids epidemics in a number of studies were partly explained by environmental factors such as light, temperature, nutrients, pH, turbulence and zooplankton grazing. No generalization was made about the epidemic conditions; some state unfavorable conditions for the host growth support epidemic development, while others report epidemics even under optimal growth conditions for the host. Phytoplankton is not defenseless, and several mechanisms have been suggested, such as a hypersensitivity response, chemical defense, maintaining a high genetic diversity and multitrophic indirect defenses. Chytrids may also play an important role in food webs, because zoospores of chytrids have been found to be a good food source for zooplankton.  相似文献   

13.
Vector-borne diseases often originate from wildlife and can spill over into the human population. One of the most important determinants of vector-borne disease transmission is the host preference of mosquitoes. Mosquitoes with a specialised host preference are guided by body odours to find their hosts in addition to carbon dioxide. Little is known about the role of mosquito host preference in the spillover of pathogenic agents from humans towards animals and vice versa. In the Republic of Congo, the attraction of mosquitoes to primate host odours was determined, as well as their possible role as malaria vectors, using odour-baited traps mimicking the potential hosts of mosquitoes. Most of the mosquito species caught showed a generalistic host preference. Anopheles obscurus was the most abundant Anopheles mosquito, with a generalistic host preference observed from the olfactory response and the detection of various Plasmodium parasites. Interestingly, Culex decens showed a much higher attraction towards chimpanzee odours than to human or cow odours. Human Plasmodium parasites were observed in both human and chimpanzee blood, although not in the Anopheles mosquitoes that were collected. Understanding the role of mosquito host preference for cross-species parasite transmission provides information that will help to determine the risk of spillover of vector-borne diseases.  相似文献   

14.
Several dipteran insects are vectors of parasites causing major human infectious diseases. Among these, the tsetse fly, Glossina spp., is responsible for the transmission of trypanosomes, the pathogens responsible for sleeping sickness in Africa. A better understanding of insect-parasite interactions will help establish new strategies to fight this important often fatal disease. Antimicrobial peptides (AMPs) are part of the humoral immune response in insects during bacterial, fungal and parasitic infections. Here, we studied the immune response of Glossina morsitans to bacteria and to Trypanosoma brucei brucei by analyzing the synthesis of AMPs as markers of the humoral immune response. By reversed-phase chromatography, mass spectrometry analysis, Edman degradation and in vitro antimicrobial assays of the hemolymph of immune-challenged adults of G. morsitans, we identified three AMPs: a cecropin, an attacin and a defensin. These three AMPs were found to be induced upon systemic bacterial infection and also after per os infections by bacteria and parasites.  相似文献   

15.
Many infections can be transmitted between animals and humans. The epidemiological roles of different species can vary from important reservoirs to dead-end hosts. Here, we present a method to identify transmission cycles in different combinations of species from field data. We used this method to synthesise epidemiological and ecological data from Bipindi, Cameroon, a historical focus of gambiense Human African Trypanosomiasis (HAT, sleeping sickness), a disease that has often been considered to be maintained mainly by humans. We estimated the basic reproduction number of gambiense HAT in Bipindi and evaluated the potential for transmission in the absence of human cases. We found that under the assumption of random mixing between vectors and hosts, gambiense HAT could not be maintained in this focus without the contribution of animals. This result remains robust under extensive sensitivity analysis. When using the distributions of species among habitats to estimate the amount of mixing between those species, we found indications for an independent transmission cycle in wild animals. Stochastic simulation of the system confirmed that unless vectors moved between species very rarely, reintroduction would usually occur shortly after elimination of the infection from human populations. This suggests that elimination strategies may have to be reconsidered as targeting human cases alone would be insufficient for control, and reintroduction from animal reservoirs would remain a threat. Our approach is broadly applicable and could reveal animal reservoirs critical to the control of other infectious diseases.  相似文献   

16.
Here, we review the interactions between parasites and chemokines and chemokine receptors in toxoplasmosis, trypanosomiasis, leishmaniasis, malaria and other diseases caused by protozoan parasites. The potential roles of chemokines after infection by these intracellular pathogens include host defence functions such as leukocyte recruitment, participation in cell-mediated immunity and antiprotozoal activity. However, these interactions can also help the parasite in, for example, the penetration of host cells.  相似文献   

17.
A disease is considered which is transferred between two populations, termed hosts and vectors. The disease is transmitted solely from infected vector to uninfected host and from infected host to uninfected vector. Two models are formulated in which infectious individuals are introduced at time t = 0 into the populations of susceptibles, thus triggering an epidemic through those populations. Conditions are established for a major epidemic to occur, and the final size of the epidemic is obtained for these models when no spatial aspect is considered. When a spatial aspect is included in the models, again the condition for a major epidemic is obtained. The pandemic theorem is proved rigorously, giving a lower bound for the proportion of each population, at each point, who eventually suffer the epidemic. The behavior a long way from the initial focus of infection is also rigorously obtained.  相似文献   

18.
Pathogens frequently use vectors to facilitate transmission between hosts and, for vertebrate hosts, the vectors are typically ectoparasitic arthropods. However, other parasites that are intimately associated with their hosts may also be ideal candidate vectors; namely the parasitic helminths. Here, we present empirical evidence that helminth vectoring of pathogens occurs in a range of vertebrate systems by a variety of helminth taxa. Using a novel theoretical framework we explore the dynamics of helminth vectoring and determine which host-helminth-pathogen characteristics may favour the evolution of helminth vectoring. We use two theoretical models: the first is a population dynamic model amalgamated from standard macro- and microparasite models, which serves as a framework for investigation of within-host interactions between co-infecting pathogens and helminths. The second is an evolutionary model, which we use to predict the ecological conditions under which we would expect helminth vectoring to evolve. We show that, like arthropod vectors, helminth vectors increase pathogen fitness. However, unlike arthropod vectors, helminth vectoring increases the pathogenic impact on the host and may allow the evolution of high pathogen virulence. We show that concomitant infection of a host with a helminth and pathogen are not necessarily independent of one another, due to helminth vectoring of microparasites, with profound consequences for pathogen persistence and the impact of disease on the host population.  相似文献   

19.
Strategies to eradicate the vector-borne infectious diseases (e.g. malaria and Japanese encephalitis) are often directed at controlling vectors with insecticides. Spraying insecticide, however, opens the way for the development of insecticide resistance in vectors, which may lead to the failure of disease control. In this paper, we examine whether the combined use of insecticide spray and zooprophylaxis can limit the development of insecticide resistance in mosquitoes. Zooprophylaxis refers to the control of vector-borne diseases by attracting vectors to domestic animals in which the pathogen cannot amplify (a dead-end host). The human malaria parasite Plasmodium spp. has a closed transmission cycle between humans and mosquitoes, and hence cattle can serve as a dead-end host. Our model reveals that, by a suitable choice of insecticide spraying rate and cattle density and location, malaria can, in some situations, be controlled without mosquitoes developing insecticide resistance.  相似文献   

20.
Host innate immunity plays a central role in detecting and eliminating microbial pathogenic infections in both vertebrate and invertebrate animals. Entomopathogenic or insect pathogenic nematodes are of particular importance for the control of insect pests and vectors of pathogens, while insect-borne nematodes cause serious diseases in humans. Recent work has begun to use the power of insect models to investigate host-nematode interactions and uncover host antiparasitic immune reactions. This review describes recent findings on innate immune evasion strategies of parasitic nematodes and host cellular and humoral responses to the infection. Such information can be used to model diseases caused by human parasitic nematodes and provide clues indicating directions for research into the interplay between vector insects and their invading tropical parasites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号