首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Enterobacter asburiae PSI3 solubilizes mineral phosphates in the presence of glucose by the secretion of gluconic acid generated by the action of a periplasmic pyrroloquinoline quinone dependent glucose dehydrogenase. In order to achieve mineral phosphate solubilization phenotype in the presence of sucrose, plasmids pCNK4 and pCNK5 containing genes encoding the invertase enzyme of Zymomonas mobilis (invB) and of Saccharomyces cerevisiae (suc2) under constitutive promoters were constructed with malE signal sequence (in case of invB alone as the suc2 is secreted natively). When introduced into E. asburiae PSI3, E. a. (pCNK4) and E. a. (pCNK5) transformants secreted 21.65 ± 0.94 and 22 ± 1.3 mM gluconic acid, respectively, in the presence of 75 mM sucrose and they also solubilized 180 ± 4.3 and 438 ± 7.3 µM P from the rock phosphate. In the presence of a mixture of 50 mM sucrose and 25 mM glucose, E. a. (pCNK5) secreted 34 ± 2.3 mM gluconic acid and released 479 ± 8.1 µM P. Moreover, in the presence of a mixture of eight sugars (10 mM each) in the medium, E. a. (pCNK5) released 414 ± 5.3 µM P in the buffered medium. Thus, this study demonstrates incorporation of periplasmic invertase imparted P solubilization ability to E. asburiae PSI3 in the presence of sucrose and mixture of sugars.  相似文献   

2.
Mineral phosphate solubilization by bacteria is mediated through secretion of organic acids, among which citrate is one of the most effective. To overproduce citrate in bacterial systems, an artificial citrate operon comprising of genes encoding NADH-insensitive citrate synthase of E. coli and Salmonella typhimurium sodium-dependent citrate transporter was constructed. In order to improve its mineral phosphate solubilizing (MPS) ability, the citrate operon was incorporated into E. hormaechei DHRSS. The artificial citrate operon transformant secreted 7.2 mM citric acid whereas in the native strain, it was undetectable. The transformant released 0.82 mM phosphate in flask studies in buffered medium containing rock phosphate as sole P source. In fermenter studies, similar phenotype was observed under aerobic conditions. However, under microaerobic conditions, no citrate was detected and P release was not observed. Therefore, an artificial citrate gene cluster containing Vitreoscilla hemoglobin (vgb) gene under its native promoter, along with artificial citrate operon under constitutive tac promoter, was constructed and transformed into E. hormaechei DHRSS. This transformant secreted 9 mM citric acid under microaerobic conditions and released 1.0 mM P. Thus, incorporation of citrate operon along with vgb gene improves MPS ability of E. hormaechei DHRSS under buffered, microaerobic conditions mimicking rhizospheric environment.  相似文献   

3.

Background and aims

Herbaspirillum seropedicae (Hs) Z67 a diazotrophic endophyte was genetically engineered for secretion of 2-keto-D-gluconic acid by heterologous expression of genes for pqq synthesis and gluconate dehydrogenase to study its beneficial effect on plants.

Methods

Two plasmids, pJNK5, containing a 5.1 Kb pqq gene cluster of Acinetobacter calcoaceticus and pJNK6, carrying in addition the Pseudomonas putida KT2440 gluconate dehydrogenase (gad) operon were constructed in pUCPM18Gmr under Plac promoter. H. seropedicae Z67 transformants were monitored for P and K solubilization, cadmium (Cd) tolerance and rice growth promotion.

Results

Hs (pJNK5) secreted 23.5 mM gluconic acid and Hs (pJNK6) secreted 3.79 mM gluconic acid and 15.8 mM 2-ketogluconic acid respectively. Under aerobic conditions, Hs (pJNK5) and Hs (pJNK6) solubilized 239.7 μM and 457.7 μM P on HEPES rock phosphate and, 76.7 μM and 222.7 μM K on HRPF (feldspar), respectively, in minimal medium containing 50 mM glucose. Under N free minimal medium, similar effects of P and K solubilization were obtained. Hs (pJNK5) and Hs (pJNK6) inoculation increased the biomass, N, P, K content of rice plants (Gujarat – 17). These plants also accumulated 0.73 ng/g PQQ, and had improved growth and tolerance to CdCl2.

Conclusions

Incorporation of pqq and gad gene clusters in H. seropedicae Z67 imparted additional plant growth promoting traits of P and K solubilization and ability to alleviate Cd toxicity to the host plant.
  相似文献   

4.
Citric acid is a strong acid with good cation chelating ability and can be very efficient in solubilizing mineral phosphates. Only a few phosphate solubilizing bacteria and fungi are known to secrete citric acids. In this work, we incorporated artificial citrate operon containing NADH insensitive citrate synthase (gltA1) and citrate transporter (citC) genes into the genome of six-plant growth promoting P. fluorescens strains viz., PfO-1, Pf5, CHAO1, P109, ATCC13525 and Fp315 using MiniTn7 transposon gene delivery system. Comprehensive biochemical characterization of the genomic integrants and their comparison with plasmid transformants of the same operon in M9 minimal medium reveals the highest amount of ∼7.6±0.41 mM citric and 29.95±2.8 mM gluconic acid secretion along with ∼43.2±3.24 mM intracellular citrate without affecting the growth of these P. fluorescens strains. All genomic integrants showed enhanced citric and gluconic acid secretion on Tris-Cl rock phosphate (TRP) buffered medium, which was sufficient to release 200–1000 µM Pi in TRP medium. This study demonstrates that MPS ability could be achieved in natural fluorescent pseudomonads by incorporation of artificial citrate operon not only as plasmid but also by genomic integration.  相似文献   

5.
Oxalate secretion was achieved in Pseudomonas fluorescens ATCC 13525 by incorporation of genes encoding Aspergillus niger oxaloacetate acetyl hydrolase (oah), Fomitopsis plaustris oxalate transporter (FpOAR) and Vitreoscilla hemoglobin (vgb) in various combinations. Pf (pKCN2) transformant containing oah alone accumulated 19 mM oxalic acid intracellularly but secreted 1.2 mM. However, in the presence of an artificial oxalate operon containing oah and FpOAR genes in plasmid pKCN4, Pf (pKCN4) secreted 13.6 mM oxalate in the medium while 3.6 mM remained inside. This transformant solubilized 509 μM of phosphorus from rock phosphate in alfisol which is 4.5 fold higher than the Pf (pKCN2) transformant. Genomic integrants of P. fluorescens (Pf int1 and Pf int2) containing artificial oxalate operon (plac-FpOAR-oah) and artificial oxalate gene cluster (plac-FpOAR-oah, vgb, egfp) secreted 4.8 mM and 5.4 mM oxalic acid, released 329 μM and 351 μM P, respectively, in alfisol. The integrants showed enhanced root colonization, improved growth and increased P content of Vigna radiata plants. This study demonstrates oxalic acid secretion in P. fluorescens by incorporation of an artificial operon constituted of genes for oxalate synthesis and transport, which imparts mineral phosphate solubilizing ability to the organism leading to enhanced growth and P content of V. radiata in alfisol soil.  相似文献   

6.
Summary Penicillium variabile P16 immobilized on polyurethane sponge produced gluconic acid in presence of rock phosphate, the latter being simultaneously solubilized during five repeated batches. A total production of 42, 60, and 90 g gluconic acid/l was obtained for 3, 7, and 14 g rock phosphate/l, respectively. Accordingly, soluble phosphorus concentration increased with gluconic acid production, reaching a maximum of 350 mg/l at the 3d batch in medium supplemented with 14 g rock phosphate/l.  相似文献   

7.
The rhizospheric bacterium JW-SD2 was identified as Pseudomonas frederiksbergensis based on phenotypic features, the Biolog Identification System and 16S rRNA sequence analysis. The phosphate-solubilizing activity, acidification in culture media, growth rate and organic acid secretion of JW-SD2 were investigated during 192 h of cultivation. The phosphate solubilized by JW-SD2 reached 7.75 mM. The decrease of pH and increase of titratable acidity were closely correlated (Pearson’s r?=??0.953 and 0.969, respectively) with the phosphate-solubilizing activity. High concentrations of gluconic, 2-ketogluconic, pyruvic, maleic and malic acids were detected before 96 h of culture, when the strain displayed a high level of phosphate-solubilizing activity, indicating that these organic acids were efficient components in phosphate solubilization. However, acetic acid did not affect phosphate solubilization as shown by a remarkable increase at 144 h of culture when the phosphate-solubilizing activity decreased. The phosphate-solubilizing ability of JW-SD2 was significantly (P?<?0.01) affected by environmental factors. Over a broad ranges of temperature (20?35 °C), pH (4?9), salinity (0?3.0 %), and volume of medium (1/5?3/5 of flask volume), the phosphate solubilized by JW-SD2 remained above 4.00 mM, demonstrating good potential in adapting to a changing environment. The inoculation experiments indicated that JW-SD2 could significantly (P?<?0.05) promote growth of poplar (Populus euramericana cv. NL-895) in both sterilized and non-sterilized soils. The effects of plant growth promotion were greater in non-sterilized than in sterilized soil. During the 150 days of the trial, the effects of plant growth promotion by JW-SD2 first increased then decreased over time, suggesting that, in field applications, the periodic supplementation of the strain into the rhizosphere should be considered.  相似文献   

8.

Background and aims

Herbaspirillum seropedicae Z67, nitrogen fixing endophyte, significantly promotes the growth of cereals. Organic acid secreting nitrogen fixing rhizobacteria have better plant growth promotion abilities due to mineral phosphate solubilization.

Method

Plasmids pAB7, pJNK3 and pJNK4 containing Escherichia coli cs (gltA), NADH insensitive cs (gltA1), and citrate operon consisting of gltA1 gene along with Salmonella typhimurium Na+ dependent citrate transporter (citC) gene under constitutive lac promoter were constructed in broad host range plasmid pUCPM18-Kmr. The plasmid transformants of H. seropedicae Z67 were obtained by electroporation.

Results

Hs (pAB7) and Hs (pJNK3) had increased CS activity but citric acid secretion was not significant. Hs (pJNK3) secreted 45 mM acetic acid while Hs (pJNK4) secreted 2.7 mM citric and 51 mM acetic acids. Hs (pJNK3) and Hs (pJNK4) released 80 μM and 110 μM amount of P from rock phosphate, respectively, in buffered medium under both aerobic and micro aerobic conditions. These transformants showed better plant growth promoting factors. Upon inoculation to rice plants (Gujarat – 17), increase of Fresh weight, Dry weight N, P and K content was observed.

Conclusion

Thus the study demonstrates that artificial citrate operon in H. seropedicae Z67 enhances phosphate solubilization and plant growth promotion abilities.  相似文献   

9.
A study for screening and selection of mutants of Pseudomonas corrugata (NRRL B-30409) based on their phosphate solubilization ability, production of organic acids, and subsequent effect on plant growth at lower temperatures under in vitro and in situ conditions was conducted. Of a total 115 mutants tested, two (PCM-56 and PCM-82) were selected based on their greater phosphate solubilization ability at 21°C in Pikovskaya’s broth. The two mutants were found more efficient than wild-type strain for phosphate solubilization activity across a range of temperature from psychotropic (4°C) to mesophilic (28°C) in aerated GPS medium containing insoluble rock phosphate. High-performance liquid chromatography analysis showed that phosphate solubilization potential of wild-type and mutant strains were mediated by production of organic acids in the culture medium. The two efficient mutants and the wild strain oxidized glucose to gluconic acid and sequentially to 2-ketogluconic acid. Under in vitro conditions at 10°C, the mutants exhibited increased plant growth as compared to wild type, indicating their functionality at lower temperatures. In greenhouse trials using sterilized soil amended with either soluble or rock phosphate, inoculation with mutants showed greater positive effect on all of the growth parameters and soil enzymatic activities. To the best of our knowledge, this is the first report on the development of phosphate solubilizing mutants of psychotropic wild strain of P. corrugata, native to the Indian Himalayan region.  相似文献   

10.
A novel phosphate solubilizing bacterium (PSB) was isolated from the rhizosphere of sugarcane and is capable of utilizing sucrose and rock phosphate as the sole carbon and phosphate source, respectively. This PSB exhibited mineral phosphate solubilizing (MPS) phenotype on sugars such as sucrose and fructose, which are not substrates for enzyme glucose dehydrogenase (GDH), along with GDH substrates, viz., glucose, xylose, and maltose, as carbon sources. PCR amplification of the rRNA gene and sequence analysis identified this bacterium as Citrobacter sp. DHRSS. On sucrose and fructose Citrobacter sp. DHRSS liberated 170 and 100 μM free phosphate from rock phosphate and secreted 49 mM (2.94 g/L) and 35 mM (2.1 g/L) acetic acid, respectively. Growth of Citrobacter sp. DHRSS on sucrose is mediated by an intracellular inducible neutral invertase. Interestingly, in the presence of GDH substrates like glucose and maltose, Citrobacter sp. DHRSS produced approximately 20 mM (4.36 g/L) gluconic acid and phosphate released was 520 and 570 μM, respectively. Citrobacter sp. DHRSS GDH activity was found when grown on GDH and non-GDH substrates, indicating that it is constitutive and could act on a wide range of aldose sugars. This study demonstrates the role of different organic acids in mineral phosphate solubilization by rhizobacteria depending on the nature of the available carbon source.  相似文献   

11.
The shuttle vector, pUL6erm, was constructed by using a replicon from pL2, a multiple cloning site, colE1 ori, the ori of Gram-negative bacteria from vector pUC19, and the erythromycin resistance gene from pVA838 as a selection marker. pUL6erm could be transformed easily and maintained stably in Lactococcus lactis, Streptococcus thermophilus, Lactobacillus plantarum and Lactobacillus casei. Transformation assays of pUL6erm indicated that it had a narrow host range. β-Glucuronidase was induced in the presence of 0.3 M NaCl and 50 mM glutamate and expressed at 2.4 U mg?1 with the expression vector (pUL6erm–gadR–GUS) constructed based on pUL6erm carrying β-glucuronidase gene wuth a chloride-inducible (gadR) expression cassette using Pgad as promoter. Therefore, pUL6erm and pUL6erm–gadR–GUS might be a safe and useful genetic tool for the improvement of lactic acid bacteria.  相似文献   

12.
Enterobacter intermedium, isolated from grass rhizosphere, exhibited a strong ability to solubilize insoluble phosphate. This bacterium oxidized glucose to gluconic acid and sequentially to 2-ketogluconic acid (2-KGA), which was identified using HPLC and GC-MS. The ability of E. intermedium to solubilize phosphate and produce 2-KGA produce in broth medium containing different components was monitored with air and without air supply. With an air supply, the production of 2-KGA markedly increased to about 110 g/l at day 10 in media containing 0.2 M gluconic acid, while it was about 65 g/l without gluconic acid addition. With an air supply, the concentration of soluble phosphate significantly decreased to 200-250 mg/l in media containing 1% CaCO3, whereas it was about 1000 mg/l without CaCO3 addition. Without an air supply, the concentration of 2-KGA and phosphate were negligible throughout the culture period.  相似文献   

13.
The effect of culture medium nutrients on growth and alkaloid production by plant cell cultures of Nothapodytes nimmoniana (J. Grah.) Mabberley (Icacinaceae) was studied with a view to increasing the production of the alkaloid camptothecin, a key therapeutic drug used for its anticancer properties. Amongst the various sugars tested with Murashige and Skoog (MS) medium, such as glucose, fructose, maltose, and sucrose, maximum accumulation of camptothecin was observed with sucrose. High nitrate in the media supports the biomass, while high ammonium enhances the camptothecin content. Selective feeding of 60 mM total nitrogen with a NH4 +/NO3 ? balance of 5/1 on day 15 of the culture cycle results in a 2.4-fold enhancement in the camptothecin content over the control culture (28.5 μg/g DW). Furthermore, the sucrose feeding strategy greatly stimulated cell biomass and camptothecin production. A modified MS medium was developed in the present study, which contained 0.5 mM phosphate, a nitrogen source feeding ratio of 50/10 mM NH4 +/NO3 ? and 3 % sucrose with additional 2 % sucrose feeding (added on day 12 of the cell culture cycle) with 10.74 μM naphthaleneacetic acid and 0.93 μM kinetin. Finally, the selective medium has 1.7- and 2.3-fold higher intracellular and extracellular camptothecin content over the control culture (29.2 and 8.2 μg/g DW), respectively.  相似文献   

14.
Bacillus methylotrophicus CKAM obtained from root endosphere of healthy apple trees was selected on the basis of higher P-solubilisation (687 mg/L), nitrogenase activity (237.6 ηmole C2H4 h?1mg?1 protein), IAA (34 µg/mL), siderophore unit (96.4 %) and antifungal activity against F. oxysporum (88.22 %), Phytophthora sp. (70.00 %), D. necatrix (61.73 %), S. rolfsii (44.54 %) and P. aphanidermatum (62.56 %). We investigated the ability of isolate CKAM to solubilise insoluble P via two possible mechanisms: proton excretion by ammonium assimilation and organic acid production. There were no clear differences in pH and P-solubilisation between glucose–ammonium and glucose–nitrate media. P-solubilisation was significantly promoted with glucose compared with fructose. HPLC study showed that isolate CKAM produced mainly gluconic and oxalic acids with small amounts of 2-ketogluconic, formic acids. During the culture, the pH was reduced with increase in gluconic acid concentration and was inversely correlated with soluble P concentration. Analysis of antifungal compounds involved in their antagonistic activity showed that isolate CKAM produced chitinase, proteases, pectinase and the antibiotic lipopeptides surfactin, fengycin and iturin A. It was notable that isolate CKAM exhibited highest protection against S. rolfsii (58 %) followed by F. oxysporum (54.5 %), D. necatrix (52.7 %), P. aphanidermatum (36.3 %) and Phytophthora sp. (21.8 %) in biocontrol trials using the pathosystem tomato. Remarkable increase was observed in seed germination (27.07 %), shoot length (42.33 %) root length (52.6 %), shoot dry weight (62.01 %) and root dry weight (45.7 %) of tomato under net house condition. Isolate CKAM possessed traits related to plant growth promotion, therefore, could be a potential candidate for the development of biofertiliser or biocontrol agent.  相似文献   

15.
The effect of sulphate nutrition on arsenic (As) concentration, photosynthetic and chlorophyll fluorescence parameters of rice was investigated in hydroponically grown rice seedlings (Oryza sativa L.), using three sulphate levels (1.8 μM, 0.7 mM, or 1.5 mM). The results showed that sulphate deficiency decreased As accumulation in root, but increased the translocation of As from root to shoot. Sulphate deficiency reduced maximum quantum yield (Fv/Fm), minimum fluorescence and electron transport rate (ETR) of a dark-adapted leaf. Compared with low sulphate treatments (1.8 μM), significant increases were observed in the parameters of rapid light curves, rETRmax and I k of photosystem I (PSI) and photosystem II (PSII) of rice grown in the high sulphate treatments (1.5 mM) regardless of As additions. Therefore, an adequately high sulphate supply may result in less As translocation from root to shoot, and protecting the reaction pathways of PSI and PSII of rice seedlings grown in higher As-contaminated medium.  相似文献   

16.
Chemical weathering of fluorine-bearing minerals is widely accepted as the main mechanism for the release of fluorine (F) to groundwater. Here, we propose a potential mechanism of F release via microbial dissolution of fluorapatite (Ca5(PO4)3F), which has been neglected previously. Batch culture experiments were conducted at 30°C with a phosphate-solubilizing bacteria strain, Pseudomonas fluorescens P35, and rock phosphates as the sole source of phosphate for microbial growth in parallel with abiotic controls. Rock phosphates consisted of 55–91% of fluorapatite and 5–10% of dolomite before microbial dissolution as indicated by X-ray diffraction (XRD). Mineral composition and morphology changed after microbial dissolution characterized by the disappearance of dolomite and the development of etched cavities on rock phosphate surfaces. The pH of media used was approximately 7.4 at the beginning and increased gradually to 7.7 in abiotic controls; with the inoculum, the pH decreased to acidic values of 3.7–3.8 after 27 h. Phosphate, calcium, and fluoride were released from the rock phosphate to the acidified medium. At 42 h, the concentration of F reached 8.1–10.3 mg L?1. The elevated F concentration was two times higher than the F levels in groundwater in regions diagnosed with fluorosis, and was toxic to the bacteria, as demonstrated by a precipitous decrease in live cells. Geochemical modeling demonstrated that the oxidation of glucose (the carbon source for microbial growth in the medium) to gluconic acid could decrease the pH to 3.7–3.8 and result in the dissolution of fluorapatite and dolomite. Dolomite and fluorapatite remained unsaturated, while concentrations of dissolved phosphorus (P), calcium (Ca), and F increased throughout the time course Fluorite reached saturation [saturation index (SI) 0.22–0.42] after 42 h in rock phosphate–amended biotic systems. However, fluorite was not detected in XRD patterns of the final residue from microcosms. Given that phosphate-solubilizing bacteria are ubiquitous in soil and groundwater ecosystems, they could play an important role in fluorapatite dissolution and the release of F to groundwater.  相似文献   

17.
The commercialization of Stevia rebaudiana Bertoni (Asteraceae) extracts as a natural sweetener is driving interest in the use of in vitro propagation systems as an alternative source of steviol glycosides. Out of this suite of chemicals, stevioside is the most abundant but rebaudioside A is the sweetest. We established an in vitro propagation method from germinated seedlings on a Murashige and Skoog (MS) (Physiol Plant 15:473–497, 1962) medium with aims to study the effects of nitrogen and phosphate on the growth and metabolite profiles of S. rebaudiana plants. Generally, NH4NO3 is supplied at a concentration of 20.61 mM in MS medium and together with 18.79 mM KNO3, provide nitrogen to in vitro growing plants. In this study, we used a range of 0.3–72.1 mM NH4NO3 and 9.4–65.8 mM KNO3 and generated six different media with altered nitrogen. Similarly, six different concentrations of KH2PO4, ranging from 0.6 to 4.4 mM were tested for the phosphate treatments and the control medium had 1.25 mM KH2PO4. By reducing the nitrogen and phosphate levels to half, respectively, this led to the tallest plants. Increasing concentrations of nitrogen in the medium significantly lowered the amount of rebaudioside A as plants on the control medium accumulated 270 mg g?1 rebaudioside A compared to those that were on a medium with 3.5 times the nitrogen supply (30 mg g?1 rebaudiose A). Steviol increased with increasing nitrogen available to the microplants. The highest levels of stevioside (740 mg g?1) quantified was linked to microplants on a medium with half the phosphate concentration. To further assess changes to the metabolomic profiles of treated microplants, LC–MS/MS was used in combination with multivariate statistical analyses. Two distinct clusters were revealed after principal component analysis. Steviol hydrate, stevioside hydrate and rebaudioside A contributed significantly to the separation of phosphate-treated plants from those with variable nitrogen concentrations. Chlorogenic acid and its derivatives were linked to changing phosphate concentrations. The clustering suggests different molecular mechanisms at play that are affected by nitrogen and phosphate supply which serve to alter secondary metabolic flux, resulting in different chemical profiles.  相似文献   

18.
Glucose dehydrogenase (GDH) of Gram-negative bacteria is a membrane bound enzyme catalyzing the oxidation of glucose to gluconic acid and is involved in the solubilization of insoluble mineral phosphate complexes. A 2.4 kb glucose dehydrogenase gene (gcd) of Enterobacter asburiae sharing extensive homology to the gcd of other enterobacteriaceae members was cloned in a PCR-based directional genome walking approach and the expression confirmed in Escherichia coli YU423 on both MacConkey glucose agar and hydroxyapatite (HAP) containing media. Mineral phosphate solubilization by the cloned E. asburiae gcd was confirmed by the release of significant amount of phosphate in HAP containing liquid medium. gcd was over expressed in E. coli AT15 (gcd::cm) and the purified recombinant protein had a high affinity to glucose, and oxidized galactose and maltose with lower affinities. The enzyme was highly sensitive to heat and EDTA, and belonged to Type I, similar to GDH of E. coli.  相似文献   

19.
The effect of acrylate on the growth of Escherichia coli was determined under aerobic and anaerobic conditions in glucose-defined medium. Growth occurred with up to 35 mM acrylate under aerobic conditions but ceased at 5 mM acrylate under anaerobic conditions. This differential sensitivity can be attributed to inhibition of pyruvate formate lyase and/or pflB gene repression, as this enzyme is necessary for anaerobic growth of E. coli. The effect of acrylate on end-product distribution was also determined by growing E. coli first aerobically, then switching to anaerobic conditions. In the absence of acrylate, E. coli generated the typical distribution of mixed-acid products, with about 12 % of pyruvate being metabolically converted to lactate. In contrast, in the presence of 5 mM acrylate, E. coli converted 83 % of pyruvate to lactate, consistent with a reduction in pyruvate formate lyase activity.  相似文献   

20.
The aim of this study was to express the zwf gene of Synechococcus sp. PCC 7942 in zwf mutant Escherichia coli DF214 cells and to analyse glucose-6-phosphate dehydrogenase (G6PDH) activity. Initially, mutant cells were transformed with plasmid pNUT1 containing a Synechococcus sp. PCC 7942 zwf gene with a 1 kb upstream region that is expected to contain promoter elements. Transformant DF214 cells were not complemented by this fragment in a glucose minimal medium, nor did they exhibit statistically meaningful G6PDH activity. Therefore, the zwf gene was cloned in the lac operon to express the Zwf as a fusion protein; this yielded the construct pSG162. The pSG162 transformant E. coli DF214 cells were complemented in a glucose minimal medium, indicating that cyanobacterial Zwf protein fused with the part of LacZ′ polypeptide, enabling the cells to utilize glucose via the oxidative pentose phosphate pathway. Compared with wild-type E. coli cells, approximately ten times more G6PDH activity was measured in transformant cells. This indicated that the Synechococcus sp. PCC 7942 zwf gene was expressed under the control of the E. coli lac promoter as a fusion protein and the zwf product was converted into an active G6PDH form. Analyses was also carried out to determine whether dithiothreitol (DTT) was an in vitro reducing agent affected the enzyme activity, as was previously reported for this cyanobacterial strain. The results showed no variation in enzyme activity in the reduced assay conditions. Therefore, the zwf mutant E. coli strain DF214 was found to provide a rapid system for analysis of cyanobacterial G6PDH enzymes, but not for the redox state analysis of this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号