首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary Pollen-stigma compatibility relationship were studied in 50 cultivars and more than 800 seedlings of the European hazelnut (Corylus avellana L.). A total of 22 unique S-alleles have been identified. Dominance relationships in 75 of the possible 231 pairs of alleles have been determined in both pistil and pollen. In the pistil, all alleles exhibited independent action, whereas in the pollen, alleles exhibited either dominance or codominance. The dominance relationship was linear with 7 levels of dominance.Oregon Agricultural Experiment Station Technical Paper No. 8542  相似文献   

3.
The developmental stages of oak zygotic embryos (ZEs) are characterized here according to morphological and physiological features. Seeds were harvested from June to September in 1-week intervals. Excised embryos were classified into four stages of development by using growth parameters. For physiological characterization, endogenous levels of abscisic acid (ABA), indole-3-acetic acid (IAA), l-proline, starch content and water status were determined. The expression of the oak legumin storage protein gene was tested in immature cotyledonary ZEs before and after ABA treatment. The ABA levels of the embryos showed a significant peak during the intermediate stage of maturation (stage III) and then decreased again at the end of the late maturation phase (stage IV). Concomitant with ABA, the moisture content declined with the maximum embryo size. High IAA levels were found at the beginning of embryo enlargement as exponential growth occurred (stage II) but decreased during further development. Starch accumulated gradually in the course of maturation, whereas significant values were found in stage IV ZEs near shedding. Proline, on fresh weight basis, was high during stages I and II. Osmotic potential increased when, by rapid dry matter accumulation, stage II ZEs reached their maximum size during early intermediate development. Expression of precocious germination was higher on hormone-free medium, in particular, among stage II and stage III ZEs. Variations in phytohormone levels in combination with changes in tissue water status seem to be important factors for oak ZE development.  相似文献   

4.
Pollen-stigma compatibility was studied in cultivars and more than 1800 seedlings of the European hazelnut (Corylus avellana L). Four new S-alleles were identified, bringing the total to 25 unique alleles within C. avellana. The new alleles are the recessive alleles in ‘Tonda di Giffoni’ and ‘Segorbe’ (S23), in ‘Neue Riesennuss’ (S25), in ‘Gasaway’ (S26), and a dominant allele in a seedling of Turkish origin (S24). Dominance relationships in 233 of the possible 300 pairs of alleles were determined in both pistil and pollen. All alleles exhibited independent action in the pistil, whereas in the pollen either dominance or codominance was exhibited. The dominance hierarchy of alleles in the pollen was revised in light of the new information obtained. All 25 alleles have been assigned to a level in the hierarchy that is linear and now has eight levels. S6 and S9 were reassigned to lower levels in the hierarchy. Thirteen of the alleles are on the level of S1, while S4, S6, S11, and S23 occupy unique positions in the hierarchy. Improved pollen tester clones were identified for several S-alleles. The alleles in 55 cultivars were determined. The alleles identified in ‘DuChilly’ (S10 S14) did not agree with previous reports. Four cultivars have the same alleles as ‘Römische Nuss’ (S10 S18) and are morphologically indistinguishable from it: ‘Frutto-grosso’, ‘Istarski Okrogloplodna’, ‘Payrone’, and ‘Romai’. ‘Belle di Giubilino’ and ‘Tonda di Biglini’ are both S1 S10 and appear to be synonyms for the same cultivar.  相似文献   

5.
Summary Nondormant mutants in hazelnut (Corylus avellana L.) are described. In contrast to normal trees in which physiological rest, or dormancy, is induced by short days, mutants fail to respond to this stimulus. Shoot tips continue to grow, old leaves are retained until midwinter when they are frozen and/or pushed off by developing axillary buds, axillary buds begin to grow in December, 2–3 months before normal spring bud break, and cold hardiness does not develop. Nondormancy is controlled by a single recessive gene (dd). The mutation is not uncommon since eight cultivars, including the world's most important commercial cultivars, are heterozygous for this trait. The implications of nondormancy in a temperate tree species are discussed in relation to evolution, extension of the range of cultivation, breeding, and value for basic studies of fundamental mechanisms of dormancy.  相似文献   

6.
Treatment of different plant materials, seeds of Phaseolus vulgaris, Zea mays and Pinus silvestris and young plants of Phaseolus, with kinetin increased the level of extractable IAA. For seeds this increase was most pronounced in bean seeds, which contained the lowest amount of endogenous IAA and cytokinins, and lower in maize seeds with high endogenous content of IAA and cytokinins. – For young bean plants the kinetin treatment significantly increased the extractable amounts of IAA from all parts of the plant, hypocotyls, cotyledons, epicotyls and primary leaves, when the cut plants were placed for 24 h in kinetin solution. For plants sprayed with kinetin solution only the primary leaves showed a significantly higher level of extractable IAA, which could be explained by the fact that the plants were growing very close together, so that the primary leaves received most of the kinetin during spraying.  相似文献   

7.
The role of endogenous indole-3-acetic acid (IAA), soluble proteins and RNA in the development of tea (Camellia sinensis (L). O. Kuntze) seeds was investigated in the present study. The state of continuum even at full maturity and lack of a clear end point to seed development as indicated by the persistence of appreciable contents of proteins at full maturity in all the seed parts further confirmed the ‘recalcitrant nature’ of the tea seeds. Unlike the orthodox seeds, the level of free IAA in tea embryos also remained high even at full maturity. The total RNA content remained high in the stages with high moisture content but declined with progressive decline in moisture content.  相似文献   

8.
Ogata Y  Iizuka M  Nakayama D  Ikeda M  Kamada H  Koshiba T 《Planta》2005,221(3):417-423
When seed coats (pericarps) were picked from 14-day-old carrot (Daucus carota) seedlings and cultured on agar plates, embryogenic cell clusters were produced very rapidly at a high frequency on the open side edge. Embryo induction progressed without auxin treatment; indeed treatment caused the formation of non-embryogenic callus. The embryogenic tissues (primary embryos) developed normally until the torpedo stage; however, after this a number of secondary somatic embryos were produced in the hypocotyl and root regions. Tertiary embryos were formed on some of the secondary embryos, but many developed into normal plantlets. The primary embryos contained significantly higher levels of abscisic acid (ABA) than the hypocotyl-derived normal and seed-coat-derived secondary embryos. Fluridone inhibited the induction of secondary embryogenesis, while exogenously supplied ABA induced not only tertiary embryogenesis on the seed-coat-derived secondary embryos, but also secondary embryos on the hypocotyl-derived normal somatic embryos. These results indicate that ABA is one of the important endogenous factors for the induction of secondary embryogenesis on carrot somatic embryos. Higher levels of indole-3-acetic acid (IAA) in primary embryos also suggest the presence of some concerted effect of ABA and IAA on the induction of secondary embryogenesis in primary embryos.  相似文献   

9.
Inferior spikelets usually exhibit a slower grain filling rate and lower grain weight than superior spikelets in a rice (Oryza sativa L.) panicle. This study investigated whether the variations in grain filling between the two kinds of spikelets were attributed to their sink strength and whether the sink strength was regulated by the hormonal levels in the grains. Using two field-grown rice genotypes, the division rate of endosperm cells, hormonal levels in the grains, and grain weight of both superior and inferior spikelets were determined during the grain filling period. The results showed that superior spikelets had dominance over inferior spikelets in endosperm cell division rate and cell number, grain filling and grain weight. Changes in zeatin (Z) and zeatin riboside (ZR) contents paralleled and were very significantly correlated with the cell division rate and cell number. Cell division rate and the content of indole-3-acetic acid (IAA) in the grains were also significantly correlated. Gibberellin (GAs; GA1+ GA4) content of the grains was high but ABA levels were low at the early grain filling stage. ABA increased substantially during the linear phase of grain growth and was very significantly correlated with grain dry weight during this period. Application of kinetin at 2 through 6 days post anthesis (DPA) significantly increased cell number, while spraying ABA at 11 through 15 DPA significantly increased the grain filling rate. The results suggest that differences in sink strength are responsible for variations in grain filling between superior and inferior spikelets. Both cytokinins and IAA in the grains may mediate cell division in rice endosperm at early grain filling stages, and therefore regulate the sink size of the grain, whereas ABA content correlates with sink activity during the linear period of grain growth.  相似文献   

10.
B. C. Jarvis  D. A. Wilson 《Planta》1978,138(2):189-191
Chilling (after-ripening) of hazel seeds stimulates subsequent growth of excised embryonic axes on sucrose and leads to growth which is less susceptible to inhibition by abscisic acid. Chilling also obviates the need for inorganic salts in the culture medium. Axes from dormant seeds grow normally when only one-third of a cotyledon is left attached.Abbreviation ABA abscisic acid  相似文献   

11.
The aim of this work was to study morphological and biochemical aspects during zygotic embryogenesis in O. catharinensis, by measuring changes in the endogenous concentrations of proteins, amino acids, polyamines (PAs), indole-3-acetic acid (IAA) and abscisic acid (ABA). Buffer-soluble and insoluble protein contents were determined by spectrometry, and amino acids, PAs, IAA and ABA concentrations were determined by high performance liquid chromatography. Total amino acid accumulation, predominantly asparagine, occurred when the embryo showed completely developed cotyledons, with posterior reduction in the mature embryo. This decrease in total amino acid concentration in the mature embryo may result from their use in storage␣as well as for LEA protein synthesis. Free putrescine (Put) concentration decreased, while free spermine (Spm) increased during embryo development. This suggest a role for Put in the initial phases of embryogenesis when high rates of cell division occur, while elevated concentration of Spm are essential from the middle to the end of embryo development, when growth is mainly due to cell elongation. An IAA peak in zygotic embryos occurred during initial development, suggesting a link between growth and cellular division as well as with the establishment of bilateral symmetry. ABA concentration declined during initial stages of development then increased at the mature embryo stage, suggesting a possible relationship with dormancy and recalcitrance characteristics. Our results show that changes in the phytohormones (IAA, ABA and PAs) concentrations in combination with amino acids are likely important factors determining the developmental stages of O.␣catharinensis zygotic embryos.  相似文献   

12.
Self-incompatibility is a genetic mechanism enforcing cross-pollination in plants. Hazelnut (Corylus avellana L.) expresses the sporophytic type of self-incompatibility, for which the molecular genetic basis is characterized only in Brassica. The hypothesis that the hazelnut genome contains homologs of Brassica self-incompatibility genes was tested. The S-locus glycoprotein gene (SLG) and the kinase-encoding domain of the S-receptor kinase (SRK) gene of B. oleracea L. were used to probe blots of genomic DNA from six genotypes of hazelnut. Weak hybridization with the SLG probe was detected for all hazelnut genotypes tested; however, no hybridization was detected with PCR-generated probes corresponding to two conserved regions of the SLG gene. One of these PCR probes included the region of SLG encoding the 11 invariant cysteine residues that are an important structural feature of all S-family genes. The present evidence suggests that hazelnut DNA hybridizing to SLG differs significantly from the Brassica gene, and that the S-genes cloned from Brassica will not be useful for exploring self-incompatibility in hazelnut.  相似文献   

13.
Cotyledons of peach (Prunus persica L. Batsch cv. ZiseMay®) were cultured in vitro on medium deprived of plant growth regulators. Two different lines varying in their embryogenic capacity were studied after 90 days in culture media. Endogenous levels of abscisic acid (ABA), indole-3-acetic acid (IAA), trans-zeatin (Z), trans-zeatin riboside (ZR), the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), salicylic acid (SA), and jasmonic acid (JA) were analyzed in embryogenic and non-embryogenic cotyledons. No significant differences were observed in total ABA, IAA, ZR, SA and JA concentrations between the embryogenic and non-embryogenic cotyledons. On the contrary, lower Z and ACC contents, and also a reduced balance between Z and IAA levels were related with the embryogenic capacity of the cotyledons. These results suggest that the difference in somatic embryo formation capacity observed between embryogenic and non-embryogenic cotyledons is related to their endogenous Z contents, and that the endogenous hormonal balance between Z and IAA is an important index defining the embryogenic potential in peach cotyledons.  相似文献   

14.
The antagonistic effects of ethylene and Ag+ on the metabolism of [1-14C]indole-3-acetic acid (IAA) and on the rates of ethylene production were studied in tobacco leaf discs ( Nicotiana rustica var. Brasilia ). During the first 10 h of incubation, Ag+-pretreated leaf discs contained more free [14C]IAA than untreated ones due to decreased oxidative decarboxylation, and the discs also produced more ethylene. Exogenously supplied ethylene nullified these effects of Ag+. However, the most pronounced effect of Ag+ in increasing ethylene production, as well as the strongest antagonistic effect of exogenous ethylene, were found between 24 and 48 h of incubation. During this time span no effect on the level of free IAA and on its decarboxylation could be observed. It is suggested that ethylene exerted its autoinhibitory effect by a feedback control on the IAA-induced ethylene biosynthesis. Possible mechanisms for the autoinhibitory effect of ethylene are discussed.  相似文献   

15.
Changes in gibberellins (GAs), indole-3-acetic acid (IAA), and cytokinins associated with the transition from vegetative growth to reproductive growth in Humulus lupulus L. buds and leaves harvested at fortnight intervals were studied. During vegetative growth, GA1 increased gradually and the lowest content was observed during flower development. Both GA3 and GA4 showed a dramatic increase in the samples taken from the apical part of axillary branches from plants 4–5 m high, which corresponds to the maximum vegetative development prior to macroscopically visible inflorescences. Notable increases in the cytokinins trans-zeatin (t-Z), isopentenyladenine (iP), and the riboside and ribotide forms of iP were also obtained. The auxin, indole-3-acetic acid, was the most abundant plant hormone, and its content was highest during vegetative growth. These results show for the first time a relationship between endogenous hormone profiles and both vegetative and reproductive development in hop plants, which may be relevant for future research on the control of the flowering by exogenous hormone applications.  相似文献   

16.
Changes on abscisic acid (ABA), jasmonic acid (JA) and indole-3-acetic acid (IAA) levels were investigated in papaya seedlings (Carica papaya L.) cv. “Baixinho de Santa Amalia” under progressive water stress and subsequent rehydration. Also, the behaviour of leaf gas exchange and leaf growth was determined under stress condition. The results indicated that ABA and JA differ in their pattern of change under water stress. ABA continuously increased in leaves and roots during the whole period of stress whereas JA showed a sharp increase and a later decrease in both organs. Re-watering reduced rapidly (24 h) leaf and root ABA to control levels whereas the influence on JA levels could not be assessed. Drought and recovery did not alter IAA levels in leaf and root tissues of papaya seedlings. In addition, water stress reduced stomatal conductance, photosynthetic rate, transpiration rate, the percentage of attached leaves and leaf growth. Rehydration reverted in few days the effects of stress on leaf growth and gas exchange parameters. Overall, the data suggest that ABA could be involved in the induction of several progressive responses such as the induction of stomatal closure and leaf abscission to reduce papaya water loss. In addition, the pattern of accumulation of JA is compatible with a triggering signal upstream ABA. The unaltered levels of IAA could suggest a certain adaptive ability of papaya to maintain active physiological processes under progressive drought stress.  相似文献   

17.
A number of studies have used microspore-derived embryos (MDEs) as amodel for examining a range of processes, including hormonal regulation ofembryo development. We examined the hormonal physiology of MDEs with theprimaryobjective of testing the validity of using the MDE system as a model forhormonally-regulated development in zygotic embryos, through late stages. To dothis we identified and quantified endogenous levels of abscisic acid (ABA),indole-3-acetic acid (IAA) and a number of gibberellins (GAs), includingGA19, GA20, GA1 and GA8 in bothMDEsand zygotic embryos. The presence of GA19, together with itsC19 metabolites indicates that the early-13 hydroxylation pathway isoperative in both embryo systems. Gibberellins A4 and GA9were also identified, thereby confirming the presence of the earlynon-hydroxylation pathway in B. napus MDEs and zygoticembryos. In general, the pattern of change of hormone (ABA, IAA, GA1and GA20) content per embryo through embryogenesis was similar forMDEs and zygotic embryos. Indole-3-acetic acid and GA1 increased toamaximum at day 30 after culture (DAC) before decreasing. Abscisicacid levels increased to a maximum at day 35, and declined in zygoticembryos but not in MDEs. GA20 increased to the final harvest atmaturity, or day 40. The absolute content (g/embryo) of each hormone, howeverwas appreciably lower (5- to 15- fold) in the MDEs. This was not the result ofdilution into surrounding medium for ABA or IAA; GA1, however, didaccumulate in the medium. Although there were absolute quantitative differencesin the levels of IAA and ABA found in the two embryo systems, the similaritiesin the pattern of hormone changes suggests that the MDE system can serve as auseful model for examining the physiological roles of hormones duringembryogenesis.  相似文献   

18.
Ethylene and in vitro rooting of hazelnut (Corylus avellana) cotyledons   总被引:1,自引:0,他引:1  
Ethylene may be one of the many factors that play a role in rooting. However, in some studies ethylene promoted rooting, while in others it was inhibitory or had no effect. Using cotyledons of hazelnut ( Corylus avellana L. cv. Casina) observations were made of the effect of ethylene precursors on adventitious root formation. l-methionine (Met) or 1-aminocyclopropane-1-carboxylic acid (ACC) added to a standard indole-3-butyric acid (IBA)-kinetin-containing medium did not enhance rooting, while 2-chloroethylphosphonic acid (CEPA) did. The ethylene inhibitor, aminoethoxyvinylglycine (AVG), inhibited root formation, but its effect was reversed by ACC when cotyledonary segments were transferred to rhizogenic medium plus ACC at day 10. Ethylene production by cotyledons cultured on rhizogenic medium or rhizogenic medium plus CEPA was high at the beginning of rooting. Thus, the wound-induced ethylene is a key stimulatory factor in the formation of root primordia. The data support the hypothesis that ethylene plays a positive role in root formation.  相似文献   

19.
 Random amplified polymorphic DNA (RAPD) markers were identified for self-incompatibility (SI) alleles that will allow marker-assisted selection of desired S-alleles in hazelnut (Corylus avellana L.). DNA was extracted from young leaves collected from field-planted parents and 26 progeny of the cross OSU 23.017 (S1S12)×VR6-28 (S2S26) (OSU23×VR6). Screening of 10-base oligonucleotide RAPD primers was performed using bulked segregant analysis. DNA samples from 6 trees each were pooled into four ‘bulks’, one for each of the following: S1 S2, S1 S26 , S2 S12, and S12 S26. ‘Super bulks’ of 12 trees each for S1, S2, S12, and S26 were then created for each allele by combining the appropriate bulks. The DNA from these four super bulks and from the parents was used as a template in the PCR assays. A total of 250 primers were screened, and one RAPD marker each was identified for alleles S2 (OPI07750) and S1 (OPJ141700). OPJ141700 was identified in 13 of 14 S1 individuals of the cross OSU23×VR6 used in bulking and yielded a false positive in 1 non-S1 individual. This same marker was not effective outside the original cross, identifying 4 of 5 S1 progeny in another cross, ‘Willamette’×VR6-28 (‘Will’×VR6), but yielded false positives in 4 of 9 non-S1 individuals from the cross ‘Casina’×VR6-28 (‘Cas’×VR6). OPI07750 served as an excellent marker for the S2 allele and was linked closely to this allele, identifying 12 of 13 S2 individuals in the OSU23×VR6 population with no false positives. OPI07750 was found in 4 of 4 S2 individuals from ‘Will’×VR and 7 of 7 S2 individuals of ‘Cas’×VR6 with no false positives, as well as 10 of 10 S2 individuals of the cross OSU 296.082 (S1S8)×VR8-32 (S2S26), with only 1 false positive individual out of 21 progeny. OPI07750 was also present in 5 of 5 cultivars carrying the S2 allele, with no false-positive bands in non-S2 cultivars, and correctly identified all but 2 S2 individuals in 57 additional selections in the breeding program. In the OSU23×VR6 population, the recombination rate between the marker OPJ141700 and the S1 allele was 7.6% and between the OPI07750 marker and the S2 allele was 3.8%. RAPD marker bands were excised from gels, cloned, and sequenced to enable the production of longer primers (18 or 24 bp) that were used to obtain sequence characterized amplified regions (SCARs). Both the S1 and S2 markers were successfully cloned and 18 bp primers yielded the sole OPJ141700 product, while 24-bp primers yielded OPI07750 as well as an additional smaller product (700 bp) that was not polymorphic but was present in all of the S-genotypes examined. Received: 10 January 1998 / Accepted: 26 January 1998  相似文献   

20.
Summary Although indole-3-acetic acid (IAA) is a well-known plant hormone, the main IAA biosynthetic pathway from l-tryptophan (Trp) via indole-3-pyruvic acid (IPyA) has yet to be elucidated. Previous studies have suggested that IAA is produced by Enterobacter cloacae isolated from the rhizosphere of cucumbers and its biosynthetic pathway may possibly be the same as that in plants. To elucidate this pathway, the IAA biosynthetic gene was isolated from a genomic library of E. cloacae by assaying for the ability to convert Trp to IAA. DNA sequence analysis showed that this gene codes for only one enzyme and its predicted protein sequence has extensive homology with pyruvate decarboxylase in yeast and Zymomonas mobilis. Cell-free extracts prepared from Escherichia coli harboring this gene could convert IPyA to indole-3-acetaldehyde (IAAld). These results clearly show that this pathway is mediated only by indolepyruvate decarboxylase, which catalyzes the conversion of IPyA to IAAld.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号