首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Benzene-contaminated topsoil, with an organic content of 42%, was treated by an air volatilization process, followed by a two-phase partitioning bioreactor to allow benzene mineralization. The effects of moisture content and temperature on the adsorption and desorption of benzene on to soil were investigated, and 95% of the benzene (at a concentration equivalent to 3.7 kg benzene m–3 soil–1) was removed at 50°C by air volatilization. When 30 g soil was contaminated with 1000 mg benzene (a concentration 3 times higher), 93% of the benzene was removed by the air volatilization technique, of which 91% was consumed in a two-phase partitioning bioreactor within 2 h.  相似文献   

2.
PVA-cryogels entrapping about 109 cells of Acidithiobacillus ferrooxidans per ml of gel were prepared by freezing-thawing procedure, and the biooxidation of Fe2+ by immobilized cells was investigated in a 0.365 l packed-bed bioreactor. Fe2+ oxidation fits a plug-flow reaction model well. A maximum oxidation rate of 3.1 g Fe2+ l–1 h–1 was achieved at the dilution rate of 0.4 h–1 or higher, while no obvious precipitate was determined at this time. In addition, cell-immobilized PVA-cryogels packed in bioreactor maintained their oxidative ability for more than two months under non-sterile conditions. Nomenclature: C A0 – Concentration of Fe2+ in feed stream (g l–1) C A – Concentration of Fe2 + in outlet stream (g l– 1) D – Dilution rate of the packed-bed bioreactor (h–1) F – Volumetric flow rate of iron solution (l h–1) F A0 – Mass flow rate of Fe2+ in the feed stream (g h–1) K – Kinetic constant (l l–1 h–1) r A – Oxidation rate of Fe2+ (g l–1 h–1) V – Volume of packed-bed bioreactor (l) X A – Conversion ratio of Fe2+ (%)  相似文献   

3.
Pseudomonas sp. 42A2 when incubated for 36 h with oleic acid (20 g l–1) in a stirred bioreactor, accumulated 10-hydroxy-8E-octadecenoic acid. Production in a 2 l bioreactor with 1.4 l of working volume, was increased from 0.65 g l–1 to 7.4 g l–1 with K L a values ranging between 15 and 200 h–1. A linear relationship was found between volumetric productivity and oxygen transfer rates and an exponential relation between the specific rate of product formation and specific growth rate.  相似文献   

4.
A two-phase organic/aqueous reactor configuration was developed for use in the biodegradation of benzene, toluene and p-xylene, and tested with toluene. An immiscible organic phase was systematically selected on the basis of predicted and experimentally determined properties, such as high boiling points, low solubilities in the aqueous phase, good phase stability, biocompatibility, and good predicted partition coefficients for benzene, toluene and p-xylene. An industrial grade of oleyl alcohol was ultimately selected for use in the two-phase partitioning bioreactor. In order to examine the behavior of the system, a single-component fermentation of toluene was conducted with Pseudomonas sp. ATCC 55595. A 0.5-l sample of Adol 85 NF was loaded with 10.4 g toluene, which partitioned into the cell containing 1 l aqueous medium at a concentration of approximately 50 mg/l. In consuming the toluene to completion, the organisms were able to achieve a volumetric degradation rate of 0.115 g l−1 h−1. This system is self-regulating with respect to toluene delivery to the aqueous phase, and requires only feedback control of temperature and pH. Received: 16 November 1998 / Received revision: 28 March 1999 / Accepted: 9 April 1999  相似文献   

5.
Hairy roots of Astragalus membranaceus were grown in bioreactors up to 30 l for 20 d. Cultures from a 30 l airlift bioreactor gave 11.5 g l dry wt with 1.4 mg g–1 astragaloside IV, similar to cultures from 250 ml and 1 l flasks, but greater than yields from a 10 l bioreactor (dry wt 9.4 g l–1, astragaloside IV 0.9 mg g–1). Polysaccharide yields were similar amongst the different bioreactors (range 25–32 mg g–1). The active constituent content of the cells approached that of plant extracts, indicating that large scale hairy root cultures of A. membranaceus has the potential to provide an alternative to plant crops without compromising yield or pharmacological potential.  相似文献   

6.
Development of a novel bioreactor system for treatment of gaseous benzene   总被引:1,自引:0,他引:1  
A novel, continuous bioreactor system combining a bubble column (absorption section) and a two-phase bioreactor (degradation section) has been designed to treat a gas stream containing benzene. The bubble column contained hexadecane as an absorbent for benzene, and was systemically chosen considering physical, biological, environmental, operational, and economic factors. This solvent has infinite solubility for benzene and very low volatility. After absorbing benzene in the bubble column, the hexadecane served as the organic phase of the two-phase partitioning bioreactor, transferring benzene into the aqueous phase where it was degraded by Alcaligenes xylosoxidans Y234. The hexadecane was then continuously recirculated back to the absorber section for the removal of additional benzene. All mass transfer and biodegradation characteristics in this system were investigated prior to operation of the integrated unit, and these included: the mass transfer rate of benzene in the absorption column; the mass transfer rate of benzene from the organic phase into the aqueous phase in the two-phase bioreactor; the stripping rate of benzene out of the two-phase bioreactor, etc. All of these parameters were incorporated into model equations, which were used to investigate the effects of operating conditions on the performance of the system. Finally, two experiments were conducted to show the feasibility of this system. Based on an aqueous bioreactor volume of 1 L, when the inlet gas flow and gaseous benzene concentration were 120 L/h and 4.2 mg/L, respectively, the benzene removal efficiency was 75% at steady state. This process is believed to be very practical for the treatment of high concentrations of gaseous pollutants, and represents an alternative to the use of biofilters.  相似文献   

7.
A partitioning bioreactor, consisting of an aqueous phase containing Sphingomonas aromaticivorans and an immiscible organic phase (dodecane), loaded with naphthalene and phenanthrene, was operated at two scales, 5 l and 150 l. Complete degradation of 15 g and 300 g, respectively, of these polyaromatic hydrocarbon (PAH) mixtures was achieved in 21 h in both cases resulting in a volumetric PAH degradation rate of 238 mg l–1 h–1 based on reactor aqueous volumes.  相似文献   

8.
The biological treatment of waste-waters containing 1,2-dichloroethane (DCE) in conventional bioreactors results in air-stripping of DCE. In the present work, a novel bioreactor system intended to overcome this problem has been developed for the treatment of a synthetically concocted DCE-containing waste-water (1000 mg DCE l–1). The operation of a conventional air-lift bioreactor at a waste-water flow rate of 0.24 l h–1 led to 33% of the DCE supplied to the reactor being lost to the exit gas stream. The use of the novel enclosed system, operated with a recycling O2 sparge instead of air, resulted in negligible air-stripping at the same waste-water flow rate. A control system was implemented to add O2 as required to maintain the pressure of the recycle gas stream, and a scrubber removed the CO2 produced. Over 99% of DCE supplied was biodegraded during operation of this system, and virtually all carbon entering the system was evolved as CO2. Correspondence to: A. G. Livingston Correspondence to: A. G. Livingston  相似文献   

9.
A new system to produce lignin peroxidase (LiP) continuously by Phanerochaete chrysosporium is described. A fixed-bed bioreactor with a pulsing device was used as the optimal bioreactor configuration. Addition of veratryl alcohol (1 mM), tryptophan (1 mM), no Mn2+ addition, low glucose addition rate (60–70 mg l–1 h) and an atmosphere of O2 gave maximum LiP activities of 700 U l–1, which are higher than those previously reported.  相似文献   

10.
Undaria pinnatifida gametophytes were grown in 2.5 l bubble column and airlift reactor at 25 °C and light intensity of 40 mol m–2 s–1 for 6 days. With aeration at 1 l min–1, the airlift reactor yielded higher growth rate (0.12 mg DW ml–1 d–1) than a bubble column (0.08 mg DW ml–1 d–1). The advantages were related to the more homogeneous fluid dynamic characteristics of the airlift reactor.  相似文献   

11.
Zhang X  Mo H  Zhang J  Li Z 《Biotechnology letters》2003,25(5):417-420
A novel design of a solid-state bioreactor, operated with periodic pressure oscillation coupled with forced aeration through the medium, gave efficient control of temperature. The evaluation of the bioreactor assembly with respect to temperature and cellulase production by Penicillium decumbens JUA10 showed that, at 4 atm and the bed depth of 6 cm, the maximal temperature variation in the reactor was +1.5 °C at a set value of 30 °C compared with +6.8 °C in a static tray system. The highest cellulase and -glucosidase activities were 15 IU g–1 and 51 IU g–1 substrate dry matter at 96 h, respectively, while only 10 IU g–1 and 24 IU g–1 were obtained in the static tray culture system.  相似文献   

12.
Feeding sucrose at 20 g l–1 on day 16 gave maximum paclitaxel production at 10 mg l–1 when Taxus chinensis in 5 l bioreactors. Paclitaxel accumulation was doubled by the cultivation of cells initially with dissolved O2 tension at 60% for 20 days followed by being at 20% for another 12 days in the bioreactor. Combination of these two strategies gave maximum paclitaxel production of 19 mg l–1 after 32 days.  相似文献   

13.
Continuous ethanol fermentation by immobilized whole cells ofZymomonas mobilis was investigated in an expanded bed bioreactor and in a continuous stirred tank reactor at glucose concentrations of 100, 150 and 200 g L–1. The effect of different dilution rates on ethanol production by immobilized whole cells ofZymomonas mobilis was studied in both reactors. The maximum ethanol productivity attained was 21 g L–1 h–1 at a dilution rate of 0.36 h–1 with 150 g glucose L–1 in the continuous expanded bed bioreactor. The conversion of glucose to ethanol was independent of the glucose concentration in both reactors.  相似文献   

14.
Co-metabolic degradation of trichloroethylene (TCE) by Pseudomonas putida F1 was investigated in a novel bioreactor with a fibrous bed. A pseudo-first-order rate constant for TCE degradation was 1.4 h–1 for 2.4 to 100 mg TCE l–1. Competitive inhibition of toluene on TCE removal could be prevented in this bioreactor. 90% TCE was removed over 4 h when 95 mg toluene l–1 was presented simultaneously.  相似文献   

15.
This is the first demonstration of process scale-up of a membrane gradostat reactor for continuous enzyme production using Phanerochaete chrysosporium ME446. The fungus was immobilised by reverse filtration on to externally unskinned, ultrafiltration capillary membranes and then nutrient gradients were induced across the biofilm. A 10-fold scale-up from a single capillary bioreactor to a 2.4 l multi-capillary unit resulted in a 7-fold increase in enzyme productivity with a peak at 209 U l–1 d–1. Subsequent scale effects on the spore distribution, continuous manganese peroxidase production profile and biofilm development are discussed.  相似文献   

16.
A two-phase aqueous/organic partitioning bioreactor scheme was used to degrade mixtures of toluene and benzene, and toluene and p-xylene, using simultaneous and sequential feeding strategies. The aqueous phase of the partitioning bioreactor contained Pseudomonas sp. ATCC 55595, an organism able to degrade benzene, toluene and p-xylene simultaneously. An industrial grade of oleyl alcohol served as the organic phase. In each experiment, the organic phase of the bioreactor was loaded with 10.15 g toluene, and either 2.0 g benzene or 2.1 g p-xylene. The resulting aqueous phase concentrations were 50 mg/l, 25 mg/l and 8 mg/l toluene, benzene and p-xylene respectively. The simultaneous fermentation of benzene and toluene consumed these compounds at volumetric rates of 0.024 g l−1 h−1 and 0.067 g l−1 h−1, respectively. The simultaneous fermentation of toluene and p-xylene consumed these xenobiotics at volumetric rates of 0.066 g l−1 h−1 and 0.018 g l−1 h−1, respectively. A sequential feeding strategy was employed in which toluene was added initially, but the benzene or p-xylene aliquot was added only after the cells had consumed half of the initial toluene concentration. This strategy was shown to improve overall degradation rates, and to reduce the stress on the microorganisms. In the sequential fermentation of benzene and toluene, the volumetric degradation rates were 0.056 g l−1 h−1 and 0.079 g l−1 h−1, respectively. In the toluene/p-xylene sequential fermentation, the initial toluene load was consumed before the p-xylene aliquot was consumed. After 12 h in which no p-xylene degradation was observed, a 4.0-g toluene aliquot was added, and p-xylene degradation resumed. Excluding that 12-h period, the microbes consumed toluene and p-xylene at volumetric rates of 0.074 g l−1 h−1 and 0.025 g l−1 h−1, respectively. Oxygen limitation occurred in all fermentations during the rapid growth phase. Received: 16 November 1998 / Received revision: 29 March 1999 / Accepted: 9 April 1999  相似文献   

17.
M. M. Babiker 《Hydrobiologia》1984,110(1):351-363
The respiratory behaviour and partitioning of O2 uptake between air and water were investigated in Polypterus genegalus using continuous-flow and two-phase respirometers and lung gas replacement techniques P. senegalus rarely resorts to aerial respiration under normal conditions. Partitioning of O2 consumption depends on the activity and age of fish and the availability of aquatic oxygen. Immature fish (12–22 g) cannot utilize aerial O2 but older fish exhibit age-dependent reliance on aerial respiration in hypoxic and hypercarbic waters. Pulmonary respiration accounts for 50% of the total requirement at aquatic O2 concentrations of about 3.5 mg · l–1 (or CO2 of about 5%) and fish rely exclusively on aerial respiration at O2 concentrations of less than 2.5 mg · l–1. Branchial respiration is initially stimulated by hypercarbia (CO2: 0.5–0.8%) but increased hypercarbia (CO2 – 1%) greatly depresses (by over 90%) brancial respiration and initiates (CO2: 0.5%) and sustains pulmonary respiration.  相似文献   

18.
High cell density of Panax notoginseng in a 17 l airlift bioreactor was achieved in batch cultivation using a modified MS medium. The dry cell weight, ginseng saponin and polysaccharide reached 24, 1.7 and 2.8 g l–1, respectively, after 15 d. A strategy of sucrose feeding based on changes in the specific O2 uptake rate was applied to the cell cultures, which increased these respective yields to 30, 2.3 and 3.2 g l–1.  相似文献   

19.
Addition of 40 g NaCl l–1 to a chemically defined medium containing 140 g glucose l–1 in shake-flask culture improved glycerol production by Candida krusei from 16.5 g l–1 to 47.7 g l–1. With 40 g NaCl l–1 at a dilution rate of 0.065 h–1, glycerol concentration, glycerol yield (based on glucose consumed), and productivity in a four-stage cascade bioreactor were higher by 240%, 27% and 28%, respectively, than in a single-stage continuous culture system.  相似文献   

20.
A two-phase bioreactor consisting of hexadecane dispersed in an aqueous, cell-containing medium (organic fraction = 0.33) was used to trap toluene vapours from an air stream. The affinity for toluene by the solvent resulted in high efficiency of removal and transfer to the aqueous phase based on equilibrium transfer. The system was readily able to handle a loading capacity of 748 mg l–1 h–1 at a toluene degradation efficiency of greater than 98%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号