首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Some endocrine disrupting compounds such as phthalates and phenols act non-genomically by inhibiting the sulfotransferase (SULT 1E1 and SULT 1A1) isoforms which inactivate estrogens by sulfonation. A range of environmental phenolic contaminants and dietary flavonoids was tested for inhibition of the human SULT 1A1, 1E1 and 2A1 isoforms. In particular, the plasticisers 4-n-octyl- and 4-n-nonyl-phenol inhibit SULT 1E1 with IC50 values of 0.16 μM vs. 10 nM estradiol while the 2-substituted chlorophenols show similar values. Flavonoids are also SULT inhibitors; tricin is a competitive inhibitor of SULT 1E1 with a Ki of 1.5 ± 0.8 nM. In a small pilot study to determine whether ingestion of soy flavonoids would affect SULT1A1 activity in vivo as well as in vitro, sulfonation of daidzein was reduced in a group of women ‘at risk’ of breast cancer, as compared with controls, although the SULT 1A1*1/SULT 1A1*2 allele ratio was not different. Endocrine disrupting effects in man may be multifactorial when components from both the diet and the environment act at the same point in steroid metabolism.  相似文献   

3.
4.
Estrogen hormones are important for cartilage homeostasis, but nothing is known regarding the expression and role of the membrane G protein-coupled estrogen receptor (GPER), G protein-coupled receptor 30 (GPR30), in adult articular chondrocytes. Using immunohistochemistry of cartilage sections, quantitative real-time polymerase chain reaction and Western blot of chondrocyte extracts, we found that these cells express GPR30. Nonetheless, the pattern of bands detected by two distinct antibodies does not overlap, suggesting that the proteins detected represent partially degraded forms of the receptor. Treatment with GPR30 agonists did not induce Akt or ERK1/2 phosphorylation, two known GPR30-activated signaling pathways, suggesting that GPR30 is not functional in human chondrocytes. Therefore, the protective anti-osteoarthritic role of estrogen hormones in cartilage homeostasis is likely independent of GPR30. This study was performed using human cartilage collected from the distal femoral condyles of multiorgan donors at the Bone and Tissue Bank of the University and Hospital Center of Coimbra.  相似文献   

5.
G-protein-coupled receptor 30 (GPR30/GPER) belongs to the seven transmembrane receptor (7TMR) superfamily, the most common class of surface receptor with approximately 800 known members. GPER promotes estrogen binding and rapid signaling via membrane-associated enzymes resulting in increased cAMP and release of heparan bound epidermal growth factor (proHB-EGF) from breast cancer cells. However, GPER is predominately localized intracellularly in breast cancer cells with minor amounts of receptor on the cell surface, an observation that has caused some controversy regarding its potential role as a plasma membrane estrogen receptor. Using the widely employed approach of tracking recombinant 7TMRs by surface labeling live cells, we have begun to characterize and compare the endocytic fate of GPER to other similarly labeled 7TMRs. Upon ectopic expression in human embryonic kidney HEK-293 cells, functional GPER is generated as these cells acquire the capacity to stimulate cAMP and activate cyclic AMP responsive binding protein in response to estradiol-17 beta stimulation. GPER is detectable on the cell surface by immunofluorescent analysis using HA-specific antibodies, albeit the bulk of the receptor is located intracellularly. Like β1AR (beta 1 adrenergic receptor) and CXCR4 (C-X-C chemokine receptor 4), GPER exits the plasma membrane via clathrin-coated pits and enters early endosomes. Interestingly, GPER has a destination that is uncommon among 7TMRs, as it accumulates in a perinuclear compartment. Like many 7TMRs (approximately one-third), GPER trafficking from the plasma membrane is constitutive (occurs in the absence of agonist). However, its route of intracellular trafficking is highly unusual, as 7TMRs typically recycle to the plasma membrane (e.g. β1AR) or are degraded in lysosomes (e.g. CXCR4). The accumulation of GPER in the perinuclear space and its possible significance for attenuating estrogen action via this newly recognized membrane estrogen receptor is discussed herein.  相似文献   

6.
7.
Kenealy BP  Keen KL  Terasawa E 《Steroids》2011,76(9):861-866
Estrogens play a pivotal role in the control of female reproductive function. Recent studies using primate GnRH neurons derived from embryonic nasal placode indicate that 17β-estradiol (E2) causes a rapid stimulatory action. E2 (1 nM) stimulates firing activity and intracellular calcium ([Ca2+]i) oscillations of primate GnRH neurons within a few min. E2 also stimulates GnRH release within 10 min. However, the classical estrogen receptors, ERα and ERβ, do not appear to play a role in E2-induced [Ca2+]i oscillations or GnRH release, as the estrogen receptor antagonist, ICI 182,780, failed to block these responses. Rather, this rapid E2 action is, at least in part, mediated by a G-protein coupled receptor GPR30. In the present study we further investigate the role of ERα and ERβ in the rapid action of E2 by knocking down cellular ERα and ERβ by transfection of GnRH neurons with specific siRNA for rhesus monkey ERα and ERβ. Results indicate that cellular knockdown of ERα and ERβ failed to block the E2-induced changes in [Ca2+]i oscillations. It is concluded that neither ERα nor ERβ is required for the rapid action of E2 in primate GnRH neurons.  相似文献   

8.
9.
10.
11.
Vitellogenin (VTG) is a highly specific marker of exposure to environmental estrogens and has been used extensively in field and laboratory studies of estrogenic endocrine disruption in fishes. The purpose of this study was to develop and validate a sensitive, competitive, enzyme-linked immunosorbent assay (ELISA) specific for bluegill (Lepomis macrochirus) vitellogenin. Bluegill VTG was purified by anion exchange chromatography on DEAE-agarose. The polypeptide had an apparent mass of 170 kDa and was specifically recognized by the rabbit antiserum raised against bluegill female-specific plasma protein. Plasma samples from vitellogenic females diluted in parallel with the purified VTG standard curve in the ELISA. The detection limit of the assay was 29 ng/ml and the working range extended to 2700 ng/ml. Recovery of purified VTG was 85.8+/-9.5%, intra-assay variation was 6.4% and interassay variation was 12.3%. We used this ELISA to analyze the seasonal cycle of vitellogenesis in female bluegill and to evaluate potential disruption of this process by exposure to bleached kraft mill effluent (BKME). Captive female bluegill stocked in outdoor experimental streams in New Bern, NC had the lowest levels of VTG, estradiol-17beta (E2), and testosterone (T) and the smallest oocyte diameters in January, but these variables increased in March and remained elevated through August, suggesting an extended spawning season. Plasma VTG, E2, T and oocyte diameter were unaffected by exposure to BKME concentrations as high as 30%. Development of the VTG ELISA allowed rapid and convenient analysis of plasma samples to evaluate exposure to potential endocrine disrupting compounds.  相似文献   

12.
Glucocorticoids play an essential role in the regulation of key physiological processes, including immunomodulation, brain function, energy metabolism, electrolyte balance and blood pressure. Exposure to naturally occurring compounds or industrial chemicals that impair glucocorticoid action may contribute to the increasing incidence of cognitive deficits, immune disorders and metabolic diseases. Potentially, “glucocorticoid disruptors” can interfere with various steps of hormone action, e.g. hormone synthesis, binding to plasma proteins, delivery to target cells, pre-receptor regulation of the ratio of active versus inactive hormones, glucocorticoid receptor (GR) function, or export and degradation of glucocorticoids. Several recent studies indicate that such chemicals exist and that some of them can cause multiple toxic effects by interfering with different steps of hormone action. For example, increasing evidence suggests that organotins disturb glucocorticoid action by altering the function of factors that regulate the expression of 11β-hydroxysteroid dehydrogenase (11β-HSD) pre-receptor enzymes, by direct inhibition of 11β-HSD2-dependent inactivation of glucocorticoids, and by blocking GR activation. These observations emphasize on the complexity of the toxic effects caused by such compounds and on the need of suitable test systems to assess their effects on each relevant step.  相似文献   

13.
This paper reports the identification of a Rho family nucleotide exchange factor termed mNET1 as a candidate-interacting partner for the first PDZ domain of MAGI-1, a membrane-associated guanylate kinase with inverted arrangement of protein-protein interacting modules. mNET1 was identified in a yeast two-hybrid screen and has a consensus tripeptide for PDZ domain binding at its extreme carboxy-terminus. In addition to this sequence, a cluster of basic residues located near the carboxy terminus is essential for the binding. The interaction of the first PDZ domain of MAGI-1with mNET1 was documented using a variety of biochemical methods.  相似文献   

14.
15.
Estradiol‐induced structural dimorphisms exist in the songbird brain. However, how they arise is not clear since there is a scarce distribution of ERα and lack of ERβ in song control nuclei. This suggests that other receptors are involved. The G‐protein coupled membrane‐bound estrogen receptor, GPR30, is a candidate but has never been investigated in songbirds. In this study, we characterized its gene and protein in the zebra finch brain. Analysis of the putative GPR30 protein sequence revealed a strong similarity to avian and mammalian homologues. Quantitative PCR indicated that the gene was elevated in the telencephalon of both sexes from posthatching day (P) 15 to P45, with a male‐biased sex difference at P21 and P30. In comparison, expression at younger posthatching ages and in adults was significantly less. At P21, GRP30 protein was widespread, nonuniform, and overlapped with song control nuclei. Of particular interest, the number of immunoreactive cells was greatest in HVC and RA, but less in LMAN and Area X. Labeling in HVC was also dimorphic; with more cells present in males than in females. In parallel with the gene, by adulthood, protein expression was reduced across most brain regions. Taken together these data suggest that GPR30 may contribute to differences in song system development by mediating dimorphic responses to estrogens. In addition, the extensive protein distribution indicates that it may also have a role in general brain development in both sexes. © 2011 Wiley Periodicals, Inc. Develop Neurobiol, 2012  相似文献   

16.
Abstract The expression of nitrite reductase has been tested in a wild-type strain of Pseudomonas aeruginosa (Pao1) as a function of nitrate concentration under anaerobic and aerobic conditions. Very low levels of basal expression are shown under non-denitrifying conditions (i.e. absence of nitrate, in both aerobic and anaerobic conditions); anaerobiosis is not required for high levels of enzyme production in the presence of nitrate. A Pseudomonas aeruginosa strain, mutated in the nitrite reductase gene, has been obtained by gene replacement. This mutant, the first of this species described up to now, is unable to grow under anaerobic conditions in the presence of nitrate. The anaerobic growth can be restored by complementation with the wild-type gene.  相似文献   

17.
Cropping systems in northern Italy are intensively managed, but an integrated environmental accounting of these systems has not been published yet. We conducted this study to evaluate cropping systems management in a study area in northern Italy using indicators. The study area is a regional agricultural Park, with cereal and livestock farms, cultivating mostly maize, rice, meadows, and winter cereals.To select the indicators, we identified for the study area the most relevant issues concerning the potential impact of agriculture on the environment: nutrient and pesticide management, use of fossil energy and soil management. Subsequently, we selected indicators from the literature, which could address these issues. We also added indicators describing the economic performance. The data were collected at the field level by periodic face-to-face interviews with seven farm managers over 2 years. Indicators were calculated for all crops cultivated in each field (n = 266).According to the methodology proposed, the best economic performance (gross margin) was obtained by rice, followed by maize, winter cereals, and forage crops. Nitrogen and phosphorus surpluses were high for maize (due to a large use of animal manures), and moderate for rice and permanent meadows (where mineral fertilisers are not usually applied). Maize used high fossil energy inputs; however, the output/input ratio (an indicator of the dependence of food and feed production on non-renewable energy) was elevated, due to high aboveground biomass production. The potential impact due to pesticide use (evaluated with indicators that consider the toxicity and the exposure to active ingredients) was relevant only for rice, moderate for maize and other cereals, and null for forages. Finally, soil management was evaluated for the 2-year crop succession on each field (n = 131): permanent meadows are excellent (due to continuous soil cover and large returns of organic carbon to soil), rice-based successions are unsatisfactory (due to low residues and manure application and continuous cropping), and maize successions are intermediate. This work shows that good quality data can be collected on-farm for economic and environmental accounting at field level. The indicators chosen for the analysis describe a range of issues in the study area, and make it possible to clearly separate and characterise different cropping systems. The procedure for their calculation is transparent and sound, and can be applied for ex-ante, ex-post, and monitoring procedures.  相似文献   

18.
While the cytoskeleton is known to play several roles in the biology of the cell, one role, which has been revealed only recently, is that of a participant in the signal transduction process. Tubulin binds specifically to the alpha subunits of Gs (stimulatory GTP-binding regulatory protein of adenylyl cyclase), Gi1 (inhibitory protein of adenylyl cyclase), and Gq and transactivates those molecules through direct transfer of GTP. The relevance of this transactivation process to G proteins which are normally activated by a neurotransmitter-occupied receptor is the subject of this study. C6 glioma cells, made permeable with saponin, retained tight coupling between Gs and the beta-adrenergic receptor. Although 5-guanylylimidodiphosphate (GppNHp) was incapable of activating Gs (and subsequently, adenylyl cyclase) in the absence of agonist, tubulin with GppNHp bound (tubulin-GppNHp) activated adenylyl cyclase with an EC(50) of 30 nM. Desensitization of beta-adrenergic receptors by isoproterenol exposure had no effect on the ability of tubulin-GppNHp to activate Gs and adenylyl cyclase. When the photoaffinity GTP analog, azidoanilido GTP (AAGTP; P3(4-azidoanilido)-P1-5'-GTP), was added to C6 membranes or permeable C6 cells, it was only weakly incorporated by G alpha s in the absence of isoproterenol. When the same concentration of dimeric tubulin with AAGTP bound was introduced, AAGTP was transferred from tubulin to G alpha s, activating the latter species. Similar 'preferential' activation of G alpha s by tubulin-AAGTP versus the free nucleotide was seen using purified components. Thus, membrane-associated tubulin may serve to activate G alpha s, independent of signals not normally coupled to that protein. Tubulin may act as an agent to link a variety of membrane-associated signalling systems.  相似文献   

19.
Antibodies and prorenin mutants have long been used to structurally characterize prorenin, the inactive proenzyme form of renin. They were designed on the basis of homology models built using other aspartyl protease proenzyme structures since no structure was available for prorenin. Here, we present the first X-ray structure of a prorenin. The current structure of prorenin reveals that, in this zymogene, the active site of renin is blocked by the N-terminal residues of the mature version of the renin molecule, which are, in turn, covered by an Ω-shaped prosegment. This prevents access of substrates to the active site. The departure of the prosegment on activation induces an important global conformational change in the mature renin molecule with respect to prorenin: similar to other related enzymes such as pepsin or gastricsin, the segment that constitutes the N-terminal β-strand in renin is displaced from the renin active site by about 180° straight into the position that corresponds to the N-terminal β-strand of the prorenin prosegment. This way, the renin active site will become completely exposed and capable of carrying out its catalytic functions. A unique inactivation mechanism is also revealed, which does not make use of a lysine against the catalytic aspartates, probably in order to facilitate pH-independent activation [e.g., by the (pro)renin receptor].  相似文献   

20.
To date very few G protein-coupled receptors (GPCRs) have been shown to be connected to the Janus kinase (JAK)/STAT pathway. Thus our understanding of the mechanisms involved in the activation of this signaling pathway by GPCRs remains limited. In addition, little is known about the role of the JAK pathway in the physiological or pathophysiological functions of GPCRs. Here, we described a new mechanism of JAK activation that involves Galpha(q) proteins. Indeed, transfection of a constitutively activated mutant of Galpha(q) (Q209L) in COS-7 cells demonstrated that Galpha(q) is able to associate and activate JAK2. In addition, we showed that this mechanism is used to activate JAK2 by a GPCR principally coupled to G(q), the CCK2 receptor (CCK2R), and involves a highly conserved sequence in GPCRs, the NPXXY motif. In a pancreatic tumor cell line expressing the endogenous CCK2R, we demonstrated the activation of the JAK2/STAT3 pathway by this receptor and the involvement of this signaling pathway in the proliferative effects of the CCK2R. In addition, we showed in vivo that the targeted CCK2R expression in pancreas of Elas-CCK2 mice leads to the activation of JAK2 and STAT3. This process may contribute to the increase of pancreas growth as well as the formation of preneoplastic lesions leading to pancreatic tumor development observed in these transgenic animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号