首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although widely used in proteomics research for the selective enrichment of phosphopeptides from protein digests, immobilized metal-ion affinity chromatography (IMAC) often suffers from low specificity and differential recovery of peptides carrying different numbers of phosphate groups. By systematically evaluating and optimizing different loading, washing, and elution conditions, we have developed an efficient and highly selective procedure for the enrichment of phosphopeptides using a commercially available gallium(III)-IMAC column (PhosphoProfile, Sigma). Phosphopeptide enrichment using the reagents supplied with the column is incomplete and biased toward the recovery and/or detection of smaller, singly phosphorylated peptides. In contrast, elution with base (0.4 M ammonium hydroxide) gives efficient and balanced recovery of both singly and multiply phosphorylated peptides, while loading peptides in a strong acidic solution (1% trifluoracetic acid) further increases selectivity toward phosphopeptides, with minimal carryover of nonphosphorylated peptides. 2,5-Dihydroxybenzoic acid, a matrix commonly used when analyzing phosphopeptides by matrix-assisted laser desorption/ionization mass spectrometry was also evaluated as an additive in loading and eluting solvents. Elution with 50% acetonitrile containing 20 mg/mL dihydroxybenzoic acid and 1% phosphoric acid gave results similar to those obtained using ammonium hydroxide as the eluent, although the latter showed the highest specificity for phosphorylated peptides.  相似文献   

2.
Large scale characterization of phosphoproteins requires highly specific methods for purification of phosphopeptides because of the low abundance of phosphoproteins and substoichiometry of phosphorylation. Enrichment of phosphopeptides from complex peptide mixtures by IMAC is a popular way to perform phosphoproteome analysis. However, conventional IMAC adsorbents with iminodiacetic acid as the chelating group to immobilize Fe(3+) lack enough specificity for efficient phosphoproteome analysis. Here we report a novel IMAC adsorbent through Zr(4+) chelation to the phosphonate-modified poly(glycidyl methacrylate-co-ethylene dimethacrylate) polymer beads. The high specificity of Zr(4+)-IMAC adsorbent was demonstrated by effectively enriching phosphopeptides from the digest mixture of phosphoprotein (alpha- or beta-casein) and bovine serum albumin with molar ratio at 1:100. Zr(4+)-IMAC adsorbent was also successfully applied for the analysis of mouse liver phosphoproteome, resulting in the identification of 153 phosphopeptides (163 phosphorylation sites) from 133 proteins in mouse liver lysate. Significantly more phosphopeptides were identified than by the conventional Fe(3+)-IMAC approach, indicating the excellent performance of the Zr(4+)-IMAC approach. The high specificity of Zr(4+)-IMAC adsorbent was found to mainly result from the strong interaction between chelating Zr(4+) and phosphate group on phosphopeptides. Enrichment of phosphopeptides by Zr(4+)-IMAC provides a powerful approach for large scale phosphoproteome analysis.  相似文献   

3.
Han G  Ye M  Zhou H  Jiang X  Feng S  Jiang X  Tian R  Wan D  Zou H  Gu J 《Proteomics》2008,8(7):1346-1361
The mixture of phosphopeptides enriched from proteome samples are very complex. To reduce the complexity it is necessary to fractionate the phosphopeptides. However, conventional enrichment methods typically only enrich phosphopeptides but not fractionate phosphopeptides. In this study, the application of strong anion exchange (SAX) chromatography for enrichment and fractionation of phosphopeptides was presented. It was found that phosphopeptides were highly enriched by SAX and majority of unmodified peptides did not bind onto SAX. Compared with Fe(3+) immobilized metal affinity chromatography (Fe(3+)-IMAC), almost double phosphopeptides were identified from the same sample when only one fraction was generated by SAX. SAX and Fe(3+)-IMAC showed the complementarity in enrichment and identification of phosphopeptides. It was also demonstrated that SAX have the ability to fractionate phosphopeptides under gradient elution based on their different interaction with SAX adsorbent. SAX was further applied to enrich and fractionate phosphopeptides in tryptic digest of proteins extracted from human liver tissue adjacent to tumorous region for phosphoproteome profiling. This resulted in the highly confident identification of 274 phosphorylation sites from 305 unique phosphopeptides corresponding to 168 proteins at false discovery rate (FDR) of 0.96%.  相似文献   

4.
Metal and metal oxide chelating-based phosphopeptide enrichment technologies provide powerful tools for the in-depth profiling of phosphoproteomes. One weakness inherent to current enrichment strategies is poor binding of phosphopeptides containing multiple basic residues. The problem is exacerbated when strong cation exchange (SCX) is used for pre-fractionation, as under low pH SCX conditions phosphorylated peptides with multiple basic residues elute with the bulk of the tryptic digest and therefore require more stringent enrichment. Here, we report a systematic evaluation of the characteristics of a novel phosphopeptide enrichment approach based on a combination of low pH SCX and Ti(4+)-immobilized metal ion affinity chromatography (IMAC) comparing it one-to-one with the well established low pH SCX-TiO(2) enrichment method. We also examined the effect of 1,1,1,3,3,3-hexafluoroisopropanol (HFP), trifluoroacetic acid (TFA), or 2,5-dihydroxybenzoic acid (DHB) in the loading buffer, as it has been hypothesized that high levels of TFA and the perfluorinated solvent HFP improve the enrichment of phosphopeptides containing multiple basic residues. We found that Ti(4+)-IMAC in combination with TFA in the loading buffer, outperformed all other methods tested, enabling the identification of around 5000 unique phosphopeptides containing multiple basic residues from 400 μg of a HeLa cell lysate digest. In comparison, ~ 2000 unique phosphopeptides could be identified by Ti(4+)-IMAC with HFP and close to 3000 by TiO(2). We confirmed, by motif analysis, the basic phosphopeptides enrich the number of putative basophilic kinases substrates. In addition, we performed an experiment using the SCX/Ti(4+)-IMAC methodology alongside the use of collision-induced dissociation (CID), higher energy collision induced dissociation (HCD) and electron transfer dissociation with supplementary activation (ETD) on considerably more complex sample, consisting of a total of 400 μg of triple dimethyl labeled MCF-7 digest. This analysis led to the identification of over 9,000 unique phosphorylation sites. The use of three peptide activation methods confirmed that ETD is best capable of sequencing multiply charged peptides. Collectively, our data show that the combination of SCX and Ti(4+)-IMAC is particularly advantageous for phosphopeptides with multiple basic residues.  相似文献   

5.
An integrated analytical approach for the enrichment, detection, and sequencing of phosphopeptides using matrix-assisted laser desorption/ionization (MALDI) tandem mass spectrometry (MS) was developed. On the basis of C18-functionalized Fe3O4 nanoparticles, the enrichment method was designed not only to specifically trap phosphopeptides, but also nonphosphorylated peptides, both of which can be subsequently desorbed selectively and directly for MALDI-MS analysis without an elution step. Peptide binding is afforded by the C18-derivatization, whereas the highly selective capture of phosphopeptides is based on higher binding affinity afforded by additional metal chelating interaction between the Fe3O4 nanoparticles and the phosphate groups. Upon binding, the initial aqueous wash allows desalting, while a second and a third wash with high acetonitrile content coupled with diluted sulfuric acid and ammonia removes most of the bound nonphosphorylated peptides. Selective or sequential mapping of the peptides and phosphopeptides can, thus, be effected by spotting the washed nanoparticles onto the MALDI target plate along with judicious choice of matrices. The inclusion of phosphoric acid in a 2,5-dihydroxybenzoic acid matrix allows the desorption and detection of phosphopeptides, whereas an alpha-cyano-4-hydroxy-cinnamic acid matrix with formic acid allows only the desorption of nonphosphorylated peptides. The method used to enrich phosphopeptides prior to MS applications is more sensitive and tolerable to sodium dodecyl sulfate than IMAC. We have demonstrated the applicability of C18-functionalized Fe3O4 nanoparticles in the detection of in vitro phosphorylation sites on the myelin basic protein, and at least 17 phosphopeptides were identified, including one previously uncharacterized site.  相似文献   

6.
Mass spectrometric analysis of proteolytically derived phosphopeptides has developed into a widespread technique for the identification of phosphorylated amino acids. Using liquid chromatography-electrospray ionization tandem mass spectrometry, 14 phosphorylation sites were identified on Xenopus laevis His6-Aurora A, a highly conserved regulator of centrosome maturation and cell division. These included seven novel phosphorylation sites, Ser-12, Thr-21, Thr-103, Ser-116, Thr-122, Tyr-155, and Thr-294, as well as the previously identified regulatory sites, Ser-53, Thr-295, and Ser-349. The identification of these novel phosphorylation sites will be important for future studies aimed at elucidating the mechanisms of Aurora A regulation by phosphorylation. Furthermore, we demonstrate that a "kinase-inactive" mutant of Aurora A, K169R, still retains 10% of activity of the wild-type enzyme in vitro along with occupancy of Thr-295 and Ser-12. However, mutation of Asp-281 to Ala completely abolishes activity of the enzyme and should therefore be used preferentially as a genuine kinase-dead construct. Because of the abundance of phosphorylated residues on His6-Aurora A, we found this protein to be an ideal tool for the characterization of immobilized metal-affinity chromatography (IMAC) as a method for phosphopeptide enrichment from complex mixtures. We present a detailed analysis of the binding and elution properties of both the phosphopeptides and unphosphorylated peptides of His6-Aurora A to Fe3+-IMAC before and after methyl esterification. Moreover, we demonstrate a significant difference in enrichment of phosphopeptides when different resins are used for Fe3+-IMAC and characterize the strengths and limitations of this methodology for the study of phosphoproteomics.  相似文献   

7.
Pan C  Ye M  Liu Y  Feng S  Jiang X  Han G  Zhu J  Zou H 《Journal of proteome research》2006,5(11):3114-3124
Fe3+-immobilized mesoporous molecular sieves MCM-41 with particle size of ca. 600 nm and pore size of ca. 3 nm is synthesized and applied to selectively trap and separate phosphopeptides from tryptic digest of proteins. For the capture of phosphopeptides, typically 10 microL of tryptic digest solution was first diluted to 1 mL by solution of ACN/0.1% TFA (50:50, v/v) and incubated with 10 microL of 0.1% acetic acid dispersed Fe3+-immobilized MCM-41 for 1 h under vibration. Fe3+-immobilized MCM-41 with trapped phosphopeptides was separated by centrifugation. The deposition was first washed with a volume of 300 microL of solution containing 100 mM NaCl in ACN/0.1% TFA (50:50, v/v) and followed by a volume of 300 microL of solution of 0.1% acetic acid to remove nonspecifically bound peptides. The nanoparticles with trapped phosphopeptides are mixed with 2,5-dihydroxybenzoic acid (2,5-DHB) and deposited onto the target for analysis by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). It was found that phosphopeptides from tryptic digest of alpha-casein and beta-casein are effectively and specifically trapped on Fe3+-immobilized MCM-41 with few peptides nonspecifically adsorbed. After the extraction by Fe3+-immobilized MCM-41, the suppression to the detection of phosphopeptides caused by abundant nonphosphopeptides from tryptic digest is effectively eliminated, and the detection of phosphopeptides by MALDI is greatly enhanced with the value of signal-to-noise (S/N) increased by more than an order of magnitude. It is demonstrated that the mechanism of the adsorption of phosphopeptides on Fe3+-immobilized MCM-41 is based on the interaction between the Fe3+ and the phosphate group. Finally, Fe3+-immobilized MCM-41 is applied to extract phosphopeptides from tryptic digest of the lysate of mouse liver for phosphoproteome analysis by nano-LC-MS/MS.  相似文献   

8.
Li Y  Lin H  Deng C  Yang P  Zhang X 《Proteomics》2008,8(2):238-249
In this work, we present, to our knowledge, the first demonstration of the utility of iron oxide magnetic microspheres coated with gallium oxide for the highly selective enrichment of phosphopeptide prior to mass spectrometric analysis. These microspheres that we prepared not only have a shell of gallium oxide, giving them a high-trapping capacity for the phosphopeptides, but also their magnetic property enables easy isolation by positioning an external magnetic field. Tryptic digest products of phosphoproteins including beta-casein, ovalbumin, casein, as well as five protein mixtures were used as the samples to exemplify the feasibility of this approach. In very short time (only 0.5 min), phosphopeptides sufficient for characterization by MALDI-TOF-MS were selectively enriched by the Ga(2)O(3)-coated Fe(3)O(4) microspheres. The performance of the Ga(2)O(3)-coated Fe(3)O(4) microspheres were further compared with Fe(3+)-immobilized magnetic silica microspheres, commercial Fe(3+)-IMAC resin, and TiO2 beads for enrichment of peptides originating from tryptic digestion of beta-casein and BSA with a molar ratio of 1:50, and the results proved a stronger selective ability of Ga(2)O(3)-coated Fe(3)O(4) microspheres over the other materials. Finally, the Ga(2)O(3)-coated Fe(3)O(4) microspheres were successfully utilized for enrichment of phosphopeptides from digestion products of rat liver extract. All results show that Ga(2)O(3)-coated Fe(3)O(4) microsphere is an effective material for selective isolation and concentration of phosphopeptides.  相似文献   

9.
The elucidation of protein post-translational modifications, such as phosphorylation, remains a challenging analytical task for proteomic studies. Since many of the proteins targeted for phosphorylation are low in abundance and phosphorylation is typically substoichiometric, a prerequisite for their identification is the specific enrichment of phosphopeptide prior to mass spectrometric analysis. Here, we presented a new method termed as immobilized titanium ion affinity chromatography (Ti (4+)-IMAC) for enriching phosphopeptides. A phosphate polymer, which was prepared by direct polymerization of monomers containing phosphate groups, was applied to immobilize Ti (4+) through the chelating interaction between phosphate groups on the polymer and Ti (4+). The resulting Ti (4+)-IMAC resin specifically isolates phosphopeptides from a digest mixture of standard phosphoproteins and nonphosphoprotein (BSA) in a ratio as low as 1:500. Ti (4+)-IMAC was further applied for phosphoproteome analysis of mouse liver. We also compared Ti (4+)-IMAC to other enrichment methods including Fe (3+)-IMAC, Zr (4+)-IMAC, TiO 2 and ZrO 2, and demonstrate superior selectivity and efficiency of Ti (4+)-IMAC for the isolation and enrichment of phosphopeptides. The high specificity and efficiency of phosphopeptide enrichment by Ti (4+)-IMAC mainly resulted from the flexibility of immobilized titanium ion with spacer arm linked to polymer beads as well as the specific interaction between immobilized titanium ion and phosphate group on phosphopeptides.  相似文献   

10.
Fe3O4@ZrO2 microspheres with well-defined core-shell structure were prepared and applied for the highly selective enrichment of phosphopeptides from tryptic digest product of proteins. To successfully coat iron oxide microspheres with uniform zirconia shell, magnetic Fe3O4 microspheres were first synthesized via a solvothermal reaction, followed by being coated with a thin layer of carbon by polymerization and carbonization of glucose through hydrothermal reaction. Finally, with the use of the Fe3O4@C microspheres as templates, zirconium isopropoxide was prehydrolyzed and absorbed onto the microspheres and eventually converted into zirconia by calcinations. The as-prepared Fe3O4@ZrO2 core-shell microspheres were used as affinity probes to selectively concentrate phosphopeptides from tryptic digest of beta-casein, casein, and five protein mixtures to exemplify their selective enrichment ability of phosphopeptides from complex protein samples. In only 0.5 min, phosphopeptides sufficient for characterization by MALDI-MS could be enriched by the Fe3O4@ZrO2 microspheres. The results demonstrate that Fe3O4@ZrO2 microspheres have the excellent selective enrichment capacity for phosphopeptides from complex samples. The performance of the Fe3O4@ZrO2 microspheres was further compared with commercial IMAC beads for the enrichment of peptides originating from tryptic digestion of beta-casein and bovine serum albumin (BSA) with a molar ratio of 1:50, and the results proved a stronger selective ability of Fe3O4@ZrO2 microspheres over IMAC beads. Finally, the Fe3O4@ZrO2 microspheres were successfully utilized for enrichment of phosphopeptides from human blood serum without any other purification procedures.  相似文献   

11.
The major phosphorylation site of maize sucrose synthase (SuSy) is well conserved among plant species but absent in the deduced peptide sequence of the tomato SuSy cDNA (TOMSSF). In this study, we report the in vitro phosphorylation of 25-day-old tomato fruits SuSy on seryl residue(s) by an endogenous Ca2+-dependent protein kinase activity. Two distinct 32P-labeled peptides detected in the tryptic peptide map of in vitro 32P-radiolabeled tomato fruit SuSy were purified. Amino acid sequencing and phosphoamino acid analysis of the major 32P-labeled peptide revealed the presence of a SuSy isozyme in young tomato fruit having the N-terminus phosphorylation site present in other plant species. By using Fe(III)-immobilized metal affinity chromatography [Fe(III)-IMAC] as a final purification step of tomato fruit SuSy, two 32P-labeled tomato SuSy isoforms were separated from a nonradiolabeled SuSy fraction by using a pH gradient. The major 32P-SuSy isoform was phosphorylated exclusively at the seryl residue related to the phosphorylation site of maize SuSy. The multiphosphorylated state of the second radiolabeled SuSy fraction was indicated by a higher retention during Fe(III)-IMAC and by tryptic peptide mapping analysis. Kinetic analyses of SuSy isoforms purified by Fe(III)-IMAC have revealed that phosphorylation of the major phosphorylation site of tomato fruit SuSy was not sufficient by itself to modulate tomato SuSy activity, whereas the affinity for UDP increased about threefold for the multiphosphorylated SuSy isoform.  相似文献   

12.
蒙书红  常蕾  柳峰松  徐平  张瑶 《微生物学报》2022,62(10):3768-3783
【目的】本研究以分枝菌酸小杆菌(Mycolicibacterium smegmatis)为研究对象,探索适于原核微生物理想的磷酸化富集方法。【方法】我们比较了二氧化钛(TiO2)、Fe3+-NTA和Ti4+螯合在磷酸酯修饰的固相微球(Ti4+-IMAC) 3种不同富集方法磷酸化肽段的富集效率,并用不同分辨率的质谱仪评估富集稳定性。【结果】Ti4+-IMAC富集效率最高,磷酸化位点数是TiO2或Fe3+-NTA方法的7倍以上;TiO2和Fe3+-NTA方法富集到的磷酸化位点数相差不大,与已报道的用TiO2方法富集的磷酸化位点数目接近。Ti4+-IMAC富集结果稳定性很好,高分辨率Lumos质谱仪鉴定到的磷酸化位点数是Velos的2.6倍。【结论】本研究较高效地实现了分枝菌酸小杆菌磷酸化事件的鉴定,共鉴定到2 280个磷酸化蛋白、10 880个磷酸化肽段及4 433个可信磷酸化位点,有望用于其他微生物的磷酸化蛋白质组学研究。  相似文献   

13.
We have developed an efficient, sensitive, and specific method for the detection of phosphopeptides present in peptide mixtures by MALDI Q-TOF mass spectrometry. Use of the MALDI Q-TOF enables selection of phosphopeptides and characterization by CID of the phosphopeptides performed on the same sample spot. However, this type of experiment has been limited by low ionization efficiency of phosphopeptides in positive ion mode while selecting precursor ions of phosphopeptides. Our method entails neutralizing negative charges on acidic groups of nonphosphorylated peptides by methyl esterification before mass spectrometry in positive and negative ion modes. Methyl esterification significantly increases the relative signal intensity generated by phosphopeptides in negative ion mode compared with positive ion mode and greatly increases selectivity for phosphopeptides by suppressing the signal intensity generated by acidic peptides in negative ion mode. We used the method to identify 12 phosphopeptides containing 22 phosphorylation sites from low femtomolar amounts of a tryptic digest of beta-casein and alpha-s-casein. We also identified 10 phosphopeptides containing five phosphorylation sites from an in-gel tryptic digest of 100 fmol of an in vitro autophosphorylated fibroblast growth factor receptor kinase domain and an additional phosphopeptide containing another phosphorylation site when 500 fmol of the digest was examined. The results demonstrate that the method is a fast, robust, and sensitive means of characterizing phosphopeptides present in low abundance mixtures of phosphorylated and nonphosphorylated peptides.  相似文献   

14.
Various methods are used to enrich or purify a protein of interest from other proteins and components in a crude cell lysate or other sample. One of the most powerful methods is affinity purification, also called affinity chromatography, whereby the proteins of interest are purified by virtue of their specific binding properties to an immobilized ligand. Affinity purification is becoming more widely used for exploring post-translation modifications and protein-protein interactions, especially with a view toward developing new general tag systems and strategies of chemical derivatization on peptides for affinity selection. Our work was aimed to immobilize proteins or ligands for affinity purification of antibodies, fusion-tagged proteins and other proteins and peptides. Selected proteins or peptides are efficiently extracted and enriched using chemically derivatized walls of a fused silica capillary column. In this paper, we present an open tubular capillary, where the inner wall of a fused silica capillary was derivatized by covalent binding of modified polystyrene latex particles. The capillaries were derivatized with iminodiacetic acid and loaded with Fe3+ or Ni2+ for the purification and enrichment of phosphopeptides or His-tagged proteins, respectively. The latex coated capillaries have been successfully applied to enrich phosphopeptides from beta-casein tryptic digest and ovalbumin tryptic digest at a micro volume scale with recoveries ranging from 92 to 95%. The capillaries have been eluted under conditions compatible with MALDI-MS without any prior desalting step. In another approach, concanavalin A (Con A) or Protein G were immobilized on the epoxy modified latex on the inner wall of the fused silica capillary for the purification of glycoproteins and immunoglobulin, respectively. The design of the capillary and the protocols used for purification permits the direct detection of eluted proteins and peptides with gel electrophoresis or with mass spectrometry. The elution volumes are passed as discrete segments of few microliters over the inner surface of the open-tube capillary, achieving enrichment factors of more than 20-fold from starting samples.  相似文献   

15.
In this study, we used nanocomposite magnetic particles coated with alumina as the affinity probes to selectively concentrate phosphorylated peptides and proteins from a low volume of sample solution. Tryptic digest products of phosphoproteins including alpha and beta-caseins, human protein phosphatase inhibitor 1, nonfat milk, egg white, and a cell lysate were used as the samples to demonstrate the feasibility of this approach. In only 30 and 90 s, phosphopeptides and phosphoproteins sufficient for characterization by MALDI-MS were enriched by the particles, respectively. Proteins trapped on the particles could be directly digested on the particles. The same particles in the digest solution were employed for enrichment of phosphopeptides. We estimated the required time for performing the enrichment of phosphopeptides from complex samples and characterization by MALDI MS was within 5 min. A small volume (50 microL) and a low concentration (5 x 10(-10) M) of tryptic digest product of a phosphoprotein sample could be dramatically enriched and characterized using this approach.  相似文献   

16.
The selectivity of immobilized metal affinity chromatography (IMAC) systems for the purification of phosphopeptides is poor. This is particularly a problem with tryptic digests of proteins where a large number of acidic peptides are produced that also bind during IMAC. The hypothesis examined in this work was that the selectivity of IMAC columns for phosphopeptides could be increased by using endoproteinase glu-C (glu-C) for protein digestion. Glu-C cleaves proteins at acidic residues and should reduce the number of acidic residues in peptides. This method was successfully applied to a mixture of model proteins and bovine milk. The percentage of phosphorylated peptides selected from proteolytic digests of the milk sample was increased from 40% with trypsin to 70% with glu-C. Additionally, this method was coupled with stable isotope coding methods to quantitatively compare the concentration of phosphoproteins between samples.  相似文献   

17.
Improvements to phosphopeptide enrichment protocols employing titanium dioxide (TiO2) are described and applied to identification of phosphorylation sites on recombinant human cyclin-dependent kinase 2 (CDK2). Titanium dioxide binds phosphopeptides under acidic conditions, and they can be eluted under basic conditions. However, some nonphosphorylated peptides, particularly acidic peptides, bind and elute under these conditions as well. These nonphosphorylated peptides contribute significantly to ion suppression of phosphopeptides and also increase sample complexity. We show here that the conversion of peptide carboxylates to their corresponding methyl esters sharply reduces nonspecific binding, improving the selectivity for phosphopeptides, just as has been reported for immobilized metal affinity chromatography (IMAC) columns. We also present evidence that monophosphorylated peptides can be effectively fractionated from multiply phosphorylated peptides, as well as acidic peptides, via stepwise elution from TiO2 using pH step gradients from pH 8.5 to pH 11.5. These approaches were applied to human CDK2 phosphorylated in vitro by yeast CAK1p in the absence of cyclin. We confirmed phosphorylation at T160, a site previously documented and shown to be necessary for CDK2 activity. However, we also discovered several novel sites of partial phosphorylation at S46, T47, T165, and Y168 when ion-suppressing nonphosphorylated peptides were eliminated using the new protocols.  相似文献   

18.
The study of protein phosphorylation has grown exponentially in recent years, as it became evident that important cellular functions are regulated by phosphorylation and dephosphorylation of proteins on serine, threonine and tyrosine residues. The use of immobilized metal affinity chromatography (IMAC) to enrich phosphopeptides from peptide mixtures has been shown to be useful especially prior to mass spectrometric analysis. For the selective enrichment applying solid-phase extraction (SPE) of phosphorylated peptides, we introduce poly(glycidyl methacrylate/divinylbenzene) (GMD) derivatized with imino-diacetic acid (IDA) and bound Fe(III) as a material. GMD is rapidly synthesized and the resulting free epoxy groups enable an easy access to further derivatization with, e.g., IDA. Electron microscopy showed that the synthesized GMD-IDA-Fe(III) for SPE has irregular agglomerates of spherical particles. Inductively coupled plasma (ICP) analysis resulted in a metal capacity of Fe(III) being 25.4 micromol/mL. To enable on-line preconcentration and desalting in one single step, GMD-IDA-Fe(III) and Silica C18 were united in one cartridge. Methyl esterification (ME) of free carboxyl groups was carried out to prevent binding of nonphosphorylated peptides to the IMAC function. The recovery for a standard phosphopeptide using this SPE method was determined to be 92%. The suitability of the established system for the selective enrichment and analysis of model proteins phosphorylated at different amino acid residues was evaluated stepwise. After successful enrichment of beta-casein deriving phosphopeptides, the established system was extended to the analysis of in vitro phosphorylated proteins, e.g. deriving from glutathione-S-transferase tagged extracellular signal regulated kinase 2 (GST-ERK2).  相似文献   

19.
Gas-phase ion-electron reactions, including electron capture dissociation (ECD) and electron detachment dissociation (EDD), are advantageous for characterization of protein posttranslational modifications (PTMs), because labile modifications are not lost during the fragmentation process. However, at least two positive charges and relatively abundant precursor ions are required for ECD due to charge reduction and lower fragmentation efficiency compared to conventional gas-phase fragmentation techniques. Both these criteria are difficult to fulfill for phosphopeptides due to their acidic character. The negative ion mode operation of EDD is more compatible with phosphopeptide ionization, but EDD suffers from a fragmentation efficiency even lower than that of ECD. Recently, metal oxides such as ZrO 2 and TiO 2 have been shown to provide selective enrichment of phosphopeptides from proteolytic digests. Here, we utilize this enrichment strategy to improve ECD and EDD of phosphopeptides. This approach allowed determination of the locations of phosphorylation sites in highly acidic, multiply phosphorylated peptides from complex peptide mixtures by ECD. For singly phosphorylated peptides, EDD provided complementary sequence information compared to ECD.  相似文献   

20.
The presence of phosphopeptides in whole saliva (saliva expectorated from the mouth) was demonstrated and their origin was evaluated. Whole saliva contained much larger numbers of small phosphopeptides than are found in the glandular secretions. Most of these originated from the acidic proline-rich proteins (PRPs) in the major salivary glands and were formed, after secretion into the oral cavity, as a result of rapid degradation by proteolytic enzymes from extraglandular sources contained in sediment from whole saliva. Some peptides may have been formed by cleavage of basic PRPs, but other phosphoproteins apparently contributed little to the observed phosphopeptides. Most of the enzymes that produced phosphopeptides are serine proteinases. The gel-electrophoretic band patterns of the phosphopeptides obtained from 26 individuals of various acidic-PRP phenotypes were remarkably similar, demonstrating that the enzymes responsible were generally present in the population surveyed and that similar cleavages occur regardless of the nature of the acidic PRPs. Many of these peptides were N-terminal proteolytic cleavage products of acidic PRPs. The N-terminal phosphorylated region of acidic PRPs contains various biological activities, such as inhibition of hydroxyapatite formation, calcium binding and binding to hydroxyapatite, the major mineral of teeth. The demonstration of these phosphopeptides in the saliva that is in contact with the oral surface may therefore be of biological importance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号