首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The physiological role and activation mechanism for most proteins of the transient receptor potential (TRP) family are unknown. This is also the case for the highly Ca(2+) selective transient receptor potential vanilloid type 6 (TRPV6) channel. Patch clamp experiments were performed on transiently transfected human embryonic kidney (HEK) cells to address this issue. Currents were recorded under various conditions of intracellular Ca(2+) buffering and monitored at the same voltage throughout. No TRPV6-mediated Ca(2+) entry was detected under in vivo Ca(2+) buffering conditions at a slightly negative holding potential; however, moderate depolarization resulted in current activation. Very similar results were obtained with different Ca(2+) chelators, either EGTA or BAPTA dialyzing the cell. TRPV6 channel activity showed a negative correlation with the intracellular free Ca(2+) concentration ([Ca(2+)](i)) and was modulated by the membrane potential: Hyperpolarization decreases and depolarization increases TRPV6-mediated currents. Monovalent ions permeated TRPV6 channels in the absence of extracellular divalent cations. These currents were resistant to changes in the holding potential while the negative correlation to the [Ca(2+)](i) was conserved, indicating that the voltage-dependent current changes depend on blocking and unblocking the charge carrier Ca(2+) within the pore. In summary, these results suggest that the voltage dependence of TRPV6-mediated Ca(2+) influx is of physiological importance since it occurs at cytosolic Ca(2+) buffering and takes place within a physiologically relevant membrane potential range.  相似文献   

2.
The activation mechanism of the recently cloned human transient receptor potential vanilloid type 6 (TRPV6) channel, originally termed Ca(2+) transporter-like protein and Ca(2+) transporter type 1, was investigated in whole-cell patch-clamp experiments using transiently transfected human embryonic kidney and rat basophilic leukemia cells. The TRPV6-mediated currents are highly Ca(2+)-selective, show a strong inward rectification, and reverse at positive potentials, which is similar to store-operated Ca(2+) entry in electrically nonexcitable cells. The gating of TRPV6 channels is strongly dependent on the cytosolic free Ca(2+) concentration; lowering the intracellular free Ca(2+) concentration results in Ca(2+) influx, and current amplitude correlates with the intracellular EGTA or BAPTA concentration. This is also the case for TRPV6-mediated currents in the absence of extracellular divalent cations; compared with endogenous currents in nontransfected rat basophilic leukemia cells, these TRPV6-mediated monovalent currents reveal differences in reversal potential, inward rectification, and slope at very negative potentials. Release of stored Ca(2+) by inositol 1,4,5-trisphosphate and/or the sarco/endoplasmic reticulum Ca(2+)-ATPase inhibitor thapsigargin appears not to be involved in TRPV6 channel gating in both cell lines but, in rat basophilic leukemia cells, readily activates the endogenous Ca(2+) release-activated Ca(2+) current. In conclusion, TRPV6, expressed in human embryonic kidney cells and in rat basophilic leukemia cells, functions as a Ca(2+)-sensing Ca(2+) channel independently of procedures known to deplete Ca(2+) stores.  相似文献   

3.
The control of calcium homeostasis is essential for cell survival and is of crucial importance for several physiological functions. The discovery of the epithelial calcium channel Transient Receptor Potential Vaniloid (TRPV6) in intestine has uncovered important Ca(2+) absorptive pathways involved in the regulation of whole body Ca(2+) homeostasis. The role of steroid hormone 17beta-estradiol (E(2)), in [Ca(2+)](i) regulation involving TRPV6 has been only limited at the protein expression levels in over-expressing heterologous systems. In the present study, using a combination of calcium-imaging, whole-cell patch-clamp techniques and siRNA technology to specifically knockdown TRPV6 protein expression, we were able to (i) show that TRPV6 is natively, rather than exogenously, expressed at mRNA and protein levels in human T84 colonic cells, (ii) characterize functional TRPV6 channels and (iii) demonstrate, for the first time, the rapid effects of E(2) in [Ca(2+)](i) regulation involving directly TRPV6 channels in T84 cells. Treatment with E(2) rapidly (<5 min) enhanced [Ca(2+)](i) and this increase was partially but significantly prevented when cells were pre-treated with ruthenium red and completely abolished in cells treated with siRNA specifically targeting TRPV6 protein expression. These results indicate that when cells are stimulated by E(2), Ca(2+) enters the cell through TRPV6 channels. TRPV6 channels in T84 cells contribute to the Ca(2+) entry/signalling pathway that is sensitive to 17beta-estradiol.  相似文献   

4.
The epithelial Ca(2+) channels TRPV5 and TRPV6 constitute the apical Ca(2+) entry pathway in the process of active Ca(2+) (re)absorption. By yeast two-hybrid and glutathione S-transferase pulldown analysis we identified RGS2 as a novel TRPV6-associated protein. RGS proteins determine the inactivation kinetics of heterotrimeric G-protein-coupled receptor (GPCR) signaling by regulating the GTPase activity of G(alpha) subunits. Here we demonstrate that TRPV6 interacts with the NH(2)-terminal domain of RGS2 in a Ca(2+)-independent fashion and that overexpression of RGS2 reduces the Na(+) and Ca(2+) current of TRPV6 but not that of TRPV5-transfected human embryonic kidney 293 (HEK293) cells. In contrast, overexpression of the deletion mutant DeltaN-RGS2, lacking the NH(2)-terminal domain of RGS2, in TRPV6-expressing HEK293 cells did not show this inhibition. Furthermore, cell surface biotinylation indicated that the inhibitory effect of RGS2 on TRPV6 activity is not mediated by differences in trafficking or retrieval of TRPV6 from the plasma membrane. This effect probably results from the direct interaction between RGS2 and TRPV6, affecting the gating properties of the channel. Finally, the scaffolding protein spinophilin, shown to recruit RGS2 and regulate GPCR-signaling via G(alpha), did not affect RGS2 binding and electrophysiological properties of TRPV6, indicating a GPCR-independent mechanism of TRPV6 regulation by RGS2.  相似文献   

5.
TRPV5 and TRPV6 are members of the superfamily of transient receptor potential (TRP) channels and facilitate Ca(2+) influx in a variety of epithelial cells. The activity of these Ca(2+) channels is tightly controlled by the intracellular Ca(2+) concentration in close vicinity to the channel mouth. The molecular mechanism underlying the Ca(2+)-dependent activity of TRPV5/TRPV6 is, however, still unknown. Here, the putative role of calmodulin (CaM) as the Ca(2+) sensor mediating the regulation of channel activity was investigated. Overexpression of Ca(2+)-insensitive CaM mutants (CaM(1234) and CaM(34)) significantly reduced the Ca(2+) as well as the Na(+) current of TRPV6- but not that of TRPV5-expressing HEK293 cells. By combining pull-down assays and co-immunoprecipitations, we demonstrated that CaM binds to both TRPV5 and TRPV6 in a Ca(2+)-dependent fashion. The binding of CaM to TRPV6 was localized to the transmembrane domain (TRPV6(327-577)) and consensus CaM-binding motifs located in the N (1-5-10 motif, TRPV6(88-97)) and C termini (1-8-14 motif, TRPV6(643-656)), suggesting a mechanism of regulation involving multiple interaction sites. Subsequently, chimeric TRPV6/TRPV5 proteins, in which the N and/or C termini of TRPV6 were substituted by that of TRPV5, were co-expressed with CaM(34) in HEK293 cells. Exchanging, the N and/or the C termini of TRPV6 by that of TRPV5 did not affect the CaM(34)-induced reduction of the Ca(2+) and Na(+) currents. These results suggest that CaM positively affects TRPV6 activity upon Ca(2+) binding to EF-hands 3 and 4, located in the high Ca(2+) affinity CaM C terminus, which involves the N and C termini and the transmembrane domain of TRPV6.  相似文献   

6.
The molecular assembly of the epithelial Ca(2+) channels (TRPV5 and TRPV6) was investigated to determine the subunit stoichiometry and composition. Immunoblot analysis of Xenopus laevis oocytes expressing TRPV5 and TRPV6 revealed two specific bands of 75 and 85-100 kDa, corresponding to the core and glycosylated proteins, respectively, for each channel. Subsequently, membranes of these oocytes were sedimented on sucrose gradients. Immuno blotting revealed that TRPV5 and TRPV6 complexes migrate with a mol. wt of 400 kDa, in line with a tetrameric structure. The tetrameric stoichiometry was confirmed in an electrophysiological analysis of HEK293 cells co-expressing concatemeric channels together with a TRPV5 pore mutant that reduced Cd(2+) sensitivity and voltage-dependent gating. Immuno precipitations using membrane fractions from oocytes co-expressing TRPV5 and TRPV6 demonstrated that both channels can form heteromeric complexes. Expression of all possible heterotetrameric TRPV5/6 complexes in HEK293 cells resulted in Ca(2+) channels that varied with respect to Ca(2+)-dependent inactivation, Ba(2+) selectivity and pharmacological block. Thus, Ca(2+)-transporting epithelia co-expressing TRPV5 and TRPV6 can generate a pleiotropic set of functional heterotetrameric channels with different Ca(2+) transport kinetics.  相似文献   

7.
Heavy metal cations permeate the TRPV6 epithelial cation channel   总被引:1,自引:0,他引:1  
TRPV6 belongs to the vanilloid family of the transient receptor potential channel (TRP) superfamily. This calcium-selective channel is highly expressed in the duodenum and the placenta, being responsible for calcium absorption in the body and fetus. Previous observations have suggested that TRPV6 is not only permeable to calcium but also to other divalent cations in epithelial tissues. In this study, we tested whether TRPV6 is indeed also permeable to cations such as zinc and cadmium. We found that the basal intracellular calcium concentration was higher in HEK293 cells transfected with hTRPV6 than in non-transfected cells, and that this difference almost disappeared in nominally calcium-free solution. Live cell imaging experiments with Fura-2 and NewPort Green DCF showed that overexpression of human TRPV6 increased the permeability for Ca(2+), Ba(2+), Sr(2+), Mn(2+), Zn(2+), Cd(2+), and interestingly also for La(3+) and Gd(3+). These results were confirmed using the patch clamp technique. (45)Ca uptake experiments showed that cadmium, lanthanum and gadolinium were also highly efficient inhibitors of TRPV6-mediated calcium influx at higher micromolar concentrations. Our results suggest that TRPV6 is not only involved in calcium transport but also in the transport of other divalent cations, including heavy metal ions, which may have toxicological implications.  相似文献   

8.
Ca(2+) is an essential factor inducing keratinocyte differentiation due to the natural Ca(2+) gradient in the skin. However, the membrane mechanisms that mediate calcium entry and trigger keratinocyte differentiation had not previously been elucidated. In this study we demonstrate that Ca(2+)-induced differentiation up-regulates both mRNA and protein expression of a transient receptor potential highly Ca(2+)-selective channel, TRPV6. The latter mediates Ca(2+) uptake and accounts for the basal [Ca(2+)](i) in human keratinocytes. Our results show that TRPV6 is a prerequisite for keratinocyte entry into differentiation, because the silencing of TRPV6 in human primary keratinocytes led to the development of impaired differentiated phenotype triggered by Ca(2+). The expression of such differentiation markers as involucrin, transglutaminase-1, and cytokeratin-10 was significantly inhibited by small interfering RNA-TRPV6 as compared with differentiated control cells. TRPV6 silencing affected cell morphology and the development of intercellular contacts, as well as the ability of cells to stratify. 1,25-Dihydroxyvitamin D3, a cofactor of differentiation, dose-dependently increased TRPV6 mRNA and protein expression in human keratinocytes. This TRPV6 up-regulation led to a significant increase in Ca(2+) uptake in both undifferentiated and differentiated keratinocytes. We conclude that TRPV6 mediates, at least in part, the pro-differentiating effects of 1,25-dihydroxyvitamin D3 by increasing Ca(2+) entry, thereby promoting differentiation. Taken together, these data suggest that the TRPV6 channel is a key element in Ca(2+)/1,25-dihydroxyvitamin D3-induced differentiation of human keratinocytes.  相似文献   

9.
TRPV6 (CaT1/ECaC2), a highly Ca(2+)-selective member of the TRP superfamily of cation channels, becomes permeable to monovalent cations in the absence of extracellular divalent cations. The monovalent currents display characteristic voltage-dependent gating and almost absolute inward rectification. Here, we show that these two features are dependent on the voltage-dependent block/unblock of the channel by intracellular Mg(2+). Mg(2+) blocks the channel by binding to a site within the transmembrane electrical field where it interacts with permeant cations. The block is relieved at positive potentials, indicating that under these conditions Mg(2+) is able to permeate the selectivity filter of the channel. Although sizeable outward monovalent currents were recorded in the absence of intracellular Mg(2+), outward conductance is still approximately 10 times lower than inward conductance under symmetric, divalent-free ionic conditions. This Mg(2+)-independent rectification was preserved in inside-out patches and not altered by high intracellular concentrations of spermine, indicating that TRPV6 displays intrinsic rectification. Neutralization of a single aspartate residue within the putative pore loop abolished the Mg(2+) sensitivity of the channel, yielding voltage-independent, moderately inwardly rectifying monovalent currents in the presence of intracellular Mg(2+). The effects of intracellular Mg(2+) on TRPV6 are partially reminiscent of the gating mechanism of inwardly rectifying K(+) channels and may represent a novel regulatory mechanism for TRPV6 function in vivo.  相似文献   

10.
Permeation and gating properties of the novel epithelial Ca(2+) channel   总被引:5,自引:0,他引:5  
The recently cloned epithelial Ca(2+) channel (ECaC) constitutes the Ca(2+) influx pathway in 1,25-dihydroxyvitamin D(3)-responsive epithelia. We have combined patch-clamp analysis and fura-2 fluorescence microscopy to functionally characterize ECaC heterologously expressed in HEK293 cells. The intracellular Ca(2+) concentration in ECaC-expressing cells was closely correlated with the applied electrochemical Ca(2+) gradient, demonstrating the distinctive Ca(2+) permeability and constitutive activation of ECaC. Cells dialyzed with 10 mM 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid displayed large inward currents through ECaC in response to voltage ramps. The corresponding current-voltage relationship showed pronounced inward rectification. Currents evoked by voltage steps to potentials below -40 mV partially inactivated with a biexponential time course. This inactivation was less pronounced if Ba(2+) or Sr(2+) replaced Ca(2+) and was absent in Ca(2+)-free solutions. ECaC showed an anomalous mole fraction behavior. The permeability ratio P(Ca):P(Na) calculated from the reversal potential at 30 mM [Ca(2+)](o) was larger than 100. The divalent cation selectivity profile is Ca(2+) > Mn(2+) > Ba(2+) approximately Sr(2+). Repetitive stimulation of ECaC-expressing cells induced a decay of the current response, which was greatly reduced if Ca(2+) was replaced by Ba(2+) and was virtually abolished if [Ca(2+)](o) was lowered to 1 nM. In conclusion, ECaC is a Ca(2+) selective channel, exhibiting Ca(2+)-dependent autoregulatory mechanisms, including fast inactivation and slow down-regulation.  相似文献   

11.
TRPV5 and TRPV6 constitute the Ca(2+) influx pathway in a variety of epithelial cells. Here, we identified S100A10 as the first auxiliary protein of these epithelial Ca(2+) channels using yeast two-hybrid and GST pull-down assays. This S100 protein forms a heterotetrameric complex with annexin 2 and associates specifically with the conserved sequence VATTV located in the C-terminal tail of TRPV5 and TRPV6. Of these five amino acids, the first threonine plays a crucial role since the corresponding mutants (TRPV5 T599A and TRPV6 T600A) exhibited a diminished capacity to bind S100A10, were redistributed to a subplasma membrane area and did not display channel activity. Using GST pull-down and co-immunoprecipitation assays we demonstrated that annexin 2 is part of the TRPV5-S100A10 complex. Furthermore, the S100A10-annexin 2 pair colocalizes with the Ca(2+) channels in TRPV5-expressing renal tubules and TRPV6-expressing duodenal cells. Importantly, downregulation of annexin 2 using annexin 2-specific small interfering RNA inhibited TRPV5 and TRPV6-mediated currents in transfected HEK293 cells. In conclusion, the S100A10-annexin 2 complex plays a crucial role in routing of TRPV5 and TRPV6 to plasma membrane.  相似文献   

12.
In Ca(2+)-transporting epithelia, calbindin-D(28K) (CaBP(28K)) facilitates Ca(2+) diffusion from the luminal Ca(2+) entry side of the cell to the basolateral side, where Ca(2+) is extruded into the extracellular compartment. Simultaneously, CaBP(28K) provides protection against toxic high Ca(2+) levels by buffering the cytosolic Ca(2+) concentration ([Ca(2+)](i)) during high Ca(2+) influx. CaBP(28K) consistently colocalizes with the epithelial Ca(2+) channel TRPV5, which constitutes the apical entry step in renal Ca(2+)-transporting epithelial cells. Here, we demonstrate using protein-binding analysis, subcellular fractionation and evanescent-field microscopy that CaBP(28K) translocates towards the plasma membrane and directly associates with TRPV5 at a low [Ca(2+)](i). (45)Ca(2+) uptake measurements, electrophysiological recordings and transcellular Ca(2+) transport assays of lentivirus-infected primary rabbit connecting tubule/distal convolute tubule cells revealed that associated CaBP(28K) tightly buffers the flux of Ca(2+) entering the cell via TRPV5, facilitating high Ca(2+) transport rates by preventing channel inactivation. In summary, CaBP(28K) acts in Ca(2+)-transporting epithelia as a dynamic Ca(2+) buffer, regulating [Ca(2+)] in close vicinity to the TRPV5 pore by direct association with the channel.  相似文献   

13.
The light-activated channels of Drosophila photoreceptors transient receptor potential (TRP) and TRP-like (TRPL) show voltage-dependent conductance during illumination. Recent studies implied that mammalian members of the TRP family, which belong to the TRPV and TRPM subfamilies, are intrinsically voltage-gated channels. However, it is unclear whether the Drosophila TRPs, which belong to the TRPC subfamily, share the same voltage-dependent gating mechanism. Exploring the voltage dependence of Drosophila TRPL expressed in S2 cells, we found that the voltage dependence of this channel is not an intrinsic property since it became linear upon removal of divalent cations. We further found that Ca(2+) blocked TRPL in a voltage-dependent manner by an open channel block mechanism, which determines the frequency of channel openings and constitutes the sole parameter that underlies its voltage dependence. Whole cell recordings from a Drosophila mutant expressing only TRPL indicated that Ca(2+) block also accounts for the voltage dependence of the native TRPL channels. The open channel block by Ca(2+) that we characterized is a useful mechanism to improve the signal to noise ratio of the response to intense light when virtually all the large conductance TRPL channels are blocked and only the low conductance TRP channels with lower Ca(2+) affinity are active.  相似文献   

14.
Activation of TRPV4 channels (hVRL-2/mTRP12) by phorbol derivatives   总被引:14,自引:0,他引:14  
We have studied activation by phorbol derivatives of TRPV4 channels, the human VRL-2, and murine TRP12 channels, which are highly homologous to the human VR-OAC, and the human and murine OTRPC4 channel. 4alpha-Phorbol 12,13-didecanoate (4alpha-PDD) induced an increase in intracellular Ca(2+) concentration, [Ca(2+)](i), in 1321N1 cells stably transfected with human VRL-2 (hVRL-2.1321N1) or HEK-293 cells transiently transfected with murine TRP12, but not in nontransfected or mock-transfected cells. Concomitantly with the increase in [Ca(2+)](i), 4alpha-PDD activated an outwardly rectifying cation channel with an Eisenman IV permeation sequence for monovalent cations that is Ca(2+)-permeable with P(Ca)/P(Na) = 5.8. Phorbol 12-myristate 13-acetate also induced an increase in [Ca(2+)](i) but was approximately 50 times less effective than 4alpha-PDD. EC(50) for Ca(2+) increase and current activation was nearly identical (pEC(50) approximately 6.7). Similar effects were observed in freshly isolated mouse aorta endothelial cells which express TRP12 endogenously. By using 4alpha-PDD as a tool to stimulate TRP12, we showed that activation of this channel is modulated by [Ca(2+)](i); an increase in [Ca(2+)](i) inhibits the channel with an IC(50) of 406 nm. Ruthenium Red at a concentration of 1 microm completely blocks inward currents at -80 mV but has a smaller effect on outward currents likely indicating a voltage dependent channel block. We concluded that the phorbol derivatives activate TRPV4 (VR-OAC, VRL-2, OTRPC4, TRP12) independently from protein kinase C, in a manner consistent with direct agonist gating of the channel.  相似文献   

15.
Activation of phospholipase C (PLC)-mediated signaling pathways in non-excitable cells causes the release of calcium (Ca2+) from inositol 1,4,5-trisphosphate (InsP3)-sensitive intracellular Ca2+ stores and activation of Ca2+ influx via plasma membrane Ca2+ channels. The properties and molecular identity of plasma membrane Ca2+ influx channels in non-excitable cells is a focus of intense investigation. In the previous studies we used patch clamp electrophysiology to describe the properties of Ca2+ influx channels in human carcinoma A431 cell lines. Now we extend our studies to human embryonic kidney HEK293 cells. By using a combination of Ca2+ imaging and whole cell and single channel patch clamp recordings we discovered that: 1) HEK293 cells contain four types of plasma membrane Ca2+ influx channels: I(CRAC), Imin, Imax, and I(NS); 2) I(CRAC) channels are highly Ca2+-selective (P(Ca/Cs)>1000) and I(CRAC) single channel conductance is too small for single channel analysis; 3) Imin channels in HEK293 cells display functional properties identical to Imin channels in A431 cells, with single channel conductance of 1.2 pS for divalent cations, 10 pS for monovalent cations, and divalent cation selectivity P(Ba/K)=20; 4) Imin channels in HEK293 cells are activated by InsP3 and inhibited by phosphatidylinositol 4,5-bisphosphate, but store-independent; 5) when compared with Imin, Imax channels have higher conductance for divalent (17 pS) and monovalent (33 pS) cations, but less selective for divalent cations (P(Ba/K)=4), 6) Imax channels in HEK293 cells can be activated by InsP3 or by Ca2+ store depletion; 7) I(NS) channels are non-selective (P(Ba/K)=0.4) and display a single channel conductance of 5 pS; and 8) I(NS) channels are not gated by InsP3 but activated by depletion of intracellular Ca2+ stores. Our findings provide novel information about endogenous Ca2+ channels supporting receptor-operated and store-operated Ca2+ influx pathways in HEK293 cells.  相似文献   

16.
Cheek TR  Thorn P 《Cell calcium》2006,40(3):309-318
We have combined fluorimetric measurements of the intracellular free Ca(2+) concentration ([Ca(2+)](i)) with the patch clamp technique, to investigate resting Ca(2+) entry in bovine adrenal chromaffin cells. Perfusion with nominally Ca(2+)-free medium resulted in a rapid, reversible decrease in [Ca(2+)](i), indicating a resting Ca(2+) permeability across the plasma membrane. Simultaneous whole-cell voltage-clamp showed a resting inward current that increased when extracellular Ca(2+) (Ca(2+)(o)) was lowered. This current had a reversal potential of around 0 mV and was carried by monovalent or divalent cations. In Na(+)-free extracellular medium there was a reduction in current amplitude upon removal of Ca(2+)(o), indicating the current can carry Ca(2+). The current was constitutively active and not enhanced by agents that promote Ca(2+)-store depletion such as thapsigargin. Extracellular La(3+) abolished the resting current, reduced resting [Ca(2+)](i) and inhibited basal secretion. Abolishment of resting Ca(2+) influx depleted the inositol 1,4,5-trisphosphate-sensitive Ca(2+) store without affecting the caffeine-sensitive Ca(2+) store. The results indicate the presence of a constitutively active nonselective cation conductance, permeable to both monovalent and divalent cations, that can regulate [Ca(2+)](i), the repletion state of the intracellular Ca(2+) store and the secretory response in resting cells.  相似文献   

17.
Altered calcium homeostasis and increased cytosolic calcium concentrations ([Ca(2+)](c)) are linked to neuronal apoptosis in epilepsy and in cerebral ischemia, respectively. Apoptotic programmed cell death is regulated by the antiapoptotic Bcl2 family of proteins. Here, we investigated the role of Bcl2 on calcium (Ca(2+)) homeostasis in PC12 cells, focusing on L-type voltage-dependent calcium channels (VDCC). Cytosolic Ca(2+) transients ([Ca(2+)](c)) and changes of mitochondrial Ca(2+) concentrations ([Ca(2+)](m)) were monitored using cytosolic and mitochondrially targeted aequorins of control PC12 cells and PC12 cells stably overexpressing Bcl2. We found that: (i) the [Ca(2+)](c) and [Ca(2+)](m) elevations elicited by K(+) pulses were markedly depressed in Bcl2 cells, with respect to control cells; (ii) such depression of [Ca(2+)](m) was not seen either in digitonin-permeabilized cells or in intact cells treated with ionomycin; (iii) the [Ca(2+)](c) transient depression seen in Bcl2 cells was reversed by shRNA transfection, as well as by the Bcl2 inhibitor HA14-1; (iv) the L-type Ca(2+) channel agonist Bay K 8644 enhanced K(+)-evoked [Ca(2+)](m) peak fourfold in Bcl2, and twofold in control cells; (v) in current-clamped cells the depolarization evoked by K(+) generated a more hyperpolarized voltage step in Bcl2, as compared to control cells. Taken together, our experiments suggest that the reduction of the [Ca(2+)](c) and [Ca(2+)](m) transients elicited by K(+), in PC12 cells overexpressing Bcl2, is related to the reduction of Ca(2+) entry through L-type Ca(2+) channels. This may be due to the fact that Bcl2 mitigates cell depolarization, thus diminishing the recruitment of L-type Ca(2+) channels, the subsequent Ca(2+) entry, and mitochondrial Ca(2+) overload.  相似文献   

18.
In a manner similar to voltage-gated Ca(2+) channels and Ca(2+) release-activated Ca(2+) (CRAC) channels, the recently identified arachidonate-regulated Ca(2+) (ARC) channels display a large monovalent conductance upon removal of external divalent cations. Using whole-cell patch-clamp recording, we have characterized the properties of these monovalent currents in HEK293 cells stably transfected with the m3 muscarinic receptor and compared them with the corresponding currents through the endogenous store-operated Ca(2+) (SOC) channels in the same cells. Although the monovalent currents seen through these two channels displayed certain similarities, several marked differences were also apparent, including the magnitude of the monovalent current/Ca(2+) current ratio, the rate and nature of the spontaneous decline in the currents, and the effects of external monovalent cation substitutions and removal of internal Mg(2+). Moreover, monovalent ARC currents could be activated after the complete spontaneous inactivation of the corresponding SOC current in the same cell. We conclude that the non-capacitative ARC channels share, with voltage-gated Ca(2+) channels and store-operated Ca(2+) channels (e.g. SOC and CRAC the general property of monovalent ion permeation in the nominal absence of extracellular divalent ions. However, the clear differences between the properties of these currents through ARC and SOC channels in the same cell confirm that these represent distinct conductances.  相似文献   

19.
Wu Y  Xu X  Li S  Liu T  Ma L  Shang Z 《The New phytologist》2007,176(3):550-559
The role of heterotrimeric G proteins in pollen germination and tube growth was investigated using Arabidopsis thaliana plants in which the gene (GPA) encoding the G-protein a subunit (Galpha) was null or overexpressed. Pollen germination, free cytosolic calcium concentration ([Ca(2+)](cyt)) and Ca(2+) channel activity in the plasma membrane (PM) of pollen cells were investigated. Results showed that, compared with pollen grains of the wild type (ecotype Wassilewskija, ws), in vitro germinated pollen of Galpha null mutants (gpa1-1 and gpa1-2) had lower germination percentages and shorter pollen tubes, while pollen from Galpha overexpression lines (wGalpha and cGalpha) had higher germination percentages and longer pollen tubes. Compared with ws pollen cells, [Ca(2+)](cyt) was lower in gpa1-1 and gpa1-2 and higher in wGalpha and cGalpha. In whole-cell patch clamp recordings, a hyperpolarization-activated Ca(2+)-permeable conductance was identified in the PM of pollen protoplasts. The conductance was suppressed by trivalent cations but insensitive to organic blockers; its permeability to divalent cations was Ba(2+) > Ca(2+) > Mg(2+) > Sr(2+) > Mn(2+). The activity of the Ca(2+)-permeable channel conductance was down-regulated in pollen protoplasts of gpa1-1 and gpa1-2, and up-regulated in wGalpha and cGalpha. The results suggest that Galpha may participate in pollen germination through modulation of the hyperpolarization-activated Ca(2+) channel in the PM of pollen cells.  相似文献   

20.
In order to investigate the currently unknown cellular signaling pathways of T-type Ca(2+) channels, we decided to construct a new cell line which would stably express alpha(1G) and Kir2.1 subunits in HEK293 cells (HEK293/alpha(1G)/Kir2.1). Compared to cells which only expressed alpha(1G) (HEK293/alpha(1G)), HEK293/alpha(1G)/Kir2.1 cells produced an enormous inward rectifying current which was blocked by external Ba(2+) and Cs(+) in a concentration-dependent manner. The expression of Kir2.1 channels contributed significantly to the shift of membrane potential from -12.2+/-2.8 to -57.3+/-3.7mV. However, biophysical and pharmacological properties of alpha(1G)-mediated Ca(2+) channels remained unaffected by the expression of Kir2.1 subunits, except for the enlarging of the window current region. Biochemical activation of alpha(1G) channels using 150mM KCl brought about an increase in [Ca(2+)](i), which was blocked by mibefradil, the T-type Ca(2+) channel blocker. These data suggest that the HEK293/alpha(1G)/Kir2.1 cell line would have potential uses in the study of T-type Ca(2)(+) channel-mediated signaling pathways and possibly useful in the development of new therapeutic drugs associated with T-type Ca(2)(+) channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号