首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this communication, the published data and some results of studies of the authors dealing with the problem of short-term plasticity of GABA-ergic synaptic transmission in cerebral structures are described. Neirofiziologiya/Neurophysiology, Vol. 37, No. 3, pp. 294–307, May–June, 2005.  相似文献   

2.
    
Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-regulated Cl(-) channel functional in neonatal rat spinal motoneurons. The present study investigated the developmental (P1-P8) expression of CFTR, its impact on motoneuron excitability and Cl(-) homeostasis in relation to canonical Cl(-) transporters. The Cl(-) outward transporter KCC2 gene was upregulated in females over males and increased from P1 to P8. The gene activities of the Cl(-) inward transporter NKCC1 and CFTR were positively correlated and grew between P1 and P8. P1 motoneuronal somata were immunopositive for CFTR whose expression later (P8) extended to cell processes. KCC2 immunopositivity outlined somata and cell processes at P1 and P8. Electrophysiological recording with sharp electrodes showed that the CFTR blocker glibenclamide increased motoneuron input resistance, suggesting functional CFTR in P1-P8 motoneurons. Whole cell patch-clamping of spinal motoneurons to study CFTR contribution to postnatal synaptic Cl(-) regulation indicated that glibenclamide or the selective CFTR blocker diphenylamine-2,2'-dicarboxylic acid produced a negative shift in GABA/glycine reversal potential (E(GABA/Gly) ) of spontaneously occurring synaptic events measured after block of excitatory transmission. A similar effect on E(GABA/Gly) was induced by the NKCC1 inhibitor bumetanide. A 3D reconstructed motoneuron model suggested that CFTR activity contributes to set the E(GABA/Gly) positive to the resting potential. The functional outcome of these Cl(-) mediated synaptic events depended not only on the postnatal age of the animal but also on their timing with respect to the excitatory synaptic signals. We propose that CFTR operated together with NKCC1 to produce depolarizing GABA/glycine mediated synaptic events.  相似文献   

3.
    
The cyclic nucleotide cGMP is an intracellular second messenger with important roles in neuronal functions and animals' behaviors. The phosphodiesterases (PDEs) are a family of enzymes that hydrolyze the second messengers cGMP and cAMP. Inhibition of phosphodiesterase 9 (PDE9), a main isoform of PDEs hydrolyzing cGMP, has been shown to improve learning and memory as well as cognitive function in rodents. However, the role of PDE9 in regulating neuronal structure and function in vivo remains unclear. Here we used in vivo two‐photon microscopy to investigate the effect of a selective PDE9 inhibitor PF‐04449613 on the activity and plasticity of dendritic spines of layer V pyramidal neurons in the mouse primary motor cortex. We found that administration of PF‐04449613 increased calcium activity of dendrites and dendritic spines of layer V pyramidal neurons in mice under resting and running conditions. Chronic treatment of PF‐04449613 over weeks increased dendritic spine formation and elimination under basal conditions. Furthermore, PF‐04449613 treatment over 1–7 days increased the formation and survival of new spines as well as performance improvement after rotarod motor training. Taken together, our studies suggest that elevating the level of cGMP with the PDE9 inhibitor PF‐04449613 increases synaptic calcium activity and learning‐dependent synaptic plasticity, thereby contributing to performance improvement after learning. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 00: 000–000, 2018  相似文献   

4.
Cav1 L-type Ca2+ channels play crucial and diverse roles in the nervous system. The pre- and post-synaptic functions of Cav1 channels not only depend on their intrinsic biophysical properties but also their dynamic regulation by a host of cellular influences. These include protein kinases and phosphatases, G-protein coupled receptors, scaffolding proteins, and Ca2+-binding proteins. The cytoplasmic domains of the main pore forming α1 subunit of Cav1 offer a number of binding sites for these modulators, permitting fast and localized regulation of Ca2+ entry. Through effects on Cav1 gating, localization, and coupling to effectors, protein modulators are efficiently positioned to adjust Cav1 Ca2+ signals that control neuronal excitability, synaptic plasticity, and gene expression.  相似文献   

5.
    
Chemical synaptic transmission is the mechanism for fast, excitation‐coupled information transfer between neurons. Previous work in larval Drosophila has shown that transmission at synaptic boutons is protected by heat shock exposure from subsequent thermal stress through pre‐ and postsynaptic modifications. This protective effect has been, at least partially, ascribed to an up‐regulation in the inducible heat shock protein, hsp70. Effects of hsp70 are correlated with changes to intracellular calcium handling, and the dynamics of intracellular calcium regulate synaptic transmission. Consistent with such a relationship, synaptic plasticity increases at locust neuromuscular junctions following heat shock, suggesting an effect of heat shock on residual presynaptic calcium. Intracellular recording from single abdominal muscle fibers of Drosophila larvae showed that prior heat shock imparts thermoprotection by increasing the upper temperature limit for synaptic transmission. Heat shock exposure enhances short‐term synaptic plasticity and increases its thermosensitivity. Increasing extracellular calcium levels eliminates the physiological differences between control and heat shock preparations; excess calcium itself induces thermoprotection at elevated concentrations. These data support the hypothesis that stress‐induced neuroprotection at the nerve terminal acts, at least partially, through an alteration to the physiological effects of residual presynaptic calcium. © 2003 Wiley Periodicals, Inc. J Neurobiol 56: 360–371, 2003  相似文献   

6.
Our experiments and studies of a few other authors demonstrated that L-type calcium channels and mitochondria are involved in the induction of post-tetanic potentiation (PTP) in a number of preparations (Aplysia central nervous system, hippocampal cell cultures, crayfish neuromuscular junctions, etc.). We extend this conclusion on cortical synapses by the demonstration that inhibitors of mitochondrial Ca2+ uptake and release suppress PTP in rat neocortical cell cultures. Neirofiziologiya/Neurophysiology, Vol. 39, Nos. 4/5, pp. 403–404, July–October, 2007.  相似文献   

7.
Cerebellar cortical throughput involved in motor control comprises granule cells (GCs) and Purkinje cells (PCs), both of which receive inhibitory GABAergic input from interneurons. The GABAergic input to PCs is essential for learning and consolidation of the vestibulo-ocular reflex, but the role of GC excitability remains unclear. We now disrupted the Kcc2 K-Cl cotransporter specifically in either cell type to manipulate their excitability and inhibition by GABA(A)-receptor Cl(-) channels. Although Kcc2 may have a morphogenic role in synapse development, Kcc2 disruption neither changed synapse density nor spine morphology. In both GCs and PCs, disruption of Kcc2, but not Kcc3, increased [Cl(-)](i) roughly two-fold. The reduced Cl(-) gradient nearly abolished GABA-induced hyperpolarization in PCs, but in GCs it merely affected excitability by membrane depolarization. Ablation of Kcc2 from GCs impaired consolidation of long-term phase learning of the vestibulo-ocular reflex, whereas baseline performance, short-term gain-decrease learning and gain consolidation remained intact. These functions, however, were affected by disruption of Kcc2 in PCs. GC excitability plays a previously unknown, but specific role in consolidation of phase learning.  相似文献   

8.
    
Changes in connectivity between pairs of neurons can serve as a substrate for information storage and for experience-dependent changes in neuronal circuitry. Early in development, synaptic contacts form and break, but how these dynamics influence the connectivity between pairs of neurons is not known. Here we used time-lapse imaging to examine the synaptic interactions between pairs of cultured cortical pyramidal neurons, and found that the axon-dendrite contacts between each neuronal pair were composed of both a relatively stable and a more labile population. Under basal conditions, loss and gain of contacts within this labile population was well balanced and there was little net change in connectivity. Selectively increasing the levels of activated CaMKII in the postsynaptic neuron increased connectivity between pairs of neurons by increasing the rate of gain of new contacts without affecting the probability of contact loss, or the proportion of stable and labile contacts, and this increase required Calcium/calmodulin binding to CaMKII. Our data suggest that activating CaMKII can increase synaptic connectivity through a CaM-dependent increase in contact formation, followed by stabilization of a constant fraction of new contacts.  相似文献   

9.
10.
Glycine and GABA are likely co-transmitters in the spinal cord. Their possible interactions in presynaptic terminals have, however, not been investigated. We studied the effects of glycine on GABA release using superfused mouse spinal cord synaptosomes. Glycine concentration dependently elicited [(3)H]GABA release which was insensitive to strychnine or 5,7-dichlorokynurenic acid, but was Na(+) dependent and sensitive to the glycine uptake blocker glycyldodecylamide. The glycine effect was external Ca(2+) independent, but was reduced when intraterminal Ca(2+) was chelated with 1,2-bis-(2-aminophenoxy)ethane-N,N,N',N'-tetracetic acid or depleted with thapsigargin, or when vesicular storage was impaired with bafilomycin. Glycine-induced [(3)H]GABA release was prevented, in part, by blocking GABA transport. The glycine effect was halved by sarcosine, a GLYT1 substrate/inhibitor, or by amoxapine, a GLYT2 blocker, and abolished by a mixture of the two. The sensitivity to sarcosine, used as a transporter inhibitor or substrate, persisted in synaptosomes prelabelled with [(3)H]GABA in the presence of beta-alanine, excluding major gliasome involvement. To conclude, in mice spinal cord, transporters for glycine (both GLYT1 and GLYT2) and for GABA coexist on the same axon terminals. Activation of the glycine transporters elicits GABA release, partly by internal Ca(2+)-dependent exocytosis and partly by transporter reversal.  相似文献   

11.
神经元的突触可塑性与学习和记忆   总被引:7,自引:0,他引:7       下载免费PDF全文
大量研究表明,神经元的突触可塑性包括功能可塑性和结构可塑性,与学习和记忆密切相关.最近,在经过训练的动物海马区,记录到了学习诱导的长时程增强(long term potentiation,LTP),如果用激酶抑制剂阻断晚期LTP,就会使大鼠丧失训练形成的记忆.这些结果指出,LTP可能是形成记忆的分子基础.因此,进一步研究哺乳动物脑内突触可塑性的分子机制,对揭示学习和记忆的神经基础有重要意义.此外,在精神迟滞性疾病和神经退行性疾病患者脑内记录到异常的LTP,并发现神经元的树突棘数量减少,形态上产生畸变或萎缩,同时发现,产生突变的基因大多编码调节突触可塑性的信号通路蛋白,故突触可塑性研究也将促进精神和神经疾病的预防和治疗.综述了突触可塑性研究的最新进展,并展望了其发展前景.  相似文献   

12.
Cerebellar Purkinje neurons demonstrate a form of synaptic plasticity that, in acutely prepared brain slices, has been shown to require calcium release from the intracellular calcium stores through inositol trisphosphate (InsP(3)) receptors. Similar studies performed in cultured Purkinje cells, however, find little evidence for the involvement of InsP(3) receptors. To address this discrepancy, the properties of InsP(3)- and caffeine-evoked calcium release in cultured Purkinje cells were directly examined. Photorelease of InsP(3) (up to 100 microM) from its photolabile caged analogue produced no change in calcium levels in 70% of cultured Purkinje cells. In the few cells where a calcium increase was detected, the response was very small and slow to peak. In contrast, the same concentration of InsP(3) resulted in large and rapidly rising calcium responses in all acutely dissociated Purkinje cells tested. Similar to InsP(3), caffeine also had little effect on calcium levels in cultured Purkinje cells, yet evoked large calcium transients in all acutely dissociated Purkinje cells tested. The results demonstrate that calcium release from intracellular calcium stores is severely impaired in Purkinje cells when they are maintained in culture. Our findings suggest that cultured Purkinje cells are an unfaithful experimental model for the study of the role of calcium release in the induction of cerebellar long term depression.  相似文献   

13.
14.
15.
16.
17.
    
Glutamate, GABA and glycine, the major neurotransmitters in CNS, are taken up and stored in synaptic vesicles by a Mg2+-ATP dependent process. The main driving force for vesicular glutamate uptake is the membrane potential, whereas both the membrane potential and the proton gradient contribute to the uptake of GABA and glycine. Glutamate is taken up by a specific transporter with no affinity for aspartate. Evans blue and related dyes are competitive inhibitors of the uptake of glutamate. GABA, β-alanine, and glycine are taken up by the same family of transporter molecules. Aspartate, taurine, and proline are not taken up by any synaptic vesicle preparations. It is suggested that vesicular uptake and release are characteristics that identify these amino acids as neurotransmitters. We also discuss that “quanta” in the brain are not necessarily related the content of neurotransmitter in the synaptic vesicles, but rather to postsynaptic events. Special issue dedicated to Dr. Herman Bachelard.  相似文献   

18.
    
The non‐selective cationic transient receptor canonical 6 (TRPC6) channels are involved in synaptic plasticity changes ranging from dendritic growth, spine morphology changes and increase in excitatory synapses. We previously showed that the TRPC6 activator hyperforin, the active antidepressant component of St. John's wort, induces neuritic outgrowth and spine morphology changes in PC12 cells and hippocampal CA1 neurons. However, the signaling cascade that transmits the hyperforin‐induced transient rise in intracellular calcium into neuritic outgrowth is not yet fully understood. Several signaling pathways are involved in calcium transient‐mediated changes in synaptic plasticity, ranging from calmodulin‐mediated Ras‐induced signaling cascades comprising the mitogen‐activated protein kinase, PI3K signal transduction pathways as well as Ca2+/calmodulin‐dependent protein kinase II (CAMKII) and CAMKIV. We show that several mechanisms are involved in TRPC6‐mediated synaptic plasticity changes in PC12 cells and primary hippocampal neurons. Influx of calcium via TRPC6 channels activates different pathways including Ras/mitogen‐activated protein kinase/extracellular signal‐regulated kinases, phosphatidylinositide 3‐kinase/protein kinase B, and CAMKIV in both cell types, leading to cAMP‐response element binding protein phosphorylation. These findings are interesting not only in terms of the downstream targets of TRPC6 channels but also because of their potential to facilitate further understanding of St. John's wort extract‐mediated antidepressant activity.

  相似文献   


19.
20.
    
The endocannabinoid (eCB) system modulates several phenomena related to addictive behaviors, and drug‐induced changes in eCB signaling have been postulated to be important mediators of physiological and pathological reward‐related synaptic plasticity. Here, we studied eCB‐mediated long‐term depression (eCB‐LTD) in the dorsolateral striatum, a brain region critical for acquisition of habitual and automatic behavior. We report that nicotine differentially affects ex vivo eCB signaling depending on previous exposure in vivo. In the nicotine‐naïve brain, nicotine facilitates eCB‐signaling and LTD, whereas tolerance develops to this facilitating effect after subchronic exposure in vivo. In the end, a progressive impairment of eCB‐induced LTD is established after protracted withdrawal from nicotine. Endocannabinoid‐LTD is reinstated 6 months after the last drug injection, but a brief period of nicotine re‐exposure is sufficient to yet again impair eCB‐signaling. LTD induced by the cannabinoid 1 receptor agonist WIN55,212‐2 is not affected, suggesting that nicotine modulates eCB production or release. Nicotine‐induced facilitation of eCB‐LTD is occluded by the dopamine D2 receptor agonist quinpirole, and by the muscarinic acetylcholine receptor antagonist scopolamine. In addition, the same compounds restore eCB‐LTD during protracted withdrawal. Nicotine may thus modulate eCB‐signaling by affecting dopaminergic and cholinergic neurotransmission in a long‐lasting manner. Overall, the data presented here suggest that nicotine facilitates eCB‐LTD in the initial phase, which putatively could promote neurophysiological and behavioral adaptations to the drug. Protracted withdrawal, however, impairs eCB‐LTD, which may influence or affect the ability to maintain cessation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号