首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Saltatory propagation of Ca2+ waves by Ca2+ sparks.   总被引:4,自引:0,他引:4       下载免费PDF全文
Punctate releases of Ca2+, called Ca2+ sparks, originate at the regular array of t-tubules in cardiac myocytes and skeletal muscle. During Ca2+ overload sparks serve as sites for the initiation and propagation of Ca2+ waves in myocytes. Computer simulations of spark-mediated waves are performed with model release sites that reproduce the adaptive Ca2+ release observed for the ryanodine receptor. The speed of these waves is proportional to the diffusion constant of Ca2+, D, rather than D, as is true for reaction-diffusion equations in a continuous excitable medium. A simplified "fire-diffuse-fire" model that mimics the properties of Ca2+-induced Ca2+ release (CICR) from isolated sites is used to explain this saltatory mode of wave propagation. Saltatory and continuous wave propagation can be differentiated by the temperature and Ca2+ buffer dependence of wave speed.  相似文献   

2.
3.
Small-conductance Ca2+-activated K+ (SK) channels are widely expressed in neuronal tissues where they underlie post-spike hyperpolarizations, regulate spike-frequency adaptation, and shape synaptic responses. SK channels constitutively interact with calmodulin (CaM), which serves as Ca2+ sensor, and with protein kinase CK2 and protein phosphatase 2A, which modulate their Ca2+ gating. By recording coupled activities of Ca2+ and SK2 channels, we showed that SK2 channels can be inhibited by neurotransmitters independently of changes in the activity of the priming Ca2+ channels. This inhibition involvesSK2-associated CK2 and results from a 3-fold reduction in the Ca2+ sensitivity of channel gating. CK2phosphorylated SK2-bound CaM but not KCNQ2-bound CaM, thereby selectively regulating SK2 channels. We extended these observations to sensory neurons by showing that noradrenaline inhibits SK current and increases neuronal excitability in aCK2-dependent fashion. Hence, neurotransmitter-initiated signaling cascades can dynamically regulate Ca2+ sensitivity of SK channels and directly influence somatic excitability.  相似文献   

4.
5.
The study of Ca2+ sparks has led to extensive new information regarding the gating of the Ca2+ release channels underlying these events in skeletal, cardiac and smooth muscle cells, as well as the possible roles of these local Ca2+ release events in muscle function. Here we review basic procedures for studying Ca2+sparks in skeletal muscle, primarily from frog, as well as the basic results concerning the properties of these events, their pattern and frequency of occurrence during fiber depolarization and the mechanisms underlying their termination. Finally, we also consider the contribution of different ryanodine receptor (RyR) isoforms to Ca2+ sparks and the number of RyR Ca2+ release channels that may contribute to the generation of a Ca2+ spark. Over the decade since their discovery, Ca2+ sparks have provided a wealth of information concerning the function of Ca2+ release channels within their intracellular environment.  相似文献   

6.
Phospholamban (PLB) inhibits the sarcoplasmic reticulum (SR)Ca2+-ATPase, and this inhibition is relieved bycAMP-dependent protein kinase (PKA)-mediated phosphorylation. The roleof PLB in regulating Ca2+ release throughryanodine-sensitive Ca2+ release channels, measured asCa2+ sparks, was examined using smooth muscle cells ofcerebral arteries from PLB-deficient ("knockout") mice(PLB-KO). Ca2+ sparks were monitored opticallyusing the fluorescent Ca2+ indicator fluo 3 or electricallyby measuring transient large-conductance Ca2+-activatedK+ (BK) channel currents activated by Ca2+sparks. Basal Ca2+ spark and transient BK current frequencywere elevated in cerebral artery myocytes of PLB-KO mice. Forskolin, anactivator of adenylyl cyclase, increased the frequency ofCa2+ sparks and transient BK currents in cerebral arteriesfrom control mice. However, forskolin had little effect on thefrequency of Ca2+ sparks and transient BK currents fromPLB-KO cerebral arteries. Forskolin or PLB-KO increased SRCa2+ load, as measured by caffeine-induced Ca2+transients. This study provides the first evidence that PLB is criticalfor frequency modulation of Ca2+ sparks and associated BKcurrents by PKA in smooth muscle.

  相似文献   

7.
8.
During the cardiac action potential, Ca2+ entry through dyhidropyridine receptor L-type Ca2+ channels (DHPRs) activates ryanodine receptors (RyRs) Ca2+-release channels, resulting in massive Ca2+ mobilization from the sarcoplasmic reticulum (SR). This global Ca2+ release arises from spatiotemporal summation of many localized elementary Ca2+-release events, Ca2+ sparks. We tested whether DHPRs modulate Ca2+sparks in a Ca2+ entry-independent manner. Negative modulation by DHPR of RyRs via physical interactions is accepted in resting skeletal muscle but remains controversial in the heart. Ca2+ sparks were studied in cat cardiac myocytes permeabilized with saponin or internally perfused via a patch pipette. Bathing and pipette solutions contained low Ca2+ (100 nM). Under these conditions, Ca2+ sparks were detected with a stable frequency of 3–5 sparks·s–1·100 µm–1. The DHPR blockers nifedipine, nimodipine, FS-2, and calciseptine decreased spark frequency, whereas the DHPR agonists Bay-K8644 and FPL-64176 increased it. None of these agents altered the spatiotemporal characteristics of Ca2+ sparks. The DHPR modulators were also without effect on SR Ca2+ load (caffeine-induced Ca2+ transients) or sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) activity (Ca2+ loading rates of isolated SR microsomes) and did not change cardiac RyR channel gating (planar lipid bilayer experiments). In summary, DHPR modulators affected spark frequency in the absence of DHPR-mediated Ca2+ entry. This action could not be attributed to a direct action of DHPR modulators on SERCA or RyRs. Our results suggest that the activity of RyR Ca2+-release units in ventricular myocytes is modulated by Ca2+ entry-independent conformational changes in neighboring DHPRs. exitation-contraction coupling; ryanodine receptor; sarco(endo)plasmic reticulum Ca2+-ATPase; dihydropyridine receptor; sarcoplasmic reticulum  相似文献   

9.
Previous models of cardiac Ca2+ sparks have assumed that Ca2+ currents through the Ca2+ release units (CRUs) were approximately 1-2 pA, producing sparks with peak fluorescence ratio (F/F(0)) of approximately 2.0 and a full-width at half maximum (FWHM) of approximately 1 microm. Here, we present actual Ca2+ sparks with peak F/F(0) of >6 and a FWHM of approximately 2 microm, and a mathematical model of such sparks, the main feature of which is a much larger underlying Ca2+ current. Assuming infinite reaction rates and no endogenous buffers, we obtain a lower bound of approximately 11 pA needed to generate a Ca2+ spark with FWHM of 2 microm. Under realistic conditions, the CRU current must be approximately 20 pA to generate a 2- microm Ca2+)spark. For currents > or =5 pA, the computed spark amplitudes (F/F(0)) are large (approximately 6-12 depending on buffer model). We considered several factors that might produce sparks with FWHM approximately 2 microm without using large currents. Possible protein-dye interactions increased the FWHM slightly. Hypothetical Ca2+ "quarks" had little effect, as did blurring of sparks by the confocal microscope. A clusters of CRUs, each producing 10 pA simultaneously, can produce sparks with FWHM approximately 2 microm. We conclude that cardiac Ca2+ sparks are significantly larger in peak amplitude than previously thought, that such large Ca2+ sparks are consistent with the measured FWHM of approximately 2 microm, and that the underlying Ca2+ current is in the range of 10-20 pA.  相似文献   

10.
Using a combination of experimental and numerical approaches, we have tested two different approaches to calculating the sarcoplasmic reticulum (SR) Ca2+ release flux, which gives rise to cardiac muscle Ca2+ sparks. By using two-photon excited spot photolysis of DM-Nitrophen, known Ca2+ release flux time courses were generated to provide the first experimental validation of spark flux reconstruction algorithms. These artificial Ca2+ sparks show that it is possible to calculate the SR Ca2+ release waveform with reasonable accuracy, provided the flux equations reasonably reflect the properties of the experimental system. Within cardiac muscle cells, we show that Ca2+ flux reconstruction is complicated by the substantial dye binding to proteins, a factor that has not been adequately addressed in previous flux reconstruction algorithms. Furthermore, our numerical experiments suggest that the calculated time course of release flux inactivation based on conventional flux reconstruction algorithms is likely to be in error. We therefore developed novel algorithms based on an explicit dye binding scheme. When these algorithm were applied to evoked Ca2+ sparks in rat cardiac ventricular myocytes, the reconstructed Ca2+ release waveform peaked in ~5 ms and decayed with a halftime of approximately 5 ms. The peak flux magnitude was 7-12 pA, suggesting that sparks must arise from clusters of >15 ryanodine receptors.  相似文献   

11.
The cGMP-dependent protein kinase (PKG) is the main mediator of nitric oxide-induced relaxation of smooth muscle. Although this pathway is well established, the cellular action of PKG, nitric oxide, and cGMP is complex and not fully understood. A cross-talk between the cGMP-PKG and other pathways (e.g. cAMP-protein kinase A) seems to exist. We have explored cGMP- and cAMP-dependent relaxation of smooth muscle using PKG-deficient mice (cGKI-/-). In intact ileum strips of wild type mice (cGKI+/+), 8-Br-cGMP inhibited the sustained phase of carbachol contractions by approximately 80%. The initial peak was less inhibited (approximately 30%). This relaxation was associated with a reduction in intracellular [Ca2+] and decreased Ca2+ sensitivity. Contractions of cGKI-/- ileum were not influenced by 8-Br-cGMP. EC50 for 8-Br-cGMP for PKG was estimated to be 10 nm. PKG-independent relaxation by 8-Br-cGMP had an EC50 of 10 microm. Relaxation by cAMP (approximately 50% at 100 microm), Ca2+ sensitivity of force, and force potentiation by GTPgammaS were similar in cGKI+/+ and cGKI-/- tissues. The results show that PKG is the main target for cGMP-induced relaxation in intestinal smooth muscle. cGMP desensitize the contractile system to Ca2+ via PKG. PKG-independent pathways are activated at 1000-fold higher cGMP concentrations. Relaxation by cAMP can occur independently of PKG. Long term deficiency of PKG does not lead to an apparent up-regulation of the cAMP-dependent pathways or changes in Ca2+ sensitivity.  相似文献   

12.
Phospholipase A2 in the presence of Ca2+ was stimulated by calmodulin and by prostaglandin F2 alpha. Prostaglandin E2, cyclic-AMP and cyclic-GMP inhibited phospholipase A2 in the presence or absence of calmodulin. Dimethylsuberimidate cross-linking of phospholipase A2 with calmodulin was found to be Ca2+ dependent. These results indicate that phospholipase A2 is directly regulated by a host of key intracellular regulators and is one of the calmodulin-regulated enzymes.  相似文献   

13.
We investigated the mechanisms of Ca2+ extrusion from cultured rat aortic smooth muscle cells while monitoring changes in the cytosolic Ca2+ concentration ([Ca2+]i) using fura 2 fluorescence. 45Ca2+ efflux from these cells consisted of two major mechanisms; one was dependent on the extracellular sodium concentration (Na+o) and the other was independent of Na+o. Na+o-dependent efflux increased monotonically with increasing [Ca2+]i between 0.1 and 1.0 microM, whereas Na+o-independent efflux reached a plateau at 0.6-1 microM [Ca2+]i with a half-maximum obtained at about 0.16 microM. At [Ca2+]i below 1 microM, the latter was significantly greater than the former. Unlike the Na+o-dependent mechanism, Na+o-independent 45Ca2+ efflux was inhibited almost entirely by extracellularly added La3+ or a combination of high extracellular pH (pH 8.8) and 20 mM Mg2+. It was also inhibited, although not completely, by compound 48/80, a calmodulin antagonist, and vanadate. These results strongly suggest that Na+o-dependent and Na+o-independent 45Ca2+ effluxes occur via the Na+/Ca2+ exchanger and the ATP-dependent Ca2+ pump, respectively. Sodium nitroprusside and atrial natriuretic factor, which are agents that stimulate intracellular production of cGMP, and 8-BrcGMP significantly accelerated the Na+o-independent 45Ca2+ efflux especially at low [Ca2+]i. Forskolin, dibutyryl cAMP, and 8-Br-cAMP, however, showed no stimulation. These results suggest that the plasma membrane Ca2+ pump is regulated by cGMP but not by cAMP in intact vascular smooth muscle cells.  相似文献   

14.
Voltage dependence of Ca2+ sparks in intact cerebral arteries   总被引:4,自引:0,他引:4  
Ca2+ sparks have beenpreviously described in isolated smooth muscle cells. Here we presentthe first measurements of local Ca2+ transients("Ca2+ sparks") in an intactsmooth muscle preparation. Ca2+sparks appear to result from the opening of ryanodine-sensitive Ca2+ release (RyR) channels in thesarcoplasmic reticulum (SR). Intracellular Ca2+ concentration([Ca2+]i)was measured in intact cerebral arteries (40-150 µm in diameter) from rats, using the fluorescentCa2+ indicator fluo 3 and a laserscanning confocal microscope. Membrane potential depolarization byelevation of external K+ from 6 to30 mM increased Ca2+ sparkfrequency (4.3-fold) and amplitude (~2-fold) as well as globalarterial wall[Ca2+]i(~1.7-fold). The half time of decay (~50 ms) was not affected bymembrane potential depolarization. Ryanodine (10 µM), which inhibitsRyR channels and Ca2+ sparks inisolated cells, and thapsigargin (100 nM), which indirectly inhibitsRyR channels by blocking the SRCa2+-ATPase, completely inhibitedCa2+ sparks in intact cerebralarteries. Diltiazem, an inhibitor of voltage-dependentCa2+ channels, lowered global[Ca2+]iand Ca2+ spark frequency andamplitude in intact cerebral arteries in a concentration-dependentmanner. The frequency of Ca2+sparks (<1s1 · cell1),even under conditions of steady depolarization, was too low tocontribute significant amounts ofCa2+ to globalCa2+ in intact arteries. Theseresults provide direct evidence that Ca2+ sparks exist in quiescentsmooth muscle cells in intact arteries and that changes of membranepotential that would simulate physiological changes modulate bothCa2+ spark frequency and amplitudein arterial smooth muscle.

  相似文献   

15.
"Spontaneous" Ca2+ sparks and ryanodine receptor type 3 (RyR3) expression are readily detected in embryonic mammalian skeletal muscle but not in adult mammalian muscle, which rarely exhibits Ca2+ sparks and expresses predominantly RyR1. We have used confocal fluorescence imaging and systematic sampling of enzymatically dissociated single striated muscle fibers containing the Ca2+ indicator dye fluo 4 to show that the frequency of spontaneous Ca2+ sparks decreases dramatically from embryonic day 18 (E18) to postnatal day 14 (P14) in mouse diaphragm and from P1 to P14 in mouse extensor digitorum longus fibers. In contrast, the relative levels of RyR3 to RyR1 protein remained constant in diaphragm muscles from E18 to P14, indicating that changes in relative levels of RyR isoform expression did not cause the decline in Ca2+ spark frequency. E18 diaphragm fibers were used to investigate possible mechanisms underlying spark initiation in embryonic fibers. Spark frequency increased or decreased, respectively, when E18 diaphragm fibers were exposed to 8 or 0 mM Ca2+ in the extracellular Ringer solution, with no change in either the average resting fiber fluo 4 fluorescence or the average properties of the sparks. Either CoCl2 (5 mM) or nifedipine (30 µM) markedly decreased spark frequency in E18 diaphragm fibers. These results indicate that Ca2+ sparks may be triggered by locally elevated [Ca2+] due to Ca2+ influx via dihydropyridine receptor L-type Ca2+ channels in embryonic mammalian skeletal muscle. calcium; ryanodine receptor; dihydropyridine receptor; muscle development  相似文献   

16.
The Ca(2+) release-activated Ca(2+) (CRAC) channel is the most well documented of the store-operated ion channels that are widely expressed and are involved in many important biological processes. However, the regulation of the CRAC channel by intracellular or extracellular messengers as well as its molecular identity is largely unknown. Specifically, in the absence of extracellular divalent cations it becomes permeable to monovalent cations with a larger conductance, however this monovalent cation current inactivates rapidly by an unknown mechanism. Here we found that Ca(2+) dissociation from a site on the extracellular side of the CRAC channel is responsible for the inactivation of its Na(+) current, and Ca(2+) occupancy of this site otherwise potentiates its Ca(2+) as well as Na(+) currents. This Ca(2+)-dependent potentiation is required for the normal functioning of CRAC channels.  相似文献   

17.
18.
To identify the functional unit of Ca(2+)-ATPase in the sarcoplasmic reticulum, we assessed Ca(2+)-transport activities occurring on sarcoplasmic reticulum membranes with different combinations of active and inactive Ca(2+)-ATPase molecules. We prepared heterodimers, consisting of a native Ca(2+)-ATPase molecule and a Ca(2+)-ATPase molecule inactivated by FITC labelling, by fusing vesicles loaded with each type of Ca(2+)-ATPase. The heterodimers exhibited neither Ca(2+) transport nor ATP hydrolysis, suggesting that Ca(2+) transport by the Ca(2+)-ATPase requires an interaction between functional Ca(2+)-ATPase monomers. This finding implies that the functional unit of the Ca(2+)-ATPase is a dimer.  相似文献   

19.
Cyclic ADP-ribose (cADPR) is the most potent Ca2+-mobilizing agent known. It has been found in many different cell types, where it is synthesized from its precursor NAD+ by ADP-ribosyl cyclases. cADPR binds to Ca2+ channels in the endoplasmic reticulum membrane to activate a Ca2+-release mechanism. This release is itself potentiated by elevated cytoplasmic Ca2+ concentrations. Thus, cADPR may function as an endogenous regulator of Ca2+-induced Ca2+ release, and there is excitement that it may also function as a Ca2+-mobilizing second messenger.  相似文献   

20.
Ciliary activity is regulated by Ca2+ and cyclic nucleotides, but the molecular mechanisms of the regulation are unknown. We have tested the ability of Ca2+ and cyclic nucleotides to alter ciliary Mg2+-ATPase or to stimulate phosphorylation of axonemal dynein. Mg2+-ATPase activity in cilia and axonemes from Paramecium was stimulated 2-fold by micromolar Ca2+, but this Ca2+ sensitivity was lost upon solubilization of the dyneins from the axoneme. The Ca2+-sensitive component of ciliary Mg2+-ATPase activity was inhibited by the dynein inhibitors vanadate and Zn2+, but was insensitive to the calmodulin antagonists calmidazolium and melittin. Dynein activity in the high-salt extract from axonemes was also insensitive to calmidazolium. Calmodulin did not sediment with 22 S or 12 S dyneins on sucrose gradients containing Ca2+, but it did sediment in the region from 19 S to 14 S. Mg2+-ATPase activity in ciliary fractions was unaltered in the presence of cAMP or cGMP. However, polypeptides associated with the 22 S and 12 S dyneins, as well as proteins of 19 S, 15 S, and 8 S, were substrates for endogenous ciliary kinases. High molecular weight polypeptides that sedimented at 22 S and 19 S were phosphorylated in a cyclic nucleotide-stimulated manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号