首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The magnitude of the proton motive force generated during in vitro substrate oxidation by Coxiella burnetii was examined. The intracellular pH of C. burnetii varied from about 5.1 to 6.95 in resting cells over an extracellular pH range of 2 to 7. Similarly, delta psi varied from about 15 mV to -58 mV over approximately the same range of extracellular pH. Both components of the proton motive force increased during substrate oxidation, resulting in an increase in proton motive force from about -92 mV in resting cells to -153 mV in cells metabolizing glutamate at pH 4.2. The respiration-dependent increase in proton motive force was blocked by respiratory inhibitors, but the delta pH was not abolished even by the addition of proton ionophores such as carbonyl cyanide-m-chlorophenyl hydrazone or 2,4-dinitrophenol. Because of this apparently passive component of delta pH maintenance, the largest proton motive force was obtained at an extracellular pH too low to permit respiration. C. burnetii appears, therefore, to behave in many respects like other acidophilic bacteria. Such responses are proposed to contribute to the extreme resistance of C. burnetii to environmental conditions and subsequent activation upon entry into the phagolysosome of eucaryotic cells in which this organism multiplies.  相似文献   

2.
In the presence of electrochemical energy, several branched-chain neutral and acidic amino acids were found to accumulate in membrane vesicles of Bacillus stearothermophilus. The membrane vesicles contained a stereo-specific transport system for the acidic amino acids L-glutamate and L-aspartate, which could not translocate their respective amines, L-glutamine and L-asparagine. The transport system was thermostable (Ti = 70 degrees C) and showed highest activities at elevated temperatures (60 to 65 degrees C). The membrane potential or pH gradient could act as the driving force for L-glutamate uptake, which indicated that the transport process of L-glutamate is electrogenic and that protons are involved in the translocation process. The electrogenic character implies that the anionic L-glutamate is cotransported with at least two monovalent cations. To determine the mechanistic stoichiometry of L-glutamate transport and the nature of the cotranslocated cations, the relationship between the components of the proton motive force and the chemical gradient of L-glutamate was investigated at different external pH values in the absence and presence of ionophores. In the presence of either a membrane potential or a pH gradient, the chemical gradient of L-glutamate was equivalent to that specific gradient at different pH values. These results cannot be explained by cotransport of L-glutamate with two protons, assuming thermodynamic equilibrium between the driving force for uptake and the chemical gradient of the substrate. To determine the character of the cotranslocated cations, L-glutamate uptake was monitored with artificial gradients. It was established that either the membrane potential, pH gradient, or chemical gradient of sodium ions could act as the driving force for L-glutamate uptake, which indicated that L-glutamate most likely is cotranslocated in symport with one proton and on sodium ion.  相似文献   

3.
Transport of acidic amino acids in Bacillus subtilis is an electrogenic process in which L-glutamate or L-aspartate is symported with at least two protons. This is shown by studies of transport in membrane vesicles in which a proton motive force is generated by oxidation of ascorbate-phenazine methosulfate or by artificial ion gradients. An inwards-directed sodium gradient had no (stimulatory) effect on proton motive force-driven L-glutamate uptake. The transporter is specific for L-glutamate and L-aspartate. L-Glutamate transport is inhibited by beta-hydroxyaspartate and cysteic acid but not by alpha-methyl-glutamate. The gene encoding the L-glutamate transport protein of B. subtilis (gltPBsu) was cloned by complementation of Escherichia coli JC5412 for growth on glutamate as the sole source of carbon, energy, and nitrogen, and its nucleotide sequence was determined. Putative promoter, terminator, and ribosome binding site sequences were found in the flanking regions. UUG is most likely the start codon. gltPBsu encodes a polypeptide of 414 amino acid residues and is homologous to several proteins that transport glutamate and/or structurally related compounds such as aspartate, fumarate, malate, and succinate. Both sodium- and proton-coupled transporters belong to this family of dicarboxylate transporters. Hydropathy profiling and multiple alignment of the family of carboxylate transporters suggest that each of the proteins spans the cytoplasmic membrane 12 times with both the amino and carboxy termini on the inside.  相似文献   

4.
In Streptococcus lactis ML3 and Streptococcus cremoris Wg2 the uptake of glutamate and glutamine is mediated by the same transport system, which has a 30-fold higher affinity for glutamine than for glutamate at pH 6.0. The apparent affinity constant for transport (KT) of glutamine is 2.5 +/- 0.3 microM, independent of the extracellular pH. The KTS for glutamate uptake are 3.5, 11.2, 77, and 1200 microM at pH 4.0, 5.1, 6.0, and 7.0, respectively. Recalculation of the affinity constants based on the concentration of glutamic acid in the solution yield KTS of 1.8 +/- 0.5 microM independent of the external pH, indicating that the protonated form of glutamate, i.e., glutamic acid, and glutamine are the transported species. The maximal rates of glutamate and glutamine uptake are independent of the extracellular pH as long as the intracellular pH is kept constant, despite large differences in the magnitude and composition of the components of the proton motive force. Uptake of glutamate and glutamine requires the synthesis of ATP either from glycolysis or from arginine metabolism and appears to be essentially unidirectional. Cells are able to maintain glutamate concentration gradients exceeding 4 X 10(3) for several hours even in the absence of metabolic energy. The t1/2s of glutamate efflux are 2, 12, and greater than 30 h at pH 5.0, 6.0, and 7.0, respectively. After the addition of lactose as energy source, the rate of glutamine uptake and the level of ATP are both very sensitive to arsenate. When the intracellular pH is kept constant, both parameters decrease approximately in parallel (between 0.2 and 1.0 mM ATP) with increasing concentrations of the inhibitor. These results suggest that the accumulation of glutamate and glutamine is energized by ATP or an equivalent energy-rich phosphorylated intermediate and not by the the proton motive force.  相似文献   

5.
We describe a K+ transport system in Methanospirillum hungatei cells depleted of cytoplasmic K+ via an ammonia/K+ exchange reaction (Sprott, G. D., Shaw, K. M., and Jarrell, K. F. (1984) J. Biol. Chem. 259, 12602-12608). Ammonia-treated cells contained low concentrations of ATP and were unable to make CH4 or to transport 86Rb+. All of these properties were restored by CaCl2, MgCl2, or MnCl2, and not by CoCl2 or NiCl2. The Rb+ transport system had a Km of 0.42 and Vmax of 29 nmol/min X mg; K+ inhibited competitively. Both H2 and CO2 were required for appreciable transport, whereas air, valinomycin, or nigericin were potent inhibitors. The influx of Rb+ was electrogenic and associated with proton efflux, producing a delta pH (alkaline inside) in acidic media. In the absence of K+ (or Rb+), the activation of CH4 synthesis by Mg2+ produced little change in the cytoplasmic pH, showing that methanogenesis did not elicit a net efflux of protons. The pH optimum for transport was in the range 6.0-7.3 where the transmembrane pH gradient would contribute minimally to the proton motive force. Protonophores at pH 6.3 caused a partial decline in CH4 synthesis and the ATP content and dramatically collapsed Rb+ transport. These and other inhibitor experiments, coupled with the fact that the Rb+ gradient was too large to be in equilibrium with the proton motive force alone, suggest a role for both ATP and the proton motive force in Rb+ transport. Also, a role for K+ in osmoregulation is indicated.  相似文献   

6.
Streptomyces antibioticus possesses an energy-dependent, carrier mediated transport system for the uptake of L-glutamate and L-proline. Amino acid transport was found to have a temperature optimum of 35 degrees C and a pH optimum from 7.0 to 8.0 for glutamate and 6.5 to 7.5 for proline uptake. Uptake did not depend upon Mg2+, Ca2+, Zn2+, Na+, or Fe2+ ions. Reversible p-hydroxymercuribenzoate inhibition of uptake indicated the involvement of an active sulfhydryl group. L-Glutamate uptake was mediated by a glutamate-inducible, nonspecific transport system, which was extremely stable and was not subject to substrate inhibition by L-proline. On the other hand, L-proline transport was mediated by at least two systems. The L-glutamate-inducible nonspecific system can account for uptake of proline by the mycelium grown in glutamate. In addition, a proline-specific, constitutive transport system was found to be present in the mycelium grown in organic and inorganic nitrogen sources other than L-glutamate. Shift experiments revealed that proline transport is not as stable as glutamate transport when the glutamate-inducible nonspecific system is utilized.  相似文献   

7.
Strain OKM-9 is a mesophilic, mixotrophic iron-oxidizing bacterium that absolutely requires ferrous iron as its energy source and L-amino acids (including L-glutamate) as carbon sources for growth. The properties of the L-glutamate transport system were studied with OKM-9 resting cells, plasma membranes, and actively reconstituted proteoliposomes. L-Glutamate uptake into resting cells was totally dependent on ferrous iron that was added to the reaction mixture. Potassium cyanide, an iron oxidase inhibitor, completely inhibited the activity at 1 mM. The optimum pH for Fe2+-dependent uptake activity of L-glutamate was 3.5-4.0. Uptake activity was dependent on the concentration of the L-glutamate. The Km and Vmax for L-glutamate were 0.4 mM and 11.3 nmol x min(-1) x mg(-1), respectively. L-Aspartate, D-aspartate, D-glutamate, and L-cysteine strongly inhibited L-glutamate uptake. L-Aspartate competitively inhibited the activity, and the apparent Ki for this amino acid was 75.9 microM. 2,4-Dinitrophenol, carbonyl cyanide m-chlorophenylhydrazone, gramicidin D, valinomycin, and monensin did not inhibit Fe2+-dependent L-glutamate uptake. The OKM-9 plasma membranes had approximately 40% of the iron-oxidizing activity of the resting cells and approximately 85% of the Fe2+-dependent uptake activity. The glutamate transport system was solubilized from the membranes with 1% n-octyl-beta-D-glucopyranoside and reconstituted into a lecithin liposome. The L-glutamate transport activity of the reconstituted proteoliposomes was 8-fold than that of the resting cells. The Fe2+-dependent L-glutamate uptake observed here seems to explain the mixotrophic nature of this strain, which absolutely requires Fe2+ oxidation when using amino acids as carbon sources.  相似文献   

8.
The uptake of 4-chlorobenzoate (4-CBA) in intact cells of the coryneform bacterium NTB-1 was investigated. Uptake and metabolism of 4-CBA were observed in cells grown in 4-CBA but not in glucose-grown cells. Under aerobic conditions, uptake of 4-CBA occurred with a high apparent affinity (apparent Kt, 1.7 microM) and a maximal velocity (Vmax) of 5.1 nmol min-1 mg of protein-1. At pH values below 7, the rate of 4-CBA uptake was greatly reduced by nigericin, an ionophore which dissipates the pH gradient across the membrane (delta pH). At higher pH values, inhibition was observed only with valinomycin, an ionophore which collapses the electrical potential across the membrane (delta psi). Under anaerobic conditions, no uptake of 4-CBA was observed unless an alternative electron acceptor was present. With nitrate as the terminal electron acceptor, 4-CBA was rapidly accumulated by the cells to a steady-state level, at which uptake of 4-CBA was balanced by excretion of 4-hydroxybenzoate. The mechanism of energy coupling to 4-CBA transport under anaerobic conditions was further examined by the imposition of an artificial delta psi, delta pH, or both. Uptake of 4-CBA was shown to be coupled to the proton motive force, suggesting a proton symport mechanism. Competition studies with various substrate analogs revealed a very narrow specificity of the 4-CBA uptake system. This is the first report of carrier-mediated transport of halogenated aromatic compounds in bacteria.  相似文献   

9.
Within the scope of a study on the effects of changes in medium composition on the proton motive force in Rhodopseudomonas sphaeroides, the energy coupling of sodium, phosphate, and potassium (rubidium) transport was investigated. Sodium was transported via an electroneutral exchange system against protons. The system functioned optimally at pH 8 and was inactive below pH 7. The driving force for the phosphate transport varied with the external pH. At pH 8, Pi transport was dependent exclusively on delta psi (transmembrane electrical potential), whereas at pH 6 only the delta pH (transmembrane pH gradient) component of the proton motive force was a driving force. Potassium (rubidium) transport was facilitated by a transport system which catalyzed the electrogenic transfer of potassium (rubidium) ions. However, in several aspects the properties of this transport system were different from those of a simple electrogenic potassium ionophore such as valinomycin: (i) accumulated potassium leaked very slowly out of cells in the dark; and (ii) the transport system displayed a threshold in the delta psi, below which potassium (rubidium) transport did not occur.  相似文献   

10.
Uptake of phosphate by Streptococcus lactis ML3 proceeds in the absence of a proton motive force, but requires the synthesis of ATP by either arginine or lactose metabolism. The appearance of free Pi internally in arginine-metabolizing cells corresponded quantitatively with the disappearance of extracellular phosphate. Phosphate transport was essentially unidirectional, and phosphate concentration gradients of up to 10(5) could be established. Substrate specificity studies of the transport system indicated no preference for either mono- or divalent phosphate anion. The activity of the phosphate transport system was affected by the intracellular Pi concentration by a feedback inhibition mechanism. Uncouplers and ionophores which dissipate the pH gradient across the cytoplasmic membrane inhibited phosphate transport at acidic but not at alkaline pH values, indicating that transport activity is regulated by the internal proton concentration. Phosphate uptake driven by arginine metabolism increased with the intracellular pH with a pKa of 7.3. Differences in transport activity with arginine and lactose as energy sources are discussed.  相似文献   

11.
The energetics of the anaerobic gram-negative bacterium Zymomonas mobilis, a well-known ethanol-producing organism, is based solely on synthesis of 1 mol of ATP per mol of glucose by the Entner-Doudoroff pathway. When grown in the presence of glucose as a carbon and energy source, Z. mobilis had a cytosolic ATP content of 3.5 to 4 mM. Because of effective pH homeostasis, the components of the proton motive force strongly depended on the external pH. At pH 5.5, i.e., around the optimal pH for growth, the proton motive force was about -135 mV and was composed of a pH gradient of 0.6 pH units (internal pH 6.1) and a membrane potential of about -100 mV. Measurement of these parameters was complicated since ionophores and lipophilic probes were ineffective in this organism. So far, only glucose transport by facilitated diffusion is well characterized for Z. mobilis. We investigated a constitutive secondary glutamate uptake system. Glutamate can be used as a nitrogen source for Z. mobilis. Transport of glutamate at pH 5.5 shows a relatively high Vmax of 40 mumol.min-1.g (dry mass) of cells-1 and a low affinity (Km = 1.05 mM). Glutamate is taken up by a symport with two H+ ions, leading to substantial accumulation in the cytosol at low pH values.  相似文献   

12.
Active transport of proline by Coxiella burnetii   总被引:10,自引:0,他引:10  
The obligate intracellular rickettsia, Coxiella burnetii, was shown to possess an energy dependent proline transport system which displayed a high degree of specificity and was highly dependent on pH. Transport was maximal at pH 3.0 to 4.5, a pH range approximately that of the host cell phagolysosome where the agent replicates. Transport was inhibited by the uncouplers carbonyl cyanide m-chlorophenylhydrazone and dinitrophenol, but not by sodium arsenite. In the presence of glutamate, a preferred energy source, proline uptake was enhanced more than two-fold. This enhancement of proline uptake was greatly decreased in the presence of sodium arsenite. The addition of glutamate decreased the apparent Km for proline transport from 45 microM to 15 microM, with the Vmax increasing from 3.6 pmol s-1 (mg dry wt)-1 to 4.8 pmol s-1 (mg dry wt)-1. Two proline analogues, furoic acid and azetidine-2-carboxylic acid, were effective inhibitors of proline transport. D-Proline, 4-hydroxyproline, glycine and proline amide inhibited transport minimally, while no inhibition was seen with succinate, pyruvate or glutamate.  相似文献   

13.
Lactobacillus casei 393 cells which were energized with glucose (pH 6.0) took up glutamine, asparagine, glutamate, aspartate, leucine, and phenylalanine. Little or no uptake of several essential amino acids (valine, isoleucine, arginine, cysteine, tyrosine, and tryptophan) was observed. Inhibition studies indicated that there were at least five amino acid carriers, for glutamine, asparagine, glutamate/aspartate, phenylalanine, or branched-chain amino acids. Transport activities had pH optima between 5.5 and 6.0, but all amino acid carriers showed significant activity even at pH 4.0. Leucine and phenylalanine transport decreased markedly when the pH was increased to 7.5. Inhibitors which decreased proton motive force (delta p) nearly eliminated leucine and phenylalanine uptake, and studies with de-energized cells and membrane vesicles showed that an artificial electrical potential (delta psi) of at least -100 mV was needed for rapid uptake. An artificial delta p was unable to drive glutamine, asparagine, or glutamate uptake, and transport of these amino acids was sensitive to a decline in intracellular pH. When intracellular pH was greater than 7.7, glutamine, asparagine, or glutamate was transported rapidly even though the proton motive force had been abolished by inhibitors.  相似文献   

14.
Uptake of arsenate and phosphate by Streptococcus faecalis 9790 is strictly dependent on concurrent energy metabolism and essentially unidirectional. targinine supports uptake only in presence of glycerol or related substances; glycerol is not directly involved in transport but depletes the cellular orthophosphate pool and thus relieves feedback inhibition of transport. Uptake of phosphate and arsenate is stimulated by K+ and by other permeant cations. The results suggest that electroneutrality is preserved by compensatory movement of either H+ or OH minus. Ionophores and N,N'-dicyclohexylcarbodiimide, which prevent establishment of a proton motive force, block the accumulation of thiomethylgalactoside and of threonine but not that of arsenate or phosphate. We conclude that arsenate accumulation requires adenosine 5'-triphosphate but is not driven by the proton-motive force. However, conditions and reagents that lower the cytoplasmic pH do inhibit accumulation of arsenate and phosphate, suggesting that uptake depends on the capacity of the cells to maintain a neutral or alkaline cytoplasm. We therefore propose that phosphate accumulation is an electroneutral exchange for OH driven by adenosine 5'-triphosphate or by a metabolite thereof. Accumulation of aspartate and glutamate also requires adenosine 5'-triphosphate but not the proton-motive force and may involve a similar mechanism.  相似文献   

15.
In vesicles from glucose-grown Pseudomonas putida, L-malate is transported by nonspecific physical diffusion. L-Malate also acts as an electron donor and generates a proton motive force (delta p) of 129 mV which is composed of a membrane potential (delta psi) of 60 mV and a delta pH of 69 mV. In contrast, vesicles from succinate-grown cells transport L-malate by a carrier-mediated system with a Km value of 14.3 mM and a Vmax of 313 nmol X mg protein-1 X min-1, generate no delta psi, delta pH, or delta p when L-malate is the electron donor, and produce an extravesicular alkaline pH during the transport of L-malate. A kinetic analysis of this L-malate-induced proton transport gives a Km value of 16 mM and a Vmax of 667 nmol H+ X mg protein-1 X min-1. This corresponds to a H+/L-malate ratio of 2.1. The failure to generate a delta p in these vesicles is considered, therefore, to be consistent with the induction in succinate-grown cells of an electrogenic proton symport L-malate transport system.  相似文献   

16.
The proton motive force mediated the transport of selenite (SeO3(2-)) in Clostridium pasteurianum cells by proton symport. The proton conductor, carbonyl cyanide m-chlorophenylhydrazone, inhibited SeO3(2-) uptake while N,N'-dicyclohexylcarbodiimide prevented SeO3(2-) uptake by presumably inhibiting the unidirectional ATPase. Acid pulse studies and antibiotic experiments with valinomycin suggest that the transmembrane delta pH component of the proton motive force mediated the transport of SeO3(2-) into the cells. The SeO3(2-) porter system in C. pasteurianum was found to be dependent upon energy source, temperature, and medium pH.  相似文献   

17.
The ability of Coxiella burnetii to couple oxidation of metabolic substrates to adenosine 5'-triphosphate (ATP) synthesis in axenic reaction buffers was examined. Pyruvate, succinate, and glutamate were catabolized and incorporated at the highest rates of 11 substrates tested. Glutamate oxidation, however, resulted in the greatest stability of the ATP pool and highest intracellular ATP levels over a 48-h period. At pH 4.5, the optimum for metabolism by C. burnetii, glutamate oxidation resulted in maintenance of the ATP pool at a concentration of approximately 0.7 nmol of ATP per mg of dry weight over a 96-h period. In the absence of substrate, ATP declined by 96 h to less than 0.01 nmol/mg of dry weight. When cells were maintained at pH 7.0 in the presence or absence of glutamate, ATP pools were considerably more stable, presumably due to the minimal metabolic activity displayed by C. burnetii at pH 7. The stability of the ATP pool reflected viability as there was greater than an 8-log decrease in viable C. burnetii after incubation for 7 days at pH 4.5 in the absence of glutamate. Viability was retained in the presence of glutamate at pH 4.5 or 7.0 in the absence of any added substrate. The stability of the ATP pool was due to endogenous synthesis of ATP coupled to substrate oxidation as shown by depression of ATP levels in the presence of inhibitors of electron transport or oxidative phosphorylation. In addition, the adenylate energy charge increased from an initial value of 0.57 to 0.73 during glutamate oxidation with a concomitant rise in the total adenylate pool size. C. burnetii therefore appears able to regulate endogenous ATP levels in response to substrate availability and pH, thus effecting a conservation of metabolic energy in neutral or alkaline environments. Such a mechanism has been proposed to play a role in the resistance of C. burnetii to environmental conditions and subsequent activation upon entry into the phagolysosome in which this organism replicates.  相似文献   

18.
Energy coupling to net K+ transport in Escherichia coli K-12.   总被引:24,自引:0,他引:24  
Energy coupling for three K+ transport systems of Escherichia coli K-12 was studied by examining effects of selected energy sources and inhibitors in strains with either a wild type or a defective (Ca2+, Mg2+)-stimulated ATPase. This approach allows discrimination between transport systems coupled to the proton motive force from those coupled to the hydrolysis of a high energy phosphate compound (ATP-driven). The three K+ transport systems here studied are: (a) the Kdp system, a repressible high affinity (Km=2 muM) system probably coded for by four linked Kdp genes; (b) the Trka system, a constitutive system with high rate and modest affinity (Km=1.5 mM) defined by mutations in the single trkA gene; and (c) the TrkF system, a nonsaturable system with a low rate of uptake (Rhoads, D.B., Waters, F.B., and Epstein, W. (1976) J. Gen. Physiol. 67, 325-341). Each of these systems has a different mode of energy coupling: (a) the Kdp system is ATP-driven and has a periplasmic protein component; (b) the TrkF system is proton motive force-driven; and (c) the TrkA system is unique among bacterial transport systems described to date in requiring both the proton motive force and ATP for activity. We suggest that this dual requirement represents energy fueling by ATP and regulation by the proton motive force. Absence of ATP-driven systems in membrane vesicles is usually attributed to the requirement of such systems for a periplasmic protein. This cannot explain the failure to demonstrate the TrkA system in vesicles, since this system does not require a periplasmic protein. Our findings indicate that membrane vesicles cannot couple energy to ATP-driven transport systems. Since vesicles can generate a proton motive force, the inability of vesicles to generate ATP or couple ATP to transport (or both) must be invoked to explain the absence of TrkA in vesicles. The TrkF system should function in vesicles, but its very low rate may make it difficult to identify.  相似文献   

19.
The synaptosomal transport of L-[35S]cystine occurs by three mechanisms that are distinguishable on the basis of their ionic dependence, kinetics of transport and the specificity of inhibitors. They are (a) low affinity sodium-dependent transport (Km 463 +/- 86 microM, Vmax 185 +/- 20 nmol mg protein-1 min-1), (b) high affinity sodium-independent transport (Km 6.90 +/- 2.1 microM, Vmax 0.485 +/- 0.060 nmol mg protein(-1) min(-1)) and (c) low affinity sodium-independent transport (Km 327 +/- 29 microM, Vmax 4.18 +/- 0.25 nmol mg protein(-1) min(-1)). The sodium-dependent transport of L-cystine was mediated by the X(AG)- family of glutamate transporters, and accounted for almost 90% of the total quantity of L-[35S]cystine accumulated into synaptosomes. L-glutamate (Ki 11.2 +/- 1.3 microM) was a non-competitive inhibitor of this transporter, and at 100 microM L-glutamate, the Vmax for L-[35S]cystine transport was reduced to 10% of control. L-cystine did not inhibit the high-affinity sodium-dependent transport of D-[3H]aspartate into synaptosomes. L-histidine and glutathione were the most potent inhibitors of the low affinity sodium-independent transport of L-[35S]cystine. L-homocysteate, L-cysteine sulphinate and L-homocysteine sulphinate were also effective inhibitors. 1 mM L-glutamate reduced the sodium-independent transport of L-cystine to 63% of control. These results suggest that the vast majority of the L-cystine transported into synaptosomes occurs by the high-affinity glutamate transporters, but that L-cystine may bind to a site that is distinct from that to which L-glutamate binds. The uptake of L-cystine by this mechanism is sensitive to inhibition by increased extracellular concentrations of L-glutamate. The importance of these results for understanding the mechanism of glutamate-mediated neurotoxicity is discussed.  相似文献   

20.
Lactococcin B (LcnB) is a small, hydrophobic, positively charged bacteriocin produced by Lactococcus lactis subsp. cremoris 9B4. Purified LcnB has a bactericidal effect on sensitive L. lactis cells by dissipating the proton motive force and causing leakage of intracellular substrates. The activity of LcnB depends on the reduced state of the Cys-24 residue. Uptake and efflux studies of different solutes suggest that LcnB forms pores in the cytoplasmic membrane of sensitive L. lactis cells in the absence of a proton motive force. At low concentrations of LcnB, efflux of those ions and amino acids which are taken up by proton motive force-driven systems was observed. However, a 150-fold higher LcnB concentration was required for efflux of glutamate, previously taken up via a unidirectional ATP-driven transport system. Strains carrying the genetic information for the immunity protein against LcnB were not affected by LcnB. The proton motive force of immune cells was not dissipated, and no leakage of intracellular substrates could be detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号