首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multispecific antigen-binding fragments (Fab) from rabbit antisera against rat very low density lipoproteins (VLDL) and Fab against rat low density lipoproteins that were monospecific for the B apoprotein were conjugated to horseradish peroxidase. Conjugates were incubated with 6-mum frozen sections from fresh and perfusion-fixed livers and with tissue chopper sections (40 mum thick) from perfusion-fixed livers. In the light microscope, specific reaction product was present in all hepatocytes of experimental sections as intense brown to black spots whose locations corresponded to the distribution of the Golgi apparatus: along the bile canaliculi, near the nuclei, and between the nuclei and bile canaliculi. Perfusion fixation with formaldehyde produced satisfactory ultrastructural preservation with retention of lipoprotein antigenic determinants. In the electron microscope, patches of cisternae and ribosomes of the rough endoplasmic reticulum (ER) and particularly its smooth-surfaced ends, vesicles located between the rough ER and the Golgi apparatus, the Golgi apparatus and its secretory vesicles and VLDL particles in the space of Disse all bore reaction product. The tubules and vesicles of typical hepatocyte smooth ER did not contain reaction product, nor did the osmiophilic particles contained therin. The localization obtained in this study together with other evidence suggests a sequence for the biosynthesis of VLDL that differs in some respects from that proposed by others: (a) the triglyceride-rich particle originates in smooth ER where triglycerides are synthesized; (b) at the junction of the smooth and rough ER the particle receives apoproteins synthesized in the rough ER; (c) specialized tubules transport the particle, now a nascent lipoprotein, to the Golgi apparatus where concentration occurs in secretory vesicles; (d) secretory vesicles move to the sinusoidal surface where the particles are secreted into the space of Disse by fusion of the vesicular membrane with the plasma membrane of the hepatocyte.  相似文献   

2.
The virus-host interactions between Japanese encephalitis (JE) virus and mouse brain neurons were analyzed by electron microscopy. JE virus replicated exclusively in the rough endoplasmic reticulum (RER) of neurons. In the early phase of infection, the perikaryon of infected neurons had relatively normal-looking lamellar RER whose cisternae showed focal dilations containing progeny virions and characteristic endoplasmic reticulum (ER) vesicles. The reticular RER, consisted of rows of ribosomes surrounding irregular-shaped, membrane-unbounded cisternae and resembled that observed in JE-virus-infected PC12 cells, were also seen adjacent to the lamellar RER. The appearance of the reticular RER indicated that RER morphogenesis occurred in infected neurons in association with the viral replication. The fine network of Golgi apparatus was extensively obliterated by fragmentation and dissolution of the Golgi membranes and their replacement by the electron-lucent material. As the infection progressed, the lamellar RER was increasingly replaced by the hypertrophic RER which had diffusely dilated cisternae containing multiple progeny virions and ER vesicles. The Golgi apparatus, at this stage, was seen as coarse, localized Golgi complexes near the hypertrophic RER. In the later phase of infection, RER of infected neurons showed a degenerative change, with the cystically dilated cisternae being filled with ER vesicles and virions. Small, localized Golgi complexes frequently showed vesiculation, vacuolation, and dispersion. The present study, therefore, indicated that during the viral replication the normal lamellar RER which synthesized neuronal secretory and membrane proteins was replaced by the hypertrophic RER which synthesized the viral proteins. The hypertrophic RER eventually degenerated into cystic RER whose cisternae were filled with viral products. The constant degenerative change which occurred in the Golgi apparatus during the viral replication suggested that some of the viral proteins transported from RER to the Golgi apparatus were harmful to the Golgi apparatus and that increasing damage to the Golgi apparatus during the viral replication played the principal role in the pathogenesis of JE-virus-infected neurons in the central nervous system.  相似文献   

3.
Rat pancreatic islets cultured for 6 days at 100 or 500 mg/dl glucose and 20 or 7% O2 were examined electron-microscopically, and insulin accumulation in the culture media was assayed immunologically. In the islets cultured at 500 mg/dl glucose and 20% O2, B cells exhibited hypertrophy of granular endoplasmic reticulum and Golgi apparatus, an abundance of free ribosomes, degranulation and the margination of secretory granules. In islets cultured at 500 mg/dl glucose and 7% O2, B cells exhibited dilatation of endoplasmic reticulum cisternae and dominance of Golgi vesicles in addition to the above-mentioned changes. These changes, together with the correlated data on insulin accumulation, are discussed with special reference to the effects of glucose and oxygen upon the synthesis and release of insulin in B cells.  相似文献   

4.
U. Kristen 《Planta》1977,133(2):161-167
In the ovary of Aptenia cordifolia and Platythyra haeckeliana placentary papillae produce a slime containing polysaccharides and proteins. These papillae show two types of conspicuous vacuoles enclosed by rough ER cisternae and complexes of concentrically arranged rough ER. The enclosed vacuoles probably play an important role in the accumulation of the polysaccharide-protein slime. In the case of storage vesicles (first vacuole type) derivates of the Golgi apparatus are enclosed by ER. In other instances (second vacuole type) ER cisternae which have lost their membrane-bound ribosomes seem to delimit protoplasmic regions free of organelles.
  相似文献   

5.
SEGREGATION AND PACKAGING OF GRANULE ENZYMES IN EOSINOPHILIC LEUKOCYTES   总被引:43,自引:21,他引:22       下载免费PDF全文
During their differentiation in the bone marrow, eosinophilic leukocytes synthesize a number of enzymes and package them into secretory granules. The pathway by which three enzymes (peroxidase, acid phosphatase, and arylsulfatase) are segregated and packaged into specific granules of eosinophils was investigated by cytochemistry and electron microscopy. During the myelocyte stage, peroxidase is present within (a) all rough ER cisternae, including transitional elements and the perinuclear cisterna; (b) clusters of smooth vesicles at the periphery of the Golgi complex; (c) all Golgi cisternae; and (d) all immature and mature specific granules. At later stages, after granule formation has ceased, peroxidase is not seen in ER or Golgi elements and is demonstrable only in granules. The distribution of acid phosphatase and arylsulfatase was similar, except that the reaction was more variable and fully condensed (mature) granules were not reactive. These results are in accord with the general pathway for intracellular transport of secretory proteins demonstrated in the pancreas exocrine cell by Palade and coworkers. The findings also demonstrate (a) that in the eosinophil the stacked Golgi cisternae participate in the segregation of secretory proteins and (b) that the entire rough ER and all the Golgi cisternae are involved in the simultaneous segregation and packaging of several proteins.  相似文献   

6.
Summary The formation of three types of vesicles in the oomycetePhytophthora cinnamomi was investigated using ultrastructural and immunocytochemical techniques. All three vesicles are synthesised at the same time; one type serves a storage role; the others undergo regulated secretion. A monoclonal antibody Lpv-1 that is specific for glycoproteins contained in the storage vesicles labelled the endoplasmic reticulum (ER), elements in the transition region between ER and Golgi stack, and cis, medial and trans Golgi cisternae. Cpa2, a monoclonal antibody specific for glycoproteins contained within secretory dorsal vesicles labelled the transition region, cis cisternae and a trans-Golgi network. Vesicles possessing a structure characteristic of mature secretory ventral vesicles were observed in close association with the trans face of Golgi stacks. The results suggest that all three vesicles are formed by the Golgi apparatus. Double immunogold labelling with Lpv-1 and Cpa-2 showed that these two sets of glycoproteins occurred within the same Golgi cisternae, indicating that both products pass through and are sorted concurrently within a single Golgi stack.  相似文献   

7.
When transport between the rough endoplasmic reticulum (ER) and Golgi complex is blocked by Brefeldin A (BFA) treatment or ATP depletion, the Golgi apparatus and associated transport vesicles undergo a dramatic reorganization. Because recent studies suggest that coat proteins such as beta-COP play an important role in the maintenance of the Golgi complex, we have used immunocytochemistry to determine the distribution of beta-COP in pancreatic acinar cells (PAC) in which ER to Golgi transport was blocked by BFA treatment or ATP depletion. In controls, beta-COP was associated with Golgi cisternae and transport vesicles as expected. Upon BFA treatment, PAC Golgi cisternae are dismantled and replaced by clusters of remnant vesicles surrounded by typical ER transitional elements that are generally assumed to represent the exit site of vesicular carriers for ER to Golgi transport. In BFA-treated PAC, beta-COP was concentrated in large (0.5-1.0 micron) aggregates closely associated with remnant Golgi membranes. In addition to typical ER transitional elements, we detected a new type of transitional element that consists of specialized regions of rough ER (RER) with ribosome-free ends that touched or extended into the beta-COP containing aggregates. In ATP-depleted PAC, beta-COP was not detected on Golgi membranes but was concentrated in similar large aggregates found on the cis side of the Golgi stacks. The data indicate that upon arrest of ER to Golgi transport by either BFA treatment or energy depletion, beta-COP dissociates from PAC Golgi membranes and accumulates as large aggregates closely associated with specialized ER elements. The latter may correspond to either the site of entry or exit for vesicles recycling between the Golgi and the RER.  相似文献   

8.
The subcommissural organ (SCO) of the golden hamster (Mesocricetus auratus) was studied by conventional electron microscopy, freeze-fracture technique, zinc-iodide-osmium (ZIO) and acid phosphatase cytochemical reactions. The ultrastructure of hamster SCO cells shows a few flattened cisternae of rough endoplasmic reticulum (ER) without dilated ones in the cytoplasm. The Golgi apparatus is very well developed. Freeze-fracture studies also indicate only short profiles of flattened ER in the cytoplasm endorsing the absence of dilated ER cisternae. After the treatment with ZIO mixture, reaction products were observed over flattened cisternae of the ER and the nuclear envelope. The Golgi apparatus was also reactive toward the ZIO mixture. Acid phosphatase activities are localized in the inner one or two saccules of the Golgi apparatus and dense bodies. From these results we suggest that (1) hamster SCO cells do not accumulate secretory material in the cytoplasm in the form of discrete secretory granules or dilated cisternae of ER, and (2) hamster SCO cells may possess extremely high secretory activity or may not be actively involved in secretory function at all as in rats or other rodents.  相似文献   

9.
Summary In mice most of the ependymal cells of the subcommissural organ (SCO cells) are densely packed with dilated cisternae of the endoplasmic reticulum (ER) containing either finely granular or flocculent materials. The well developed supra-nuclear Golgi apparatus consists of stacks of flattened saccules and small vesicles; the two or three outer Golgi saccules are moderately dilated and exhibit numerous fenestrations; occasional profiles suggesting the budding of coated vesicles and formation of membrane-bound dense bodies from the ends of the innermost Golgi saccules are seen. A few coated vesicles and membrane-bound dense bodies of various sizes and shapes are also found in the Golgi region.The contents of the dilated ER cisternae are stained with periodic acid-silver methenamine techniques. In the Golgi complex the two or three inner saccules are stained as deeply as the dense bodies, and the outer saccules are only slightly stained. The stained contents of ER cisternae are more electron opaque than those of the outer but less opaque than those of the inner Golgi saccules and the dense bodies.Acid phosphatase activities are localized in the dense bodies, some of the coated vesicles in the Golgi region, and in the one or two inner Golgi saccules.On the basis of these results the following conclusions have been reached: (1) In mouse SCO cells the finely granular and the flocculent materials in the lumen of ER cisternae contain a complex carbohydrate(s) which is secreted into the ventricle to form Reissner's fiber; (2) the secretory substance is assumed to be synthesized by the ER and stored in its cisternae, and the Golgi apparatus might play only a minor role, if any, in the elaboration of the secretory material; (3) most of the dense bodies in the mouse SCO cells are lysosomal in nature instead of being so-called dark secretory granules.Sponsored by the National Science Council, Republic of China.  相似文献   

10.
The gastrodermal Golgi apparatus of adult Schistosoma mansoni displays two distinct morphologies. In one type, there is an identifiable cis (forming) face where vesicles from the endoplasmic reticulum fuse to form the cisternae. A morphological change occurs in the cisternae as the trans (emitting) face is approached with the cisternae becoming progressively flattened. The cisternae at the emitting face produce a membrane-bound secretory granule with moderately electron-dense contents and a vacuolar structure that may be analogous to a condensing vacuole as reported in several vertebrate secretory cells. In a second type, vesicles possessing a thicker membrane than those of the transfer vesicles are observed at the emitting face. They are not observed when the secretory granules are present. Several cytochemical markers were used to aid in studying the polarity of the Golgi apparatus. Enzymes studied were thiamine pyrophosphatase (TPPase) (EC 3.6.1.1), nucleoside diphosphatase (NDPase) (EC 3.6.1.6) using uridine diphosphate as a substrate, and nicotinamide adenine dinucleotide phosphatase (NADPase) (EC 3.1.3.2). Reaction products from all enzyme markers were observed in the cisternae and, to some extent, in the transfer vesicles. At times, NADPase and TPPase reaction products were observed in all cisternae and in the transfer vesicles of the Golgi. When this distribution was evident, the latter vesicles were observed in clusters occasionally fusing with lipid-like globules dispersed throughout the gastrodermis. Heterogeneity in cisternae was observed when NDPase, TPPase, and osmium reduction techniques were used. NDPase activity was limited to the middle cisternae while reduced osmium was observed in the outer two cisternae and in some transfer vesicles. TPPase reaction product was also observed in the secretory granules and in the condensing vacuoles. It is hypothesized that a functional bipolarity may be demonstrated by the Golgi. Under certain stress conditions, the forming face of the Golgi may package lysosomal enzymes while the emitting region of the Golgi appears to be responsible for the packaging of the secretory granules. The fusion of transfer vesicles and, at times, secretory granules with lipid-like globules is postulated to represent a mechanism by which enzymes may be transported to the lumen of the cecum.  相似文献   

11.
It has been established by electron microscopic radioautography of guinea pig pancreatic exocrine cells (Caro and Palade, 1964) that secretory proteins are transported from the elements of the rough-surfaced endoplasmic reticulum (ER) to condensing vacuoles of the Golgi complex possibly via small vesicles located in the periphery of the complex. To define more clearly the role of these vesicles in the intracellular transport of secretory proteins, we have investigated the secretory cycle of the guinea pig pancreas by cell fractionation procedures applied to pancreatic slices incubated in vitro. Such slices remain viable for 3 hr and incur minimal structural damage in this time. Their secretory proteins can be labeled with radioactive amino acids in short, well defined pulses which, followed by cell fractionation, makes possible a kinetic analysis of transport. To determine the kinetics of transport, we pulse-labeled sets of slices for 3 min with leucine-14C and incubated them for further +7, +17, and +57 min in chase medium. At each time, smooth microsomes ( = peripheral elements of the Golgi complex) and rough microsomes ( = elements of the rough ER) were isolated from the slices by density gradient centrifugation of the total microsomal fraction. Labeled proteins appeared initially (end of pulse) in the rough microsomes and were subsequently transferred during incubation in chase medium to the smooth microsomes, reaching a maximal concentration in this fraction after +7 min chase incubation. Later, labeled proteins left the smooth microsomes to appear in the zymogen granule fraction. These data provide direct evidence that secretory proteins are transported from the cisternae of the rough ER to condensing vacuoles via the small vesicles of the Golgi complex.  相似文献   

12.
Summary We have studied the sites of synthesis, assembly, and secretion of apoVLDL-II, a major apoprotein in very low density lipoproteins (VLDL), in the cockerel liver by immunoelectron microscopy. In the liver of the estrogen-treated cockerel, apoVLDL-II reaction products were localized in the cisternae of the nuclear envelope and the rough endoplasmic reticulum (RER). Such products were not observed in the smooth endoplasmic reticulum (SER). ApoVLDL-II reaction products were also located on the surface of lipid particles in the Golgi apparatus and secretory vesicles. Such lipid particles were not detected in the RER or SER. Some secretory vesicles containing the reaction products were seen during the process of fusion with the plasma membrane. Such fusion took place against the plasma membrane lining the space of Disse as well as the intercellular spaces. Reaction products also occurred in the sinusoids. These observations are compatible with the following sequence of events in the synthesis, assembly and secretion of apoproteins in VLDL in the cockerel liver: ApoVLDL-II is synthesized on bound ribosomes attached to the nuclear envelope and RER, and is discharged into their cisternae. The protein is probably transported to the Golgi apparatus where the assembly of this protein and its lipid components probably takes place. Secretory vesicles derived from the Golgi apparatus carry the VLDL particles to the plasma membrane where secretion of these particles takes place by exocytosis, and the VLDL are discharged into the sinusoid via both the space of Disse and intercellular spaces.This work was supported by Grants 78-1102 from the American Heart Association, and HL-16512 from the NIH  相似文献   

13.
The method of secretory granuleformation in the acinar cells of the rat exorbital lacrimal gland was studied by electron microscope morphological and cytochemical techniques. Immature secretory granules at the inner face of the Golgi apparatus were frequently attached to a narrow cisternal structure similar to GERL as described in neurons by Novikoff et al. (Novikoff, P. M., A. B. Novikoff, N. Quintana, and J.-J. Hauw. 1971. J. Cell Bio. 50:859-886). In the lacrimal gland. GERL was located adjacent to the inner Golgi saccule, or separated from it by a variable distance. Portions of GERL were often closely paralleled by modified cisternae of rough endoplasmic reticulum (RER), which lacked ribosomes on the surface adjacent to GERL. Diaminobenzidine reaction product of the secretory enzyme peroxidase was localized in the cisternae of the nuclear envelope, RER, peripheral Golgi vesicles, Golgi saccules, and immature and mature secretory granules. GERL was usually free of peroxidase reaction product or contained only a small amount. Thiamine pyrophosphatase reaction product was present in two to four inner Golgi saccules; occasionally, the innermost saccule was dilated and fenestrated, and contained less reaction product than the next adjacent saccule. Acid phosphatase (AcPase) reaction product was present in GERL, immature granules, and, rarely, in the innermost saccule, but not in the rest of the Golgi saccules. Thick sections of AcPase preparations viewed at 100 kV revealed that GERL consisted of cisternal, and fenestrated or tublular portions. The immature granules were attached to GERL by multiple connections to the tublular portions. These results suggest that, in the rat exorbital lacrimal gland, the Golgi saccules participate in the transport of secretory proteins, and that GERL is involved in the formation of secretory granules.  相似文献   

14.
Summary The toxic effect of pentachlorophenol (PCP) on the growth and ultrastructure of tobacco pollen tubes was tested using a semivivo technique of tube culture. In this technique the pollen tubes were allowed to grow in the pistilin situ for 24 hr before they protruded from the cut end of the style and came into contact with the medium containing PCP. The inhibitory effect of different PCP concentrations was determined by measuring the length of tube bundles. The intracellular action of PCP was analysed by electron microscopy. This biocide caused four obvious alterations in the pollen tube ultrastructure: (1) swelling of the mitochondrial saccules; (2) enlargement of the dictyosomes by the increase of the cisternal diameter and the number of cisternae per stack; (3) formation of cup-shaped Golgi apparatus-endoplasmic reticulum hybrid structures (GER hybrids) showing continuities of ER and Golgi cisternae; (4) formation of stacked and/or concentric arrangements of rough ER cisternae. It is suggested that swelling of saccules was directly due to the uncoupling of oxidative phosphorylation whereas the changes of the endomembrane system were caused by energy depletion due to the inhibition of ATP synthesis. These changes are consistant with dynamic concepts of dictyosome and ER function when membrane formation exceeds membrane use in the production of secretory and transition vesicles. Thus, the enlargement of the dictyosomes and the formation of GER hybrids are thought to result from inhibition of budding of vesicles from the Golgi apparatus or from both the ER and the Golgi apparatus, respectively.  相似文献   

15.
CHLAMYDOMONAS NOCTIGAMA has a non-motile Golgi apparatus consisting of several Golgi stacks adjacent to transitional ER. These domains are characterized by vesicle-budding profiles and the lack of ribosomes on the side of the ER proximal to the Golgi stacks. Immunogold labelling confirms the presence of COPI-proteins at the periphery of the Golgi stacks, and COPII-proteins at the ER-Golgi interface. After addition of BFA (10 microg/ml) a marked increase in the number of vesicular profiles lying between the ER and the Golgi stacks is seen. Serial sections of cells do not provide any evidence for the existence of tubular connections between the ER and the Golgi stacks, supporting the notion that COPI- but not COPII-vesicle production is affected by BFA. The fusion of COPII-vesicles at the CIS-Golgi apparatus apparently requires the presence of retrograde COPI-vesicles. After 15 min the cisternae of neighbouring Golgi stacks begin to fuse forming "mega-Golgis", which gradually curl before fragmenting into clusters of vesicles and tubules. These are surrounded by the transitional ER on which vesicle-budding profiles are still occasionally visible. Golgi remnants continue to survive for several hours and do not completely disappear. Washing out BFA leads to a very rapid reassembly of Golgi cisternae. At first, clusters of vesicles are seen adjacent to transitional ER, then "mini Golgis" are seen whose cisternae grow in length and number to produce "mega Golgis". These structures then divide by vertical fission to produce Golgi stacks of normal size and morphology roughly 60 min after drug wash-out.  相似文献   

16.
Different localizations of secretory material are noted in adult and fetal subcommissural organ (SCO) in light microscopy. At the electron microscope level, the secretory ependymocytes reveal frequent associations among mitochondria and ribosomes of the endoplasmic reticulum (ER). In the SCO ependymocytes of the adult rat, the relationship between mitochondria and ribosomes of the ER is observed in the subgolgian zone, the ER cisternal profiles are smooth except where they face the mitochondria. Here, a constant interval of 40-45 nm separates the ribosome-coated ER membrane from the external membrane of the mitochondria. This association evidences a functional cooperation between mitochondria and ER, at least in some phases of the synthesis of the organ's gliosecretory material. By contrast, in the fetus (17-21 fetal day), the synthetic apparatus displays an entirely granular ER. The secretory products are stored as flocculent material which fills the ER cisternae. In the apical zone of the ependymocytes, as the membrane of the dense secretory granules fuses with the apical plasmalemma, the granules release their contents into the ventricular cavity. A possible link between the releasing process and the coated vesicles is discussed.  相似文献   

17.
Summary An electron microscopic study of cress (Lepidium sativum L.) roots treated with cyclopiazonic acid (CPA), an inhibitor of the Ca2+-ATPase in the endoplasmic reticulum (ER) has been carried out. Drastic changes in the endomembrane system of the secretory root cap cells were observed. After treatment with CPA dense spherical or elliptoidal aggregates of ER (diameter 2–4 m) were formed in addition to the randomly distributed ER cisternae characteristic for control cells. The formation of ER aggregates indicates that in spite of an inhibition of the Ca2+ -ATPase in the ER by CPA, membrane synthesis in the ER continued. The ER aggregates are interpreted as a reservoir of ER membrane material newly synthesized during the 2 h CPA-treatment. Hypertrophied Golgi cisternae and secretory vesicles, which are characteristic for secretory cells under control conditions, were completely absent. Additionally the shape of the Golgi stacks was flat and the diameter of the cisternae was shortened by about one third. These phenomena are indicative of an inactive state of the Golgi apparatus. The cellular organization of both other cell types of the root cap, meristematic cells and statocytes, was not visibly affected by CPA, both having a relatively low secretory activity. The formation of ER aggregates as well as the reduction of Golgi compartments are indications for the existence of a unidirectional transport of membrane material from the ER to the Golgi. It is suggested that the membrane traffic from the ER to the Golgi apparatus is regulated by the cytosolic and/or luminal calcium concentration in secretory cells of the root cap.Abbreviations CPA cyclopiazonic acid - ER endoplasmic reticulum  相似文献   

18.
Summary In nongrowing secretory cells of plants, large quantities of membrane are transferred from the Golgi apparatus to the plasma membrane without a corresponding increase in cell surface area or accumulation of internal membranes. Movement and/or redistribution of membrane occurs also in trans Golgi apparatus cisternae which disappear after being sloughed from the dictyosome, and in secretory vesicles which lose much of their membrane in transit to the cell surface. These processes have been visualized in freeze-substituted corn rootcap cells and a structural basis for membrane loss during trafficking is seen. It involves three forms of coated membranes associated with the trans parts of the Golgi apparatus, with cisternae and secretory vesicles, and with plasma membranes. The coated regions of the plasma membrane were predominantly located at sites of recent fusion of secretory vesicles suggesting a vesicular mechanism of membrane removal. The two other forms of coated vesicles were associated with the trans cisternae, with secretory vesicles, and with a post Golgi apparatus tubular/vesicular network not unlike the TGN of animal cells. However, the trans Golgi network in plants, unlike that in animals, appears to derive directly from the trans cisternae and then vesiculate. The magnitude of the coated membrane-mediated contribution of the endocytic pathway to the formation of the TGN in rootcap cells is unknown. Continued formation of new Golgi apparatus cisternae would be required to maintain the relatively constant form of the Golgi apparatus and TGN, as is observed during periods of active secretion.  相似文献   

19.
Asymmetrical microtubule capping structures in frog palate cilia   总被引:3,自引:0,他引:3  
The three-dimensional ultrastructure of the Golgi apparatus in milk secreting epithelial cells of bovine mammary gland was explored. From computer-aided reconstructions of serial thin sections, it was determined that the Golgi apparatus was composed of a single set of stacked cisternae. The three-dimensional shape of the dictyosome varied from cell to cell, but the overall shape was that of a hollow cone, cylinder, or bowl. The cis and trans surfaces of the dictyosome were arranged in three-dimensional space such that the cis face was located on the outer surface of the hollow structure and the trans face on the inner surface. The cytoplasmic channel (secretory channel) that traversed the longitudinal axis of the hollow dictyosome contained secretory vesicles. Densely stacked cisternae of rough endoplasmic reticulum surrounded the dictyosome, and microvesicles appeared to fuse with, or bud from, cisternae of both organelles. These findings suggest that Golgi apparatus of the lactating epithelial cell is highly organized and that the Golgi apparatus and secretory channel are essentially an independent compartment within the cell.  相似文献   

20.
Insulin and C-peptide antigenic sites have been revealed in rat pancreatic B cells by applying immunohistochemical and cytochemical techniques. Fluorescein and rhodamine stains at the light-microscope level have detected both antigens in the same B cells. With the protein A-gold technique, labeling for both antigens was found in the cisternae of the rough endoplasmic reticulum, in those of the transitional elements, in all the cisternae of the Golgi apparatus except in the trans-most one, in the smooth but not in the coated vesicles, in the immature and mature secretory granules, and in some lysosomal (multigranular) structures. The fixation procedure used yielded excellent ultrastructural preservation which allowed for high resolution. The various control experiments demonstrated the high specificity of the results. Quantitative evaluations confirmed the qualitative observations in that they documented the specificity of the label and revealed the presence of an increasing gradient for both antigenic sites along the endoplasmic reticulum-Golgi-granule secretory pathway. The quantification also demonstrated various sites in which an increased labeling occurs: the rough endoplasmic reticulum, the smooth vesicles, the trans-cisternae of the Golgi apparatus, and the immature and the mature secretory granules. The Golgi apparatus was composed of three different subcompartments distinguished by their concentration of label. These include the cisternae on the cis-side, those on the trans-side, and the trans-most rigid cisternae. Since insulin and C-peptide form the proinsulin chain, their antigenic sites were found in the same locations along the secretory pathway; differences in location appeared only in the secretory granules, where insulin was concentrated in the core, while C-peptide was found in both the core and the halo of the granules. Furthermore, in the mature secretory granules displaying a crystalline core, insulin was restricted to the core, while C-peptide was confined to the halo. These results are in accord with the biochemical data, which indicate that simultaneous localization of both antigenic sites in compartments upstream to the immature secretory granules reflects their presence in the form of proinsulin. However, upon dissociation of proinsulin into insulin and C-peptide, both antigenic sites are segregated in different locations. The peptides appear to share parallel pathways and a fate which includes secretion through exocytosis or degradation by the lysosomal system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号