首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A heterozygous tandem duplication in the Escherichia coli deo operon region deoA deoB::Tn5/deoC deoD thr::Tn9 with the total length approximately 150 kb, which was obtained in the conjugational mating in the HfrH strain, was examined. By means of digestion with the NotI enzyme, pulsed-field gel electrophoresis, and the conjugational transfer of the duplication in the F- strain, the chromosomal rearrangement, which occurred in the duplication region upon its stabilization in the bacterial genome, was studied. In a more stable strain, two new NotI sites were shown to appear in the chromosomal region located close to the duplication, which might have resulted from the transposition of the IS50 sequence from Tn5. The data were also obtained indicating the possibility of secondary transposition of the chromosomal segment between the two new NotI sites (approximately 30 kb) in the region located near the duplication. With the use of rec+ and recA strains, two types of haploid and diploid segregants generated by the duplication were studied: DeoD+ (the DeoD+ allele is not expressed in the original duplication due to the polar effect of the deoB::Tn5 insertion) and DeoC DeoD. The segregation of DeoD+ clones was shown to be RecA-dependent, whereas the DeoC DeoD segregants selected on the medium that contained thymine at a low concentration (i.e., under conditions of thymine starvation) appeared at a rather high frequency. However, the relative frequency of haploid clones, which have lost the duplication, strongly decreased in the recA genome among segregants of both types.  相似文献   

2.
Sukhodolets VV 《Genetika》2002,38(9):1215-1222
The formation of haploid and diploid segregants was studied in Escherichia coli strains carrying heterozygous tandem duplications deoA deoB::Tn5/deoC deoD in the deoCABD operon region, in the genome of mutants for ruvABC genes. Homologous recombination in duplications of rec+ strains and in recBC sbcB, recQ and recF mutants, including those with blocks of both the RecBCD and RecF pathway, was shown in our previous work to be similar to adaptive mutagenesis: in this case, practically each cell forms a recombinant on a selective medium. In this work, mutants for ruv genes were found to differ in this respect, forming segregants at a frequency that was decreased by several orders of magnitude. These data confirm the conclusion that the genetic exchange in duplications proceeds through a special pathway of adaptive (or replicative) recombination connected with DNA replication. Upon selection of recombinants under conditions of thymine starvation, recombination cannot also be induced in ruv mutants. The recombinogenic effect of thymine starvation seems to occur at late stages of recombination, which are controlled by ruvABC genes.  相似文献   

3.
Heterozygous tandem duplications that appear in Escherichia coli conjugation matings segregate different types of haploid and diploid recombinants because of unequal crossing over between sister chromosomes. As shown previously, the frequency of segregants in the extended duplication D104 (approximately 150 kb or more than 3 min of the genetic map) heterozygous for E. coli deo-operon genes (deoA deoB::Tn5/deoC deoD) is not decreased in strains with defective RecBCD and RecF recombination pathways. Analysis of a shorter duplication of this type (approximately 46 kb) showed that the frequency of segregants in the strain recBC sbcBC recF was similar to that in a strain with undamaged system of recombination. Thus, genetic exchange between direct DNA repeats in tandem duplications may follow a special pathway of homologous recombination, which is independent of the recBC and recF genes.  相似文献   

4.
Heterozygous tandem duplications formed in conjugational matings in Escherichia coli provides a convenient model system for studying the evolution of bacterial chromosome. Heterozygous duplications segregate various classes of haploid and diploid recombinants that appear as a result of unequal crossing over between sister chromosomes. In this work, an extended tandem duplication in the deo operon of E. coli carrying deoA deoB::Tn5/deoC deoD thr::Tn9 alleles was examined. Recombination between homologous DNA repeats in the duplication was studied in strains carrying different combinations of recBC, sbcBC, recB::Tn10, recQ::Tn3 mutations. The frequency of recombination between homologous DNA repeats was very high in all strains and did not decrease when the RecBCD and RecF recombinational pathways were simultaneously damaged in strains with the recB sbcBC recQ (or recF) genotype. It is assumed that unequal crossing over between direct DNA repeats in duplications may proceed through a particular pathway of "adaptive" recombination.  相似文献   

5.
A V Stolbova 《Genetika》1987,23(8):1390-1398
This article continues the investigation of polyauxotrophic (PA) clones formed in early mitotic progeny of zygotes. Cloning and segregation analysis of PA progeny suggest an unusual state of diploid genome in these strains, which is expressed as elimination of the dominance effect of the wild allele and as suppression or conversion of either of two loci of mating type. In PA progeny, except for recombinant haploids, sporulating diploids and unstable clones were detected. The tetrad analysis of the diploids points to homozygotization for individual markers. Over-replication of diploid set of chromosomes, prior to meiosis, and replacement of the haploid nucleus (the product of meiosis) for the diploid nucleus may explain the appearance of sporulating segregants in the diploid meiotic progeny. Unstable segregants may be considered as heterokaryons with complex interaction of nuclei.  相似文献   

6.
Summary Off the transconjugants formed in theR. lupini conjugation 0.5 to 5% are merodiploids. When two differently pigmented parents are used in the crossing experiment the diploid transconjugants can be differentiated from the haploid recombinants by their additive pigmentation type. The segregation patterns of these diploid clones were analyzed. The results are in agreement with the theory that the exogenotic donor DNA can be integrated at different sites of the homologous recipient chromosomal region forming a tandem sequence. Consequently the segregants of these merodiploid clones are formed by endochromosomal recombination. This work was supported by the Deutsche Forschungsgemeinschaft and Stiftung Volkswagenwerk.  相似文献   

7.
V V Sukhodolets 《Genetika》1999,35(4):450-458
Stable tandem duplications were shown to originate from conjugational recombination between Escherichia coli HfrH strains carrying mutations for the deo operon. The duplications deoC deoD/deoA deoB::Tn5 usually constitute approximately 5% of the Deo+ offspring. The effect of mutations for the recQ, uvrD, and recJ genes on the frequency of duplications was studied. The CM1563 strain carrying the recQ mutation was shown to give, as a recipient, 20% of duplications in the Deo+ offspring. However, this property of CM1563 seems to depend on the presence of a spontaneous mutation of unknown nature, which also increased UV sensitivity of bacteria. The recQ mutation itself increased the frequency of duplications by less than 50%. The recJ mutation did not virtually affect the frequency of duplications. The uvrD mutation possessing the recombinogenic effect was shown to increase the frequency of deo+ recombinants and simultaneously decrease the frequency of duplications. Tandem duplications are assumed to be normal intermediates of multi-stage conjugational recombination initiated by the integration of the proximal region of the Hfr chromosome into different nonhomologous regions of the recipient chromosome.  相似文献   

8.
The Genetic System Controlling Homothallism in Saccharomyces Yeasts   总被引:21,自引:7,他引:14       下载免费PDF全文
There are four types of life cycles in Saccharomyces cerevisiae and its related species. A perfect homothallic life cycle (the Ho type) is observed in the classic D strain. Two other types show semi-homothallism; one of them shows a 2-homothallic diploid:2alpha heterothallic haploid segregation (the Hp type) and another, a 2-homothallic:2a segregation (the Hq type). In the segregants from these Ho, Hp, and Hq diploids, each homothallic segregant shows the same segregation pattern as its parental diploid. The fourth type has a heterothallic life cycle showing a 2a:2alpha segregation and the diploids are produced by the fusion of two haploid cells of opposite mating types. The diploids prepared by the crosses of alpha Hp (an alpha haploid segregant from the Hp diploid) to a Hq (an a haploid from the Hq diploid) segregated two types (Type I and II) of the Ho type homothallic clone among their meiotic segregants. Genetic analyses were performed to investigate this phenomenon and the genotypes of the Ho type homothallic clones of Type I and Type II. Results of these genetic analyses have been most adequately explained by postulating three kinds of homothallic genes, each consisting of a single pair of alleles, HO/ho, HMalpha/hmalpha, and HMa/hma, respectively. One of them, the HMalpha locus, was proved to be loosely linked (64 stranes) to the mating-type locus. A spore having the HO hmalpha hma genotype gives rise to an Ho type homothallic diploid (Type I), the same as in the case of the D strain which has the HO HMalpha HMa genotype (Type II). A spore having the a HO hmalpha HMa or alpha HO HMalpha hma genotype will produce an Hp or Hq type homothallic diploid culture, respectively. The other genotypes, a HO HMalpha hma, alpha HO hmalpha HMa, and the genotypes combined with the ho allele give a heterothallic character to the spore culture. A possible molecular hypothesis for the mating-type differentiation with the controlling elements produced by the HMalpha and HMa genes is proposed.  相似文献   

9.
Heterozygous tandem duplications that appear in Escherichia coli conjugation matings segregate different types of haploid and diploid recombinants formed by unequal crossing over between sister chromosomes. As shown previously, the frequency of segregants in the extended duplication D104 (150 kb or more than 3 min of the genetic map) heterozygous for E. coli deo-operon genes (deoA deoB::Tn5/deoC deoD) is not decreased in strains with defective RecBCD and RecF recombination pathways. Analysis of a shorter duplication of this type (46 kb) showed that the frequency of segregants in the strain recBC sbcBC recF was similar to that in a strain with undamaged system of recombination. Thus, genetic exchange between direct DNA repeats in tandem duplications may follow a special pathway of homologous recombination, which is independent of the recBC and recF genes.Translated from Genetika, Vol. 41, No. 3, 2005, pp. 307–311.Original Russian Text Copyright © 2005 by Sukhodolets, Prokopev.  相似文献   

10.
Sukhodolets VV 《Genetika》2004,40(8):1046-1052
Homologous recombination between direct DNA repeats within the extended tandem duplications in E. coli results from unequal sister-chromosome exchanges. This conclusion follows from the observations on the segregation of completely or partly homozygous diploid segregants by heterozygous duplications. The formation of diploid segregants with preserved heterozygosity for the unselected markers could also result from "symmetrical" intrachromosomal recombination. Analysis of the segregant genotypes, however, confirmed their formation via unequal crossing over. The data obtained indicated that in tandem duplications segregation of diploid recombinants of different types was preceded by the formation of triplications as the products of unequal sister-chromosome exchanges. In heterozygous duplications, unequal crossing over is manifested as a highly frequent adaptive exchange, providing the survival of the most part of the duplication-carrying cells on selective medium. It is suggested that adaptive mutagenesis can be the consequence of unequal sister crossing over.  相似文献   

11.
The cloning of the Escherichia coli K-12 deoxyribonucleoside operon   总被引:2,自引:0,他引:2  
M Fischer  S A Short 《Gene》1982,17(3):291-298
A 6.1-kb EcoRI DNA fragment containing the four structural genes (deoC, deoA, deoB, deoD) of the deoxyribonucleoside operon has been cloned into the plasmid pMFS53. By use of a unique, asymmetrically positioned HindIII site on the 6.1 kb insert, plasmids containing the deoC,deoA genes (pMFS50) or the deoB,deoD genes (pMFS55) have been constructed. Enzyme assays performed on extracts prepared from clones harboring pMFS53, pMFS50 or pMFS55 revealed that each clone possessed amplified deo enzyme levels and that the spectrum of enzyme amplification corresponded to the genetic composition of the plasmids carried by each clone. A plasmid (pMFS50l) having functional deoA, deoB and deoD genes but devoid of the deo regulatory region and a portion of the deoC structural gene has been isolated following treatment of BamHI cleaved pMFS53 and BAL31 nuclease. Comparison of the deo enzyme levels for clones harboring pMFS53 and pMFS501 suggest that plasmid pMFS53 possesses a functional deo regulatory region in addition to the four structural genes of the operon.  相似文献   

12.
The formation of haploid and diploid segregants was studied in Escherichia coli strains carrying heterozygous tandem duplications deoA deoB::Tn5/deoC deoD in the deoCABD operon region, in the genome of mutants forruvABCgenes. Homologous recombination in duplications of rec + strains and in recBC sbcB, recQand recF mutants, including those with blocks of both the RecBCD and RecF pathway, was shown in our previous work to be similar to adaptive mutagenesis: in this case, practically each cell forms a recombinant on a selective medium. In this work, mutants for ruv genes were found to differ in this respect, forming segregants at a frequency that was decreased by several orders of magnitude. These data confirm the conclusion that the genetic exchange in duplications proceeds through a special pathway of adaptive (or replicative) recombination connected with DNA replication. Upon selection of recombinants under conditions of thymine starvation, recombination cannot also be induced in ruv mutants. The recombinogenic effect of thymine starvation seems to occur at late stages of recombination, which are controlled by ruvABC genes.  相似文献   

13.
An efficient method for systematic mutational analysis of the Escherichia coli genome was developed. It entails Tn5supF transposition to lambda-E. coli hybrid phage clones (Kohara library) and then transduction of recipient cells to Sup+. Essential and nonessential genes are distinguished by the ability of insertion mutant phage to form haploid versus only heterozygous partial diploid bacterial recombinants.  相似文献   

14.
Tandem genetic duplications of various lengths occur at high frequency and at many chromosomal locations in bacteria. Most duplications are formed and lost by recombinational mechanisms. Since they readily give rise to haploid segregants, duplications are characteristically unstable. Various selection procedures permit measurements of duplication frequencies, and several mutagens have been shown to induce the formation of duplications in haploid and the loss of duplications from merodiploid bacteria. Although the data base is not extensive, it includes agents that interact with DNA by a variety of molecular mechanisms. Grounds on which the induction of genetic duplications in bacteria can be relevant for genetic toxicology are discussed.  相似文献   

15.
Recombinant haploid segregants were recovered in filamentous fungus Aspergillus nidulans (Eidam) G. Winter directly from the heterokaryons instead of diploid segregants (process described earlier as parameiosis). In spite of the reproductive complexity of A. nidulans, parameiosis has only now been observed in this fungus. Since parameiosis was characterized by the occurrence of genetic recombination inside heterokaryotic hyphae, master strains (uvs+) and uvs mutants with high rate of both mitotic exchanges or chromosome nondisjunction were used to form heterokaryons. Two groups of mitotic segregants were recovered directly from heterokaryons--aneuploids and stable haploids. Heterokaryons formed with uvs mutants produced a higher number of parameiotic segregants compared to the heterokaryons formed with uvs+ strains. Segregants were analyzed by nutritional markers, acriflavine resistance and conidial color. Normal meiotic behavior of haploid recombinants was observed.  相似文献   

16.
Meiosis is a specialized nuclear division by which sexually reproducing diploid organisms generate haploid gametes. Recombination between homologous chromosomes facilitates accurate meiotic chromosome segregation and is initiated by DNA double-strand breaks (DSBs) made by the conserved topoisomerase-like protein Spo11 (Rec12 in fission yeast), but DSBs are not evenly distributed across the genome. In Schizosaccharomyces pombe, proteinaceous structures known as linear elements (LinEs) are formed during meiotic prophase. The meiosis-specific cohesin subunits Rec8 and Rec11 are essential for DSB formation in some regions of the genome, as well as for formation of LinEs or the related synaptonemal complex (SC) in other eukaryotes. Proteins required for DSB formation decorate LinEs, and mutants lacking Rec10, a major component of LinEs, are completely defective for recombination. Although recombination may occur in the context of LinEs, it is not well understood how Rec10 is loaded onto chromosomes. We describe two novel components of LinEs in fission yeast, Rec25 and Rec27. Comparisons of rec25Delta, rec27Delta, and rec10Delta mutants suggest multiple pathways to load Rec10. In the major pathway, Rec10 is loaded, together with Rec25 and Rec27, in a Rec8-dependent manner with subsequent region-specific effects on recombination.  相似文献   

17.
Homologous recombination between direct DNA repeats within the extended tandem duplications in E. coli results from unequal sister-chromosome exchanges. This conclusion follows from the observations on the segregation of completely or partly homozygous diploid segregants by heterozygous duplications. The formation of diploid segregants with preserved heterozygosity for the unselected markers could also result from symmetrical intrachromosomal recombination. Analysis of the segregant genotypes, however, confirmed their formation via unequal crossing over. The data obtained indicated that in tandem duplications segregation of diploid recombinants of different types was preceded by the formation of triplications as the products of unequal sister-chromosome exchanges. In heterozygous duplications, unequal crossing over is manifested as a highly frequent adaptive exchange, providing the survival of the most part of the duplication-carrying cells on selective medium. It is suggested that adaptive mutagenesis can be the consequence of unequal sister crossing over.  相似文献   

18.
E K?fer 《Mutation research》1986,164(3):145-166
A system of tests with the ascomycete Aspergillus nidulans was devised that can detect 3 primary effects of genotoxic agents: (1) increases in mitotic crossing-over; (2) induced aneuploidy; and (3) clastogenic effects which cause chromosomal imbalance. Conidia of a new diploid tester strain, heterozygous for 4 recessive markers which alter conidial color, are treated and plated onto nonselective media. In cases of induced crossing-over, large color segments are found in normal green colonies, frequently adjacent to reciprocal twin segments. In contrast, both malsegregation and chromosome breakage produce unbalanced types which grow poorly and segregate further. Cases with yellow segregants are replated and their secondary diploid sectors tested for markers which are located on both chromosome arms in coupling with yA. Induced aneuploidy can be distinguished from chromosome breakage by the pattern of marker segregation. Any aneuploid type will produce euploid sectors solely by segregation of whole chromosomes; trisomic colonies (yA / yA / +) will show 1:2 ratios for yellow (homozygous yA) to parental green (yA/+) sectors and have characteristic phenotypes. Other induced unbalanced types, if heterozygous for deletions or aberrations may produce yellow diploid sectors by secondary crossing-over as well as by nondisjunction and such cases show unique patterns of genetic segregation and non- predictable phenotypes. As a complementary test, haploid strains are treated and induced abnormally growing types are replated and classified by phenotype. Aneuploids are unstable and produce many normal sectors, and some of these disomic or trisomic types can be visually identified.In contrast, induced deletions are lethal, and duplications or 'morphological' mutants show much more stable abnormal phenotypes. This test system was used to characterize the primary effects of gamma-rays and chloral hydrate. Results and evidence were as follows: (1) A dose-dependent increase of color segments resulting from reciprocal crossing-over was found after treatment of dividing nuclei in germinating diploid conidia with gamma-rays, but not with chloral hydrate. (2) Highly aneuploid and polyploid types were induced in diploid and haploid germinating conidia by chloral hydrate but not to any significant extent by gamma-rays. (3) gamma-Rays caused a dose- dependent increase off abnormally growing colonies when dormant or germinating diploid conidia were treated. These colonies produced secondary euploid sectors by spontaneous nondisjunction and frequently also by crossing-over, which provided evidence for induced semidominant and recessive lethal mutations of many types.  相似文献   

19.
A heterozygous tandem duplication in the Escherichia coli deo operon region deoAdeoB::Tn5/ deoCdeoDthr::Tn9 with the total length approximately 150 kb, which was obtained in the conjugational mating in the HfrH strain, was examined. By means of digestion with the NotI enzyme, pulsed-field gel electrophoresis, and the conjugational transfer of the duplication in the F strain, the chromosomal rearrangement, which occurred in the duplication region upon its stabilization in the bacterial genome, was studied. In a more stable strain, two new NotI sites were shown to appear in the chromosomal region located close to the duplication, which might have resulted from the transposition of the IS50 sequence from Tn5. The data were also obtained indicating the possibility of secondary transposition of the chromosomal segment between the two new NotI sites (approximately 30 kb) in the region located near the duplication. With the use of rec + and recA strains, two types of haploid and diploid segregants generated by the duplication were studied: DeoD+ (the deoD+ allele is not expressed in the original duplication due to the polar effect of the deoB::Tn5 insertion) and DeoC DeoD. The segregation of DeoD+ clones was shown to be RecA-dependent, whereas the DeoC DeoD segregants selected on the medium that contained thymine at a low concentration (i.e., under conditions of thymine starvation) appeared at a rather high frequency. However, the relative frequency of haploid clones, which have lost the duplication, strongly decreased in the recA genome among segregants of both types.  相似文献   

20.
On the occurrence of somatic meiosis in embryogenic carrot cell cultures   总被引:1,自引:0,他引:1  
During the establishment of an embryogenic cell line from a carrot hypocotyl explant, processes closely resembling meiotic divisions are seen. A microdensitometric analysis revealed that the amount of cellular DNA diminished in the majority of cells to the haploid level. However, the diploid level was re-established in a matter of a few days. The genetic consequences of this segregation were studied by analyzing restriction fragment length polymorphisms (RFLP) and randomly amplified polymorphic DNAs (RAPD). The results showed that the great majority of embryos regenerated from segregants and that different segregants had different genetic constitutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号