首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 5'-untranslated region (5'-UTR) of retroviral genomes contains elements required for genome packaging during virus assembly. For many retroviruses, the packaging elements reside in non-contiguous segments that span most or all of the 5'-UTR. The Rous sarcoma virus (RSV) is an exception, in that its genome can be packaged efficiently by a relatively short, 82 nt segment of the 5'-UTR called muPsi. The RSV 5'-UTR also contains three translational start codons (AUG-1, AUG-2 and AUG-3) that have been controvertibly implicated in translation initiation and genome packaging, one of which (AUG-3) resides within the muPsi sequence. We demonstrated recently that muPsi is capable of binding to the cognate RSV nucleocapsid protein (NC) with high affinity (dissociation constant K(d) approximately 2 nM), and that residues of AUG-3 are essential for tight binding. We now report the solution structure of the NC:muPsi complex, determined using NMR data obtained for samples containing ((13)C,(15)N)-labeled NC and (2)H-enriched, nucleotide-specifically protonated RNAs. Upon NC binding, muPsi adopts a stable secondary structure that consists of three stem loops (SL-A, SL-B and SL-C) and an 8 bp stem (O3). Binding is mediated by the two zinc knuckle domains of NC. The N-terminal knuckle interacts with a conserved U(217)GCG tetraloop (a member of the UNCG family; N=A,U,G or C), and the C-terminal zinc knuckle binds to residues that flank SL-A, including residues of AUG-3. Mutations of critical nucleotides in these sequences compromise or abolish viral infectivity. Our studies reveal novel structural features important for NC:RNA binding, and support the hypothesis that AUG-3 is conserved for genome packaging rather than translational control.  相似文献   

2.
Murine leukemia virus (MLV) is currently the most widely used gene delivery system in gene therapy trials. The simple retrovirus packages two copies of its RNA genome by a mechanism that involves interactions between the nucleocapsid (NC) domain of a virally-encoded Gag polyprotein and a segment of the RNA genome located just upstream of the Gag initiation codon, known as the Psi-site. Previous studies indicated that the MLV Psi-site contains three stem loops (SLB-SLD), and that stem loops SLC and SLD play prominent roles in packaging. We have developed a method for the preparation and purification of large quantities of recombinant Moloney MLV NC protein, and have studied its interactions with a series of oligoribonucleotides that contain one or more of the Psi-RNA stem loops. At RNA concentrations above approximately 0.3 mM, isolated stem loop SLB forms a duplex and stem loops SL-C and SL-D form kissing complexes, as expected from previous studies. However, neither the monomeric nor the dimeric forms of these isolated stem loops binds NC with significant affinity. Longer constructs containing two stem loops (SL-BC and SL-CD) also exhibit low affinities for NC. However, NC binds with high affinity and stoichiometrically to both the monomeric and dimeric forms of an RNA construct that contains all three stem loops (SL-BCD; K(d)=132(+/-55) nM). Titration of SL-BCD with NC also shifts monomer-dimer equilibrium toward the dimer. Mutagenesis experiments demonstrate that the conserved GACG tetraloops of stem loops C and D do not influence the monomer-dimer equilibrium of SL-BCD, that the tetraloop of stem loop B does not participate directly in NC binding, and that the tetraloops of stem loops C and D probably also do not bind to NC. These surprising results differ considerably from those observed for HIV-1, where NC binds to individual stem loops with high affinity via interactions with exposed residues of the tetraloops. The present results indicate that MLV NC binds to a pocket or surface that only exists in the presence of all three stem loops.  相似文献   

3.
4.
Paoletti AC  Shubsda MF  Hudson BS  Borer PN 《Biochemistry》2002,41(51):15423-15428
Efficient packaging of genomic RNA into new HIV-1 virus particles requires that nucleocapsid domains of precursor proteins bind the SL3 tetraloop (G317-G-A-G320) from the 5'-untranslated region. This paper presents the affinities of 35 RNA variants of SL3 for the mature 55mer NC protein, as measured by fluorescence quenching of tryptophan-37 in the protein by nucleobases. The 1:1 complexes that form in 0.2 M NaCl have dissociation constants ranging from 8 nM (GGUG) to 20 microM (GAUA). The highly conserved (GGAG) sequence for the wild type is not the most stable (K(d) = 28 nM), suggesting that other selective pressures beyond the stability of the complex must be satisfied. The leading requirement for strong interaction is for G320, followed closely by G318. Replacing either with U, A, or C reduces affinity by a factor of 15-120. NC-domains from multiple proteins combine to recognize unpaired G(2)-loci, where two guanines are in close proximity. We have previously measured affinities of the NC protein for the important stem-loops of the major packaging domain [Shubsda, M. F., Paoletti, A. C., Hudson, B. S., and Borer, P. N. (2002) Biochemistry 41, 5276-82]. Comparison with the present work shows that the nature of the stem also modulates NC-RNA interactions. Placing the G(2)-loci from the apical SL2 or SL1 loops on the SL3 stem increases affinity by a factor of 2-3, while placing the SL4 loop on the SL3 stem reduces affinity 50-fold. These results are interesting in the context of RNA-protein interaction, as well as for the discovery of antiNC agents for AIDS therapy.  相似文献   

5.
Site-directed mutagenesis has shown that the nucleocapsid (NC) protein of Rous sarcoma virus (RSV) is required for packaging and dimerization of viral RNA. However, it has not been possible to demonstrate, in vivo or in vitro, specific binding of viral RNA sequences by NC. To determine whether specific packaging of viral RNA is mediated by NC in vivo, we have constructed RSV mutants carrying sequences of Moloney murine leukemia virus (MoMuLV). Either the NC coding region alone, the psi RNA packaging sequence, or both the NC and psi sequences of MoMuLV were substituted for the corresponding regions of a full-length RSV clone to yield chimeric plasmid pAPrcMNC, pAPrc psi M, or pAPrcM psi M, respectively. In addition, a mutant of RSV in which the NC is completely deleted was tested as a control. Upon transfection, each of the chimeric mutants produced viral particles containing processed core proteins but were noninfectious. Thus, MoMuLV NC can replace RSV NC functionally in the assembly and release of mature virions but not in infectivity. Surprisingly, the full-deletion mutant showed a strong block in virus release, suggesting that NC is involved in virus assembly. Mutant PrcMNC packaged 50- to 100-fold less RSV RNA than did the wild type; in cotransfection experiments, MoMuLV RNA was preferentially packaged. This result suggests that the specific recognition of viral RNA during virus assembly involves, at least in part, the NC protein.  相似文献   

6.
Encapsidation of the genome of the human immunodeficiency virus type-1 (HIV-1) during retrovirus assembly is mediated by interactions between the nucleocapsid (NC) domains of assembling Gag polyproteins and a approximately 110 nucleotide segment of the genome known as the Psi-site. The HIV-1 Psi-site contains four stem-loops (SL1 through SL4), all of which are important for genome packaging. Recent isothermal titration calorimetry (ITC) studies have demonstrated that SL2 and SL3 are capable of binding NC with high affinity (K(d) approximately 140 nM), consistent with proposals for protein-interactive functions during packaging. To determine if SL4 may have a similar function, NC-interactive studies were conducted by NMR and gel-shift methods. In contrast to previous reports, we find that SL4 binds weakly to NC (K(d)=(+/-14 microM), suggesting an alternative function. NMR studies indicate that the GAGA tetraloop of SL4 adopts a classical GNRA-type fold (R=purine, N=G, C, A or U), a motif that stabilizes RNA tertiary structures in other systems. In combination with previously reported gel mobility studies of Psi-site deletion mutants, these findings suggest that SL4 functions in genome recognition not by binding to Gag, but by stabilizing the structure of the Psi-site. Differences in the affinities of NC for SL2, SL3 and SL4 stem-loops can now be rationalized in terms of the different structural properties of stem loops that contain GGNG (SL2 and SL3) and GNRA (SL4) sequences.  相似文献   

7.
The secondary structural features in the 70S RNAs of the Prague strain of avian Rous sarcoma virus, subgroup A (PR-RSV-A), and Moloney murine leukemia virus (M-MuLV) were compared by electron microscopy. The PR-RSV-A genome contained two subunits joined by a linkage structure as in the genomes of M-MuLV and other mammalian retroviruses. In both viral genomes, a highly reproducible hairpin occurred at about 70 nucleotides from the 5' end of each subunit and contained 320 +/- 8 nucleotides. The stable point of linkage between the subunits in both viral genomes involved fewer than 50 nucleotides and occurred at 466 +/- 9 nucleotides from the 5' end. This places the linkage about 350 nucleotides further toward the 3' end of the subunit than the binding site of primer tRNA. Another structural feature common to both genomes was a loop in each subunit. In M-MuLV, the loop contained 3.9 +/- 0.10 kilobases (kb) and occurred at a distance of 2.2 +/- 0.05 kb from the 5' end. In PR-RSV-A, the loop was smaller (2.3 +/- 0.10 kb) and further (3.3 +/- 0.10 kb) from the 5' end. When M-MuLV RNA was heated to 70, 85, or 90 degrees C and cooled, the hairpin consistently reformed at the 5' end. No other structures typical of the native molecules reappeared. In RNA samples heated to 70 degrees C, a new loop reproducibly occurred near the 5' end of each subunit, but this loop was not found in samples heated to higher temperatures. Based on all of these findings, we conclude that the genome of PR-RSV-A shares several features with M-MuLV and other mammalian retroviruses and that the primer tRNA molecules are not involved in the linkage of the two subunits in either genome. We also conclude that the dimer linkage and the loops in subunits are typical of the native molecules and that their formation requires a special environment.  相似文献   

8.
Retroviral RNA genome (gRNA) harbors cis-acting sequences that facilitate its specific packaging from a pool of other viral and cellular RNAs by binding with high-affinity to the viral Gag protein during virus assembly. However, the molecular intricacies involved during selective gRNA packaging are poorly understood. Binding and footprinting assays on mouse mammary tumor virus (MMTV) gRNA with purified Pr77Gag along with in cell gRNA packaging study identified two Pr77Gag binding sites constituting critical, non-redundant packaging signals. These included: a purine loop in a bifurcated stem-loop containing the gRNA dimerization initiation site, and the primer binding site (PBS). Despite these sites being present on both unspliced and spliced RNAs, Pr77Gag specifically bound to unspliced RNA, since only that could adopt the native bifurcated stem–loop structure containing looped purines. These results map minimum structural elements required to initiate MMTV gRNA packaging, distinguishing features that are conserved amongst divergent retroviruses from those perhaps unique to MMTV. Unlike purine-rich motifs frequently associated with packaging signals, direct involvement of PBS in gRNA packaging has not been documented in retroviruses. These results enhance our understanding of retroviral gRNA packaging/assembly, making it not only a target for novel therapeutic interventions, but also development of safer gene therapy vectors.  相似文献   

9.
The process of RNA incorporation into nascent virions is thought to be critical for efficient retroviral particle assembly and production. Here we show that human immunodeficiency virus type 1 mutant particles (which are highly unstable and break down soon after release from the cell) lacking nucleocapsid (NC) core protein-mediated RNA incorporation are produced efficiently and can be recovered at the normal density when viral protease function is abolished. These results demonstrate that RNA binding by Gag is not necessary for retroviral particle assembly. Rather, the RNA interaction with NC is critical for retroviral particle structural stability subsequent to release from the membrane and protease-mediated Gag cleavage. Thus, the NC-RNA interaction, and not simply the presence of RNA, provides the virus with a structural function that is critical for stable retroviral particle architecture.  相似文献   

10.
Retroviruses selectively package two copies of their RNA genomes via mechanisms that have yet to be fully deciphered. Recent studies with small fragments of the Moloney murine leukemia virus (MoMuLV) genome suggested that selection may be mediated by an RNA switch mechanism, in which conserved UCUG elements that are sequestered by base-pairing in the monomeric RNA become exposed upon dimerization to allow binding to the cognate nucleocapsid (NC) domains of the viral Gag proteins. Here we show that a large fragment of the MoMuLV 5′ untranslated region that contains all residues necessary for efficient RNA packaging (ΨWT; residues 147-623) also exhibits a dimerization-dependent affinity for NC, with the native dimer ([ΨWT]2) binding 12 ± 2 NC molecules with high affinity (Kd = 17 ± 7 nM) and with the monomer, stabilized by substitution of dimer-promoting loop residues with hairpin-stabilizing sequences (ΨM), binding 1-2 NC molecules. Identical dimer-inhibiting mutations in MoMuLV-based vectors significantly inhibit genome packaging in vivo (∼ 100-fold decrease), whereas a large deletion of nearly 200 nucleotides just upstream of the gag start codon has minimal effects. Our findings support the proposed RNA switch mechanism and further suggest that virus assembly may be initiated by a complex comprising as few as 12 Gag molecules bound to a dimeric packaging signal.  相似文献   

11.
Assembly of human immunodeficiency virus type 1 (HIV-1) particles is initiated in the cytoplasm by the formation of a ribonucleoprotein complex comprising the dimeric RNA genome and a small number of viral Gag polyproteins. Genomes are recognized by the nucleocapsid (NC) domains of Gag, which interact with packaging elements believed to be located primarily within the 5'-leader (5'-L) of the viral RNA. Recent studies revealed that the native 5'-L exists as an equilibrium of two conformers, one in which dimer-promoting residues and NC binding sites are sequestered and packaging is attenuated, and one in which these sites are exposed and packaging is promoted. To identify the elements within the dimeric 5'-L that are important for packaging, we generated HIV-1 5'-L RNAs containing mutations and deletions designed to eliminate substructures without perturbing the overall structure of the leader and examined effects of the mutations on RNA dimerization, NC binding, and packaging. Our findings identify a 159-residue RNA packaging signal that possesses dimerization and NC binding properties similar to those of the intact 5'-L and contains elements required for efficient RNA packaging.  相似文献   

12.
The subcellular location at which genomic RNA is packaged by Gag proteins during retrovirus assembly remains unknown. Since the membrane-binding (M) domain is most critical for targeting Gag to the plasma membrane, changes to this determinant might alter the path taken through the cell and reduce the efficiency of genome packaging. In this report, a Rous sarcoma virus (RSV) mutant having two acidic-to-basic substitutions in the M domain is described. This mutant, designated Super M, produced particles much faster than the wild type, but the mutant virions were noninfectious and contained only 1/10 the amount of genomic RNA found in wild-type particles. To identify the cause(s) of these defects, we considered data that suggest that RSV Gag traffics through the nucleus to package the viral genome. Although inhibition of the CRM-1 pathway of nuclear export caused the accumulation of wild-type Gag in the nucleus, nuclear accumulation did not occur with Super M. The importance of the nucleocapsid (NC) domain in membrane targeting was also determined, and, importantly, deletion of the NC sequence prevented plasma membrane localization by wild-type Gag but not by Super M Gag. Based on these results, we reasoned that the enhanced membrane-targeting properties of Super M inhibit genome packaging. Consistent with this interpretation, substitutions that reestablished the wild-type number of basic and acidic residues in the Super M Gag M domain reduced the budding efficiency and restored genome packaging and infectivity. Therefore, these data suggest that Gag targeting and genome packaging are normally linked to ensure that RSV particles contain viral RNA.  相似文献   

13.
Retroviral RNA encapsidation involves a recognition event between genomic RNA (gRNA) and one or more domains in Gag. In HIV-1, the nucleocapsid (NC) domain is involved in gRNA packaging and displays robust nucleic acid (NA) binding and chaperone functions. In comparison, NC of human T-cell leukemia virus type 1 (HTLV-1), a deltaretrovirus, displays weaker NA binding and chaperone activity. Mutation of conserved charged residues in the deltaretrovirus bovine leukemia virus (BLV) matrix (MA) and NC domains affects virus replication and gRNA packaging efficiency. Based on these observations, we hypothesized that the MA domain may generally contribute to NA binding and genome encapsidation in deltaretroviruses. Here, we examined the interaction between HTLV-2 and HIV-1 MA proteins and various NAs in vitro. HTLV-2 MA displays higher NA binding affinity and better chaperone activity than HIV-1 MA. HTLV-2 MA also binds NAs with higher affinity than HTLV-2 NC and displays more robust chaperone function. Mutation of two basic residues in HTLV-2 MA α-helix II, previously implicated in BLV gRNA packaging, reduces NA binding affinity. HTLV-2 MA binds with high affinity and specificity to RNA derived from the putative packaging signal of HTLV-2 relative to nonspecific NA. Furthermore, an HIV-1 MA triple mutant designed to mimic the basic character of HTLV-2 MA α-helix II dramatically improves binding affinity and chaperone activity of HIV-1 MA in vitro and restores RNA packaging to a ΔNC HIV-1 variant in cell-based assays. Taken together, these results are consistent with a role for deltaretrovirus MA proteins in viral RNA packaging.  相似文献   

14.
15.
The RNA genome of the human immunodeficiency virus type-1 (HIV-1) contains a approximately 120 nucleotide Psi-packaging signal that is recognized by the nucleocapsid (NC) domain of the Gag polyprotein during virus assembly. The Psi-site contains four stem-loops (SL1-SL4) that possess overlapping and possibly redundant functions. The present studies demonstrate that the 19 residue SL2 stem-loop binds NC with affinity (K(d)=110(+/-50) nM) similar to that observed for NC binding to SL3 (K(d)=170(+/-65) nM) and tighter than expected on the basis of earlier work, suggesting that NC-SL2 interactions probably play a direct role in the specific recognition and packaging of the full-length, unspliced genome. The structure of the NC-SL2 complex was determined by heteronuclear NMR methods using (15)N,(13)C-isotopically labeled NC protein and SL2 RNA. The N and C-terminal "zinc knuckles" (Cys-X(2)-Cys-X(4)-His-X(4)-Cys; X=variable amino acid) of HIV-1 NC bind to exposed guanosine bases G9 and G11, respectively, of the G8-G9-U10-G11 tetraloop, and residues Lys3-Lys11 of the N-terminal tail forms a 3(10) helix that packs against the proximal zinc knuckle and interacts with the RNA stem. These structural features are similar to those observed previously in the NMR structure of NC bound to SL3. Other features of the complex are substantially different. In particular, the N-terminal zinc knuckle interacts with an A-U-A base triple platform in the minor groove of the SL2 RNA stem, but binds to the major groove of SL3. In addition, the relative orientations of the N and C-terminal zinc knuckles differ in the NC-SL2 and NC-SL3 complexes, and the side-chain of Phe6 makes minor groove hydrophobic contacts with G11 in the NC-SL2 complex but does not interact with RNA in the NC-SL3 complex. Finally, the N-terminal helix of NC interacts with the phosphodiester backbone of the SL2 RNA stem mainly via electrostatic interactions, but does not bind in the major groove or make specific H-bonding contacts as observed in the NC-SL3 structure. These findings demonstrate that NC binds in an adaptive manner to SL2 and SL3 via different subsets of inter and intra-molecular interactions, and support a genome recognition/packaging mechanism that involves interactions of two or more NC domains of assembling HIV-1 Gag molecules with multiple Psi-site stem-loop packaging elements during the early stages of retrovirus assembly.  相似文献   

16.
The RNA packaging process for retroviruses involves a recognition event of the genome-length viral RNA by the viral Gag polyprotein precursor (PrGag), an important step in particle morphogenesis. The mechanism underlying this genome recognition event for most retroviruses is thought to involve an interaction between the nucleocapsid (NC) domain of PrGag and stable RNA secondary structures that form the RNA packaging signal. Presently, there is limited information regarding PrGag-RNA interactions involved in RNA packaging for the deltaretroviruses, which include bovine leukemia virus (BLV) and human T-cell leukemia virus types 1 and 2 (HTLV-1 and -2, respectively). To address this, alanine-scanning mutagenesis of BLV PrGag was done with a virus-like particle (VLP) system. As predicted, mutagenesis of conserved basic residues as well as residues of the zinc finger domains in the BLV NC domain of PrGag revealed residues that led to a reduction in viral RNA packaging. Interestingly, when conserved basic residues in the BLV MA domain of PrGag were mutated to alanine or glycine, but not when mutated to another basic residue, reductions in viral RNA packaging were also observed. The ability of PrGag to be targeted to the cell membrane was not affected by these mutations in MA, indicating that PrGag membrane targeting was not associated with the reduction in RNA packaging. These observations indicate that these basic residues in the MA domain of PrGag influence RNA packaging, without influencing Gag membrane localization. It was further observed that (i) a MA/NC double mutant had a more severe RNA packaging defect than either mutant alone, and (ii) RNA packaging was not found to be associated with transient localization of Gag in the nucleus. In summary, this report provides the first direct evidence for the involvement of both the BLV MA and NC domains of PrGag in viral RNA packaging.  相似文献   

17.
Wang SW  Aldovini A 《Journal of virology》2002,76(23):11853-11865
The nucleocapsid (NC) domain of retroviruses plays a critical role in specific viral RNA packaging and virus assembly. RNA is thought to facilitate viral particle assembly, but the results described here with NC mutants indicate that it also plays a critical role in particle integrity. We investigated the assembly and integrity of particles produced by the human immunodeficiency virus type 1 M1-2/BR mutant virus, in which 10 of the 13 positive residues of NC have been replaced with alanines and incorporation of viral genomic RNA is virtually abolished. We found that the mutations in the basic residues of NC did not disrupt Gag assembly at the cell membrane. The mutant Gag protein can assemble efficiently at the cell membrane, and viral proteins are detected outside the cell as efficiently as they are for the wild type. However, only approximately 10% of the Gag molecules present in the supernatant of this mutant sediment at the correct density for a retroviral particle. The reduction of positive charge in the NC basic domain of the M1-2/BR virus adversely affects both the specific and nonspecific RNA binding properties of NC, and thus the assembled Gag polyprotein does not bind significant amounts of viral or cellular RNA. We found a direct correlation between the percentage of Gag associated with sedimented particles and the amount of incorporated RNA. We conclude that RNA binding by Gag, whether the RNA is viral or not, is critical to retroviral particle integrity after cell membrane assembly and is less important for Gag-Gag interactions during particle assembly and release.  相似文献   

18.
It has been widely documented that the nucleocapsid protein p12 (NC) of Rous sarcoma virus (RSV) has a role in the encapsidation and maturation of the virus genomic RNA during particle formation, and particularly important appear to be the Cys-His motifs of this protein. Since some retroviruses only have one such motif, we have investigated the significance of the two distinct Cys-His motifs of RSV NC. The analysis of the phenotype of virus NC mutants with precise rearrangements or duplications of the motifs highlights the following features. (i) The two motifs are not functionally equivalent. (ii) The order and number of Cys-His motifs are less important for RSV NC than the presence of two distinct motifs for both the encapsidation of virus genomic RNA and maintenance of the integrity of the RNA after particle formation. (iii) The proximal motif has a distinct function in the virus replication cycle other than RNA encapsidation and dimerization. (iv) The presence of three Cys-His motifs reduces virus infectivity and leads to high-frequency deletion events (of one of the motifs) after infection: the resulting RNA species encode a wild type-like NC protein restoring full infectivity to the progeny virus particles. Additionally, the data suggest that this occurs only after infection. The deletion probably arises by intramolecular displacement of the replication complex between repeat sequences.  相似文献   

19.
The Rous sarcoma virus (RSV) Gag precursor polyprotein is the only viral protein which is necessary for specific packaging of genomic RNA. To map domains within Gag which are important for packaging, we constructed a series of Gag mutations in conjunction with a protease (PR) active-site point mutation in a full-length viral construct. We found that deletion of either the matrix (MA), the capsid (CA), or the protease (PR) domain did not abrogate packaging, although the MA domain is likely to be required for proper assembly. A previously characterized deletion of both Cys-His motifs in RSV nucleocapsid protein (NC) reduced both the efficiency of particle release and specific RNA packaging by 6- to 10-fold, consistent with previous observations that the NC Cys-His motifs played a role in assembly and RNA packaging. Most strikingly, when amino acid changes at Arg 549 and 551 immediately downstream of the distal NC Cys-His box were made, RNA packaging was reduced by more than 25-fold with no defect in particle release, demonstrating the importance of this basic amino acid region in packaging. We also used the yeast three-hybrid system to study avian retroviral RNA-Gag interactions. Using this assay, we found that the interactions of the minimal packaging region (Mpsi) with Gag are of high affinity and specificity. Using a number of Mpsi and Gag mutants, we have found a clear correlation between a reporter gene activation in a yeast three-hybrid binding system and an in vivo packaging assay. Our results showed that the binding assay provides a rapid genetic assay of both RNA and protein components for specific encapsidation.  相似文献   

20.
The major RNA binding region of the HIV-1 Gag polyprotein is the nucleocapsid (NC) domain, which is responsible for the specific capture of the genomic RNA genome during viral assembly. The Gag polyprotein has other RNA chaperone functions, which are mirrored by the isolated NC protein after physiological cleavage from Gag. Gag, however, is suggested to have superior nucleic acid chaperone activity. Here we investigate the interaction of Gag and NC with the core RNA structure of the HIV-1 packaging signal (Ψ), using 2-aminopurine substitution to create a series of modified RNAs based on the Ψ helix loop structure. The effects of 2-aminopurine substitution on the physical and structural properties of the viral Ψ were characterized. The fluorescence properties of the 2-aminopurine substitutions showed features consistent with the native GNAR tetraloop. Dissociation constants (K(d)) of the two viral proteins, measured by fluorescence polarization (FP), were similar, and both NC and Gag affected the 2-aminopurine fluorescence of bases close to the loop binding region in a similar fashion. However, the influence of Gag on the fluorescence of the 2-aminopurine nucleotides at the base of the helix implied a much more potent helix destabilizing action on the RNA stem loop (SL) versus that seen with NC. This was further supported when the viral Ψ SL was tagged with a 5' fluorophore and 3' quencher. In the absence of any viral protein, minimal fluorescence was detected; addition of NC yielded a slight increase in fluorescence, while addition of the Gag protein yielded a large change in fluorescence, further suggesting that, compared to NC, the Gag protein has a greater propensity to affect RNA structure and that Ψ helix unwinding may be an intrinsic step in RNA encapsidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号