首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ageing cells, especially post-mitotic cells, are known to accumulate pigments, i.e. highly electron-dense material, referred to as ceroid or lipofuscin. This material is formed as a consequence of autophagocytosis and peroxidation of the products undergoing degradation. The present study describes the development of lipofuscin in the ECL cells of the rat stomach. These cells produce and secrete histamine in response to gastrin. They are rich in secretory vesicles, which fuse to form vacuoles in hypergastrinaemic rats. Hypergastrinaemia was induced by continuous infusion of human Leu15-gastrin-17 for 6 days or by daily treatment with omeprazole for 10 weeks. Either treatment caused both vacuoles and lipofuscin bodies to appear in large numbers; the vacuoles disappeared promptly after interruption of the hypergastrinaemia, whereas the lipofuscin bodies remained. Antrectomy-evoked hypogastrinaemia was associated with a reduced number and volume density of lipofuscin bodies. Treatment with α-fluoromethylhistidine, an irreversible inhibitor of the histamine-forming enzyme, resulted in depletion of ECL-cell histamine and was found to prevent the omeprazole-evoked formation of vacuoles and lipofuscin. The numbers of both vacuoles and lipofuscin bodies were well-correlated with the serum gastrin concentration, suggesting that gastrin stimulates the development not only of vacuoles but also of lipofuscin, perhaps through enhanced autophagocytosis and/or oxidative stress. Thus, lipofuscin bodies may develop from vacuoles, and both vacuoles and lipofuscin bodies may reflect the efforts of overstimulated ECL cells to cope with the excessive formation of secretory products.  相似文献   

2.
Colletotrichum graminicola, a pathogen of sorghum and corn, was investigated prior and during germination as to certain aspects of acid phosphatase activity and lipid mobilization. Ungerminated conidia cytoplasm was filled with lipid deposits, which were mobilized during the germination process. Cytochemical ultrastructural examination showed that conidia vacuoles exhibit acid phosphatase activity, which is suggestive of lytic activity. Lipid bodies, stored in the ungerminated conidia cytoplasm, were internalized by vacuoles in a process analogous to microautophagy and were apparently digested inside them. The lipid bodies disappeared and vacuoles became enlarged in conidial cells during germination. Appressoria also showed acid phosphatase activity in multiple heterogeneous vesicles which were, in most cases, juxtaposed with lipid bodies. These results suggest that the vacuolar system plays an important role during C. graminicola germination and that the initial stages of lipid metabolization are taking place inside the vacuoles.  相似文献   

3.
Summary In the present report the functional morphology of the planarian gastrodermal phagocytic cells is examined in feeding animals. A functional interpretation of some of the morphological findings is given. The events in the fine-structure modifications of the phagocytic cells in the course of phagocytosis and intracellular digestion of food particles were followed through five post-feeding stages in the planarian Dugesia gonocephala. Light and electron microscopical observations demonstrate that there is preliminary intraluminal digestion of food particles; their phagocytosis takes place quickly.Beef hepatocytes that served as food are found engulfed at first in food vacuoles near the apical border of the phagocytic cells, and are clearly recognizable. The vacuoles increase in number to occupy most of the cytoplasm of these cells. Progressive breakdown and disappearance of phagocytosed hepatocytes occurs. In time the vacuoles move deeper into the cells, their contents lose their identity, and condense to homogeneous or heterogeneous residual bodies. These are returned to the distal surface of the cells, and then voided into the intestinal lumen. At the same time, synthesis and accumulation of numerous lipid droplets occurs, probably as a final product resulting from metabolism of the digested material. When feeding is over, the phagocytic cells are filled with lipid droplets, acquiring their typical appearance.It is suggested that disintegration of phagocytic cells during starvation is balanced by proliferation and differentiation of neoblasts into new phagocytic cells during the feeding-starvation cycle.  相似文献   

4.
For determination of the physiological role and mechanism of vacuolar proteolysis in the yeast Saccharomyces cerevisiae, mutant cells lacking proteinase A, B, and carboxypeptidase Y were transferred from a nutrient medium to a synthetic medium devoid of various nutrients and morphological changes of their vacuoles were investigated. After incubation for 1 h in nutrient-deficient media, a few spherical bodies appeared in the vacuoles and moved actively by Brownian movement. These bodies gradually increased in number and after 3 h they filled the vacuoles almost completely. During their accumulation, the volume of the vacuolar compartment also increased. Electron microscopic examination showed that these bodies were surrounded by a unit membrane which appeared thinner than any other intracellular membrane. The contents of the bodies were morphologically indistinguishable from the cytosol; these bodies contained cytoplasmic ribosomes, RER, mitochondria, lipid granules and glycogen granules, and the density of the cytoplasmic ribosomes in the bodies was almost the same as that of ribosomes in the cytosol. The diameter of the bodies ranged from 400 to 900 nm. Vacuoles that had accumulated these bodies were prepared by a modification of the method of Ohsumi and Anraku (Ohsumi, Y., and Y. Anraku. 1981. J. Biol. Chem. 256:2079-2082). The isolated vacuoles contained ribosomes and showed latent activity of the cytosolic enzyme glucose-6-phosphate dehydrogenase. These results suggest that these bodies sequestered the cytosol in the vacuoles. We named these spherical bodies "autophagic bodies." Accumulation of autophagic bodies in the vacuoles was induced not only by nitrogen starvation, but also by depletion of nutrients such as carbon and single amino acids that caused cessation of the cell cycle. Genetic analysis revealed that the accumulation of autophagic bodies in the vacuoles was the result of lack of the PRB1 product proteinase B, and disruption of the PRB1 gene confirmed this result. In the presence of PMSF, wild-type cells accumulated autophagic bodies in the vacuoles under nutrient-deficient conditions in the same manner as did multiple protease-deficient mutants or cells with a disrupted PRB1 gene. As the autophagic bodies disappeared rapidly after removal of PMSF from cultures of normal cells, they must be an intermediate in the normal autophagic process. This is the first report that nutrient-deficient conditions induce extensive autophagic degradation of cytosolic components in the vacuoles of yeast cells.  相似文献   

5.
Large, free-floating crystals of calcium carbonate occur in vacuoles of gastrodermal cells of the hydroid Hydractinia symbiolongicarpus. Here, morphological details about the process by which these cells accumulate and sequester calcium are provided by a cytochemical method designed to demonstrate calcium at the ultrastructural level. Electron-dense material presumably indicative of the presence of calcium was EGTA-sensitive and was shown by parallel electron energy loss spectroscopy (EELS) and energy spectroscopic imaging (ESI) to contain calcium. Calcium occurred in only one cell type, the endodermally derived gastrodermal cell. In these cells, the electron-dense material appeared first as a fine precipitate in the cytosol and nucleus and later as larger deposits and aggregates in the vacuole. During the life cycle, gastrodermal cells of the uninduced planula and the planula during metamorphic induction sequestered calcium. In primary polyps and polyps from established colonies, gastrodermal cells sequestered calcium, but the endodermal secretory cells did not. Our observations support the hypothesis that gastrodermal cells function as a physiological sink for calcium that enters the organism in conjunction with calcium-requiring processes such as motility, secretion, and metamorphosis.  相似文献   

6.
The organization and fine structure of the muscles of the scolex of the cysticercoid of Hymenolepis microstoma are described. The contractile apparatus consists of thick (175–325 Å diameter × 1.4 μm) and thin (60–80 Å diameter × 1 μm) filaments. The thick filaments are occasionally attached to the thin filaments by cross bridges. The thin filaments are attached to the dense bodies or to a dense zone at the sarcolemma at muscle insertions. In contracted muscle the thick filaments appear as quasi-hexagonal arrays or in lines. Each thick filament is surrounded by an orbit of up to 12 thin filaments, which in turn may be shared by adjacent thick filaments. Thin filaments may be present in quasi-rectangular or hexagonal groupings indicating some low order degree of actin lattice. The fusiform dense bodies (1,500 Å × 900 Å), consisting of up to 25 discrete substructures, are distributed uniformly throughout the myofiber and/or attached to the sarcolemma at attachment plaques. The sarcoplasmic reticulum, consisting of a presumed anastomosing network of tubules is structurally connected to the sarcolemma by periodic deposits of electron opaque material. Sarcoplasmic extensions of the myofiber(s) contain the nucleus, Golgi complexes, rough endoplasmic reticulum, ribosomes, β-glycogen, mitochondria and membrane bound electron dense structures. Upon activation of the metacestode, groups of α-glycogen and enlargement of the rough endoplasmic reticulum were observed. Microtubules which were conspicuously absent from the sarcoplasm of the unactivated worms appeared adjacent to the myofibers in activated worms.  相似文献   

7.
A number of proteins that accumulate in vacuoles and protein bodies undergo posttranslational processing at these accumulation sites. These processing steps include proteolytic cleavage (e.g. pea lectin, soybean glycinin, and rice lectin) and the removal of some sugar residues from oligosaccharide side-chains (e.g. bean phytohemagglutinin). Treatment of immature rice embryos with the sodium ionophore monensin slows down the proteolytic processing of the rice lectin precursor (Mr 23,000) to mature rice lectin (Mr 10,000 and 8,000). Treatment of developing bean cotyledons with monensin slows down the removal of peripheral N-acetylglucosamine residues from the oligosaccharide side-chains of phytohemagglutinin. The results are consistent with the interpretation that these processing steps, which occur in vacuoles or protein bodies, are carried out by enzymes with an acidic pH optimum, and that monensin slows down processing by alkalinization of the vacuoles or protein bodies.  相似文献   

8.
The pollen grain maturation in Magnolia × soulangeana was studied ultrastructurally and cytochemically using both the light and transmission electron microscope. Emphasis was given on the storage lipid bodies of the vegetative cell (VC) and their interaction with other cell organelles. Stereological analysis of electron micrographs was performed to evaluate the variation in volume density (VV), surface density, and surface-to-volume ratio (S/V) of various cell organelles during pollen maturation. The size and numerical density of the lipid bodies, and their frequency of association with other cell organelles, were also determined. It was noted that during pollen ontogeny and maturation, the lipid bodies changed their pattern of distribution in the VC cytoplasm, which may be a good marker for the succeeding stages of pollen development. Also, the size, osmiophily, and VV of the lipid bodies were progressively reduced during pollen maturation whereas the S/V was significantly increased. This seems to indicate that the lipid bodies are mobilized in part during this period of pollen maturation. In particular, the intermediate and mature pollen showed a high percentage of lipid bodies establishing a physical contact with either glyoxysomes, either protein storage vacuoles, or small vesicles presumably originated from dictyosomes. This physical contact was found in both the chemically fixed and rapid freeze-fixed pollen indicating that it is neither artifactual nor casual. On the basis of this intimate association with other cell organelles and the morphometric analysis performed, we suggest that the mobilization of lipid bodies is likely mediated not only by glyoxysomes but also by other catabolic pathways involving the interaction of lipid bodies with either protein storage vacuoles or small Golgi vesicles.  相似文献   

9.
Phialocephala fortinii is a dark septate fungal endophyte that colonizes roots of many host species. Its effect on plant growth varies from being pathogenic to beneficial. The basic biology of this species has received little research, and thus the main objectives of this study were to determine cytological features of hyphae, including the nature of the vacuolar system, and whether polyphosphate was present in vacuoles. Both living hyphae and hyphae that had been rapidly frozen and freeze substituted before embedding were studied. A complex system of vacuoles, including a motile tubular vacuolar system, elongated vacuoles, and spherical vacuoles, was demonstrated in living hyphae by the fluorescent probe Oregon Green 488 carboxylic acid diacetate, using laser scanning confocal microscopy. The motile tubular vacuolar system was more prevalent at the hyphal tip than in more distal regions, whereas elongated vacuoles and spherical vacuoles were more abundant distal to the tip. All vacuoles contained polyphosphate as shown by labelling embedded samples with recombinant polyphosphate binding domain of Escherichia coli exopolyphosphatase, containing Xpress tag at the N-terminal end, followed by anti-Xpress antibody and a secondary antibody conjugated either to a fluorescent probe for laser scanning confocal microscopy or colloidal gold for transmission electron microscopy. The polyphosphate was dispersed in vacuoles. This was confirmed by staining embedded samples with 4',6-diamidino-2-phenylindole and viewing with UV light using epifluorescence microscopy. These cytological methods showed that the tubular vacuolar system had lower concentrations of polyphosphate than the spherical vacuoles. Lipid bodies were present around vacuoles.  相似文献   

10.
Summary The jejunal absorptive cells of the salamander Amphiuma, when examined using transmission electron microscopy, were found to possess a unique type of intracellular vacuole containing membranous tubules. These vanoles, tentatively named multitubular bodies, were located in the cytoplasm between the nucleus and the brush-border membrane, and were seen with greatest frequency in the summer and fall. The vacuoles containing multitubular bodies had an average diameter of 0.6 m, and the membranous tubules within had an average diameter of 30 nm. The tubules differed morphologically from the vesicles in the multivesicular bodies, and from the primary lysosomes in the polylysosomal vacuoles. The tubules did not exhibit acid phosphatase activity, and were of similar diameter and membrane thickness as the Golgi saccules. In contrast to the multivesicular bodies, the multitubular bodies did not take up exogenous horseradish peroxidase. Early forms of autophagosomes resembling these vacuoles were often seen in the para-Golgi region of the cell. The multitubular bodies may represent a distinct type of autophagosome. Although the exact origin of the tubules as well as their role in cellular activity is unclear, their seasonal appearance within the multitubular bodies of the absorptive cells suggests a unique means of selective down-regulation of Golgi-like organelles.  相似文献   

11.
The stability of cnidarian-dinoflagellate endosymbioses is dependent upon communication between the host gastrodermal cell and the symbionts housed within it. Although the molecular mechanisms remain to be elucidated, existing evidence suggests that the establishment of these endosymbioses may involve the sorting of membrane proteins. The present study examined the role of host gastrodermal membranes in regulating symbiont (genus Symbiodinium) photosynthesis in the stony coral Euphyllia glabrescens. In comparison with the photosynthetic behavior of Symbiodinium in culture, the Symbiodinium populations within isolated symbiotic gastrodermal cells (SGCs) exhibited a significant degree of photo-inhibition, as determined by a decrease in the photochemical efficiency of photosystem II (F v/F m). This photo-inhibition coincided with increases in plasma membrane perturbation and oxidative activity in the SGCs. Membrane trafficking in SGCs was examined using the metabolism of a fluorescent lipid analog, N-[5-(5,7-dimethyl boron dipyrromethene difluoride)-1-pentanoyl]-D-erythro-Sphingosylphosphoryl-choline (BODIPY-Sphingomyelin or BODIPY-SM). Light irradiation altered both membrane distribution and trafficking of BODIPY-SM, resulting in metabolic changes. Cholesterol depletion of the SGC plasma membranes by methyl-??-cyclodextrin retarded BODIPY-SM degradation and further augmented Symbiodinium photo-inhibition. These results indicate that Symbiodinium photo-inhibition may be related to perturbation of the host gastrodermal membrane, providing evidence for the pivotal role of host membrane trafficking in the regulation of this environmentally important coral-dinoflagellate endosymbiosis.  相似文献   

12.
Cnidaria–dinoflagellate endosymbiosis is the phenomenon of autotrophic symbionts living inside the gastrodermal cells of their animal hosts. The molecular mechanism that regulates this association remains unclear. Using quantitative microscopy, we now provide evidence that the dynamic lipid changes in gastrodermal “lipid bodies” (LBs) reflect the symbiotic status of the host cell and its symbiont in the hermatypic coral Euphyllia glabrescens. By dual-emission ratiometric imaging with a solvatochromic fluorescent probe, Nile red (9-diethylamino-5H-benzo[α]phenoxazine-5-one), we showed that the in situ distribution of polar versus neutral lipids in LBs in living gastrodermal cells and symbionts can be analyzed. The ratio of Nile red fluorescence at red (R) versus green (G) wavelength region (i.e., R/G ratio) correlated with the relative molar ratio of polar (P) versus neutral (NP) lipids (i.e., P/NP ratio). The R/G ratio in host LBs increased after bleaching, indicating a decrease in neutral lipid accumulation in gastrodermal cells. On the other hand, neutral lipid accumulation inside the symbiont LBs resulted in gradual decreases of the R/G ratio as a result of bleaching. In comparison with the bleaching event, there was no relative lipid concentration change in host LBs under continual light or dark treatments as shown by insignificant R/G ratio shift. Patterns of R/G ratio shift in symbiont LBs were also different between corals undergoing bleaching and continual light/dark treatment. In the latter, there was little lipid accumulation in symbionts, with no resulting R/G ratio decrease. These results, demonstrating that the symbiotic status positively correlated with morphological and compositional changes of lipid bodies, not only highlight the pivotal role of LBs, but also implicate an involvement of lipid trafficking in regulating the endosymbiosis.  相似文献   

13.
Vacuoles were isolated from Acer pseudoplatanus cell suspension culture using a one-step procedure involving the lysis of the protoplast plasmalemma through a gradient of Ficoll containing DEAE-Dextran. The vacuole suspensions were slightly contaminated by other organelles (less than 5%) and the isolated vacuoles readily accumulated neutral red. Since α-mannosidase was located exclusively in the vacuoles it was used as a convenient marker. It was shown that the number of vacuoles per protoplast decreased as the cell aged. Studies on the biochemical composition of the isolated vacuoles indicated that amino acids, organic acids and protein contents varied with the cell culture cycle, emphasizing the dynamic status of the vacuolar system in cell suspension cultures of Acer pseudoplatanus.  相似文献   

14.
Routine electron microscopy in combination with subcellular localization of acid phosphatase has been employed to study the formation and fate of residual cytoplasmic bodies extruded into the tubular lumen shortly before spermiation. Prior to extrusion the spermatid cytoplasm contains lipid droplets, mitochondria, ribosomes, endoplasmic reticulum, the caudally migrated Golgi apparatus, and numerous multivesicular and multigranular bodies. These membrane-limited bodies and the Golgi zone stain heavily for acid phosphatase. Following extrusion the residual bodies undergo a series of alterations: (1) disruption of multigranular bodies with release of free granules; (2) sequestration of granules, ribosomes, and reticulum inside double-membrane-limited vacuoles derived from Golgi lamellae; (3) appearance of numerous, single-membrane-bound, cytoplasmic vacuoles; (4) fragmentation; (5) peripheral migration toward the tubular wall; and (6) phagocytosis of these migrating fragments by the Sertoli cells. The demonstration of acid phosphatase activity within free granules, the sequestering Golgi lamellae, and both classes of vacuoles suggests that initial residual body degradation occurs through lysosomal cytoplasmic autophagy.  相似文献   

15.
Protein bodies in embryonic axes of soybean seeds have inclusion structures containing phytin globoids. Biogenesis of the protein bodies during seed development was examined by transmission electron microscopy. Protein bodies in embryonic axes originated from central vacuoles. The central vacuole in embryonic axes subdivided into smaller vacuoles with internal membranous structure. Then the subdivided vacuoles were directly associated with rough endoplasmic reticulum (rER), and were filled with proteinaceous matrix from the peripheral region. The increase of matrix was simultaneous with accumulation of β-conglycinin estimated by SDS-polyacrylamide gel electrophoresis. Glycinin-rich granules that had been found in developing cotyledons were not observed in embryonic axes. After proteinaceous matrix filled the protein bodies, electron-transparent regions presumably surrounded by a single membrane appeared in the matrix. Phytin globoids were constructed in this internal structures of protein bodies as the final step of protein body formation.  相似文献   

16.
Two forms of p-nitrophenyl α-D-mannosidase and p-nitrophenyl α-D-galactosidase were purified from the protein bodies of mature Lupinus angustifolius seeds. A MW of 300 000 was calculated for both α-mannosidase A and B with Km = 1.92 and 2.70 mM and activation energies of 10.9 and 10.8 kcal/mol, respectively. α-Galactosidase I and II had MWs of 70800 and 17000 with Km = 0.282 and 0.556 mM and activation energies 17.7 and 11.5 kcal/mol, respectively. The enzymes had acid pH optima and were inhibited by various metal ions, carbohydrates and glycoproteins. They were able to release free sugar from several putative natural substrate oligosaccharides and the Lupinus storage glycoprotein, α-conglutin.  相似文献   

17.
SYNOPSIS. The ultrastructure of Lankesterella hylae was studied and numerous points of similarity to Plasmodium, Toxoplasma, Sarcocystis and Lankesterella garnhami were found. The protozoa were intracellular and lay within vacuoles containing vesicles, unusual membrane formations and dense granular material. The parasite was invested by a double membrane and had a micropyle, as well as membranous processes extending from the surface. At the anterior end were conoid and apical rings. The cell contained a nucleus, nucleolus, bipolar paranuclear vacuoles or bodies, a series of microtubules beneath the pellicle, endoplasmic reticulum, mitochondria, toxonemes and a variety of vacuoles. In addition, dense particles, similar to those related to the endoplasmic reticulum, were scattered throughout the cytoplasm.
The unusual membrane formations and vesicles in the periparasitic vacuoles were striking observations possibly related to the nutrition of the parasite.  相似文献   

18.
Hydrolases in vacuoles from castor bean endosperm   总被引:22,自引:15,他引:7       下载免费PDF全文
Vacuoles were prepared from endosperm tissue of 4-day-old castor bean seedlings (Ricinus communis var. Hale) and purified on a stepped sucrose gradient. It was shown by assays of marker enzymes that there was only trace contamination of the final preparation by other organelles (mitochondria, glyoxysomes, nuclei, spherosomes, and plastids) and by cytoplasmic components. Hydrolytic enzymes (acid protease, carboxypeptidase, phosphodiesterase, RNAase, phytase and β-glucosidase) were present in the isolated vacuoles in amounts indicating a primarily vacuolar localization in vivo. The vacuoles also contained storage protein and high concentrations of sucrose. The over-all results indicate that the vacuoles from castor bean endosperm are the site of hydrolysis of the constituents of the protein bodies and are a temporary storage compartment for the sucrose produced from fat and protein reserves.  相似文献   

19.
The relation between autophagy and apoptosis has not been clearly elucidated. Here, we reported that apoptosis followed autophagy in insect Spodoptera litura cells (Sl) undergoing glucose starvation. Sl cells have been adapted to Leibovitz-15 medium supplemented with glucose (1.0 g/l) and 5% fetal bovine serum (FBS), used for mammalian cell cultures. If glucose (1 g/l) or glutamine (1.6 g/l) had not been supplemented in L-15 medium with 5% FBS, Sl cells began to form many vacuoles and these vacuoles gradually enlarged in the cytoplasm, which were autophagic vacuoles. However, these large vacuoles began to disappear gradually after 48 h of glucose starvation, accompanied with remarkable apoptosis without apoptotic bodies, which was demonstrated by DNA fragmentation and activation of caspase-3-like. During glucose starvation, Sl cell ATP concentrations gradually decreased. Interestingly, if the conditioned L-15 medium without glucose was replaced with fresh L-15 medium supplemented with glucose or glutamine after the cultures had been starved seriously for 48 h or longer, the formation of apoptotic bodies was initiated. These data suggested that the partial depletion of cell ATP triggered apoptosis following autophagy in glucose-starved Sl cells and the formation of apoptotic bodies required higher level of ATP than DNA fragmentation and activation of caspase-3-like activity. Additionally, the disappearance of autophagic vacuoles, negative staining of neutral red, green staining of acridine orange and diffusion of acid phosphatase activity in Sl cells at the late stage of starvation (over 48 h) suggested that the dysfunction of lysosome was more likely to involve in apoptosis. The facts that Actinomycin D-induced apoptosis was partially inhibited and cyclosporin A, blocking the opening of mitochondrial permeability transition (MPT) pores, inhibited partially apoptosis in glucose-starved Sl cells, suggested the pathway of glucose starvation-induced apoptosis seemed to be different from that induced by actinomycin D and the opening of MPT pores on mitochondria probably involved in apoptosis triggered by glucose starvation, respectively.  相似文献   

20.
Cytoplasmic annulate lamellae have been observed to occur only in a subset of the gastrodermal cell population of regenerating planarians. They have not been found in the gastrodermal cells of intact, non-injured worms, nor in any other somatic cell type. These observations plus the presence of numerous chromatoid bodies in the same cells are consistent with the hypothesis that these cells are altering their state of differentiation and are preparing for division. It is further suggested that these cells are the precursors to the definitive somatic stem cells, the beta cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号