首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mössbauer spectrum measured for the iron components of photosystem II (PS II) particles of spinach is a superposition of 4 doublets. Quadrupole splitting and chemical shifting of doublets I–IV are characteristics of proteins with oxidized cytochrome b-559, reduced cytochrome b-559, Fe3+-Q complex and Fe2+ -Q complex respectively. After the PS II particles are treated with La3+, two doublets of Fe2+ disappear and Fe2+ is converted into Fe3+, indicating that the reduced cytochrome b-559 has been converted into the oxidized cytochrome b-559, and Fe2+ -Q complex into Fe3+ -Q complex. The Mössbauer spectrum of PS II particles treated with La3+ and Ca2+ shows that Ca2+ can weaken the inhibitory effect of La3+ in part, and a portion of the reduced cytochrome b-559 and Fe-Q complex still exist.  相似文献   

2.
The redox and acid/base states and midpoint potentials of cytochrome b-559 have been determined in oxygen-evolving photosystem II (PS II) particles at room temperature in the pH range from 6.5 to 8.5. At pH 7.5 the fresh PS II particles present about 2/3 of their cytochrome b-559 in its reduced and protonated (non-auto-oxidizable) high-potential form and about 1/3 in its oxidized and non-protonated low-potential form. Potentiometric reductive titration shows that the protonated high-potential couple is pH-independent (E'0, + 380 mV), whereas the low-potential couple is non-protonated and pH-independent above pH 7.6 (E'0, pH greater than 7.6, + 140 mV), but becomes pH-dependent below this pH, with a slope of -72 mV/pH unit. Moreover, evidence is presented that in PS II particles cytochrome b-559 can cycle, according to its established redox and acid/base properties, as an energy transducer at two alternate midpoint potentials and at two alternate pKa values. Red light absorbed by PS II induces reduction of cytochrome b-559 in these particles at room temperature, the reaction being completely blocked by dichlorophenyldimethylurea.  相似文献   

3.
Photosystem II particles were exposed to 800 W m–2 white light at 20 °C under anoxic conditions. The Fo level of fluorescence was considerably enhanced indicating formation of stable-reduced forms of the primary quinone electron acceptor, QA. The Fm level of fluorescence declined only a little. The g=1.9 and g=1.82 EPR forms characteristic of the bicarbonate-bound and bicarbonate-depleted semiquinone-iron complex, QA Fe2+, respectively, exhibited differential sensitivity against photoinhibition. The large g=1.9 signal was rapidly diminished but the small g=1.82 signal decreased more slowly. The S2-state multiline signal, the oxygen evolution and photooxidation of the high potential form of cytochrome b-559 were inhibited approximately with the same kinetics as the g=1.9 signal. The low potential form of oxidized cytochrome b-559 and Signal IIslow arising from TyrD + decreased considerably slower than the g=1.9 semiquinone-iron signal. The high potential form of oxidized cytochrome b-559 was diminished faster than the low potential form. Photoinhibition of the g=1.9 and g=1.82 forms of QA was accompanied with the appearance and gradual saturation of the spin-polarized triplet signal of P 680. The amplitude of the radical signal from photoreducible pheophytin remained constant during the 3 hour illumination period. In the thermoluminescence glow curves of particles the Q band (S2QA charge recombination) was almost completely abolished. To the contrary, the C band (TyrD +QA charge recombination) increased a little upon illumination. The EPR and thermoluminescence observations suggest that the Photosystem II reaction centers can be classified into two groups with different susceptibility against photoinhibition.Abbreviations C band thermoluminescence band associated with Tyr-D+Q a charge recombination - Chl chlorophyll - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - EPR electron paramagnetic resonance - Fo initial fluorescence - Fm maximum fluorescence - Q band thermoluminescence band originating from S2Q a -charge recombination - Q a the primary quinone electron acceptor of PS II - P 680 the primary electron donor chlorophyll of PS II - S2 oxidation state of the water-splitting system - Phe pheophytin - TL thermoluminescence - Tyr d redox active tyrosine-160 of the D2 protein  相似文献   

4.
5.
Yasusi Yamamoto  Bacon Ke 《BBA》1980,592(2):285-295
In Photosystem-II reaction-center particles (TSF-IIa) fractionated from spinach chloroplasts by Triton X-100 treatment, divalent cations appear to regulate electron-transport reactions. Oxidation of cytochrome b-559 after illumination of the particles was accelerated by the presence of Mg2+, whereas photoreduction of 2,6-dichlorophenolindophenol (DCIP) by diphenyl carbazide was inhibited, both at a half-effective concentration of Mg2+ of approx. 0.1 mM.The site of regulation was shown to be on the oxidizing side of Photosystem II, near P-680, based on the effects of actinic-light intensity and nature of the electron donors on DCIP photoreduction. Mg2+ was effective in quenching chlorophyll fluorescence in TSF-IIa particles, but the quenching was sensitive to the presence of 3(3,4-dichloropheny)-1,1-dimethylurea. In the reactioncenter (core) complex of Photosystem II, where the light-harvesting chlorophyll-protein complex is absent, there seems to be no regulation by Mg2+ on excitation-energy distribution.  相似文献   

6.
In order to explore the role of mitochondria in proliferation promotion and/or apoptosis induction of lanthanum, the mutual influences between La3+ and Ca2+ on mitochondrial permeability transition pore (PTP) opening were investigated with isolated mitochondria from rat liver. The experimental results revealed that La3+ influence the state of mitochondria in a concentration-dependent biphasic manner. La3+ in nanomolar concentrations, acting as a Ca2+ analog, entered mitochondrial matrix via the RuR sensitive Ca2+ channel and elevated ROS level, leading to opening of PTP indicated by mitochondrial swelling, reduction of ΔΨm and cytochrome c release. Inhibition of PTP with 10 μM CsA attenuated the effects of La3+. However, micromolar concentrations La3+ acted mainly as a Ca2+ antagonist, inhibiting PTP opening induced by Ca2+. We postulated that this action of La3+ on mitochondria through interaction with Ca2+ might be involved in the proliferation-promoting and apoptosis induction by La3+.  相似文献   

7.
Pure and active oxygen-evolving PS II core particles containing 35 Chl per reaction center were isolated with 75% yield from spinach PS II membrane fragments by incubation with n-dodecyl--D-maltoside and a rapid one step anion-exchange separation. By Triton X-100 treatment on the column these particles could be converted with 55% yield to pure and active PS II reaction center particles, which contained 6 Chl per reaction center.Abbreviations Bis-Tris bis[2-hydroxyethyl]imino-tris[hydroxymethyl]methane - Chl chlorophyll - CP29 Chl a/b protein of 29 kDa - Cyt b 559 cytochrome b 559 - DCBQ 2,5-dichloro-p-benzo-quinone - LHC II light-harvesting complex II, predominant Chl a/b protein - MES 2-[N-Morpholino]ethanesulfonic acid - Pheo pheophytin - PS H photosystem II - QA bound plastoquinone, serving as the secondary electron acceptor in PS II (after Pheo) - SDS sodiumdodecylsulfate  相似文献   

8.
《BBA》1985,808(2):348-351
As previously shown for inside-out vesicles by Larsson et al. (Larsson, C., Jansson, C., Ljungberg, U.L., Åkerlund, H.E. and Anderson, B. (1984) in Advances in Photosynthesis Research, Vol. I, pp. 363–366 (Sybesma C., ed.), Martinus Nijhoff/Dr. W. Junk Publishers, Dordrecht, The Netherlands), we observed that NaCl 1 M washing of Photosystem II particles prepared by Triton X-100 treatment of spinach thylakoids induces both an inactivation of oxygen evolution and transformation of cytochrome b-559 from its high-potential to its low-potential form. A partial reactivation of water oxidation by 24 kDa polypeptide refixation is accompanied by a partial restoration of the cytochrome b-559 high-potential (HP) form. In contrast, reconstitution of water splitting by Ca2+ addition is not associated to a reestablishment of the cytochrome (HP) form. We conclude that cytochrome b-559 HP plays no role in water oxidation.  相似文献   

9.
The oxygen evolving complex of photosystem II (PS II) contains three extrinsic polypeptides of approximate molecular weights 16, 23 and 33 kDa. These polypeptides are associated with the roles of Cl-, Ca2+ and Mn2+ in oxygen evolution. We have shown that selective removal of 16 and 23 kDa polypeptides from the above complex by NaCl washing of PS II enriched membrane fragments renders the PS II core complex more susceptible to the herbicide atrazine. On the other hand, when both native and depleted preparations were resupplied with exogenous Ca2+ and Cl-, we obtained a reduction of atrazine inhibition which was much stronger in the depleted preparations than in the native ones. It is concluded that removal of 16 and 23 kDa polypeptides in general, and disorganization of associated Ca2+ and Cl- in particular, enhances atrazine penetration to its sites of action in the vicinity of the PS II complex. The above could be interpreted if we assume a reduced plastoquinone affinity at the QB (secondary plastoquinone electron acceptor) pocket of D1 polypeptide following transmembranous modifications caused by the depletion of these polypeptides.Abbreviations CCCP carbonylcyanide-m-chlorophenylhydrazone - Chl chlorophyll - DCIP 2,6-dichlorophenolindophenol - MES 2-(N-morpholino)ethanesulfonic acid - PMSF phenylmethylsul-phonyfluoride - PS II photosystem II - PAGE polyacrilamide gel electrophoresis  相似文献   

10.
A series of experiments have been conducted with isolated reaction centers of photosystem two (PS II) with the aim to elucidate the functional role of cytochrome (Cyt b 559). At pH 6.5 it was found that Cyt b 559 was reversibly photoreduced by red actinic light when Mn2+ was present as an electron donor while at pH 8.5 a photo-oxidation was observed under the same lighting conditions, which was dark reversible in the presence of hydroquinone. These pH dependent light induced changes were measured under anaerobic conditions and correlated with changes in the relative levels of high (HP) and low (LP) potential forms of the cytochrome. At pH 6.5 the cytochrome was mainly in its LP form while at pH 8.5 a significant proportion was converted to the HP form as detected by dark titrations with hydroquinone. This pH dependent difference in the levels of HP and LP Cyt b 559 was also detected when bright white light was used to monitor the level of the LP form using a novel reaction involving direct electron donation from the flavin of glucose oxidase (present in the medium and used together with glucose and catalase as an oxygen trap). The results suggest that PS II directly oxidises and reduces the HP and LP forms, respectively and that the extent of these photo-reactions is dependent on the relative levels of the two forms, which are in turn governed by the pH. This conclusion is interpreted in terms of the model presented previously (Barber J and De Las Rivas J (1993) Proc Natl Acad Sci USA 90: 10942–10946) whereby the pH induced effect is considered as a possible mechanism by which interconversion of LP and HP forms of Cyt b 559 is achieved. In agreement with this was the finding that as the extent of photo-oxidisable HPCyt b 559 increases, with increasing pH, the rate of irreversible photo-oxidation of -carotene decreases, a result expected if the HP form protects against donor side photoinhibition.Abbreviations -car -carotene - CCCP carbonylcyanide m-chloro-phenylhydrazone - Chl chlorophyll - Cyt b 559 cytochrome b 559 - HPCyt b 559 high potential form of cytochrome b 559 which is reducible by hydroquinone - LPCyt b 559 low potential form of cytochrome b 559 which is non-reducible by hydroquinone - D1 and D2 products of the psbA and psbD genes, respectively - LHC II light-harvesting chlorophyll protein complex associated with PS II - Mes 2-(N-morpholino) ethanesulphonic acid - P680 primary electron donor of PS II - Pheo pheophytin - PQ plastoquinone - PS II Photosystem II - QA first stable quinone electron acceptor of PS II - QB second stable quinone electron acceptor of PS II - RC reaction center - SDS sodium dodecyl sulphate - SiMo silicomolybdate - Tris tris(hydroxymethyl) amino methane - YZ and YD tyrosine residues 161 in D1 and D2 proteins of the PS II RC which act as secondary electron donors to P680  相似文献   

11.
La3+ inhibits the respiration-dependent accumulation of Ca2+ by rat liver mitochondria when added in very small amounts (0.1–l.0 nmole per mg protein). However, La3+ itself does not activate respiration. With the use of 140La3+ it was found that La3+ is very rapidly bound to rat liver mitochondria in a respiration-independent process accompanied by loss of H+ to the medium. When both La3+ and Ca2+ are added to mitochondria simultaneously, most of the La3+ but little Ca2+ are bound. La3+ added to mitochondria previously loaded with Ca2+ is tightly bound without discharge of Ca2+. Conversely, when Ca2+ is added to La3+-loaded mitochondria it is not bound nor is the La3+ discharged. La3+ inhibits both high-affinity and low-affinity respiration-independent Ca2+ binding. Isotopic experiments showed that La3+ is, in fact, bound to the same high-affinity sites as Ca2+, in both intact mitochondria and in mitochondrial extracts. It is concluded (1) that La3+ binds to and inhibits the Ca2+ carrier; (2) that La3+ is not transported by the Ca2+ carrier; and (3) that La3+ is, in addition, bound to a large number of external sites on mitochondria for which Ca2+ is not a strong competitor.  相似文献   

12.
Mössbauer spectra were measured for PSII particles having an active water-splitting system. The particles were isolated from the thennophilic cyanobacterium Synechococcus elongatus enriched in57Fe. The Mössbauer resonance absorption spectrum is a superposition of 3 doublets with the following quadrupole splitting and chemical shift: 1, δ = 0.40, Δ = 0.85; II, δ = 1.35,Δ =2.35; III, δ = 0.25, Δ = 1.65. The δ and Δ values of doublets I, II, III are characteristic of proteins with iron-sulphur center, non-heme iron of the reaction center of higher plants and of the oxidized cytochrome 6–559. Treatment with sodium formate to remove bicarbonate affects only the doublet of non-heme iron, causing its quadrupole splitting to reduce to 1.75 and the chemical shift to reduce to 0.90. After washing out the formate, the Mossbauer spectrum of non-heme iron is restored. The data suggest that bicarbonate is a ligand for the non-heme iron of the reaction center of cyanobacteria.  相似文献   

13.
PS II-enriched particles of the wild type, of three mutantsand of two double mutants of Chlamydomonas reinhardtii wereanalyzed by lithium dodecylsulfate polyacrylamide gel electrophoresisat 4°C. The mutant Pg 27 was devoid of light-harvestingChl-protein complex (CP) CP II, but had normal cytochrome b-559and displayed all wild type photochemical activities. The mutantFl 50 lacked a pool of cytochrome b-559 photooxidizable at 77K but was able to photooxidize a second pool at 293 K in thepresence of FCCP; it showed some weak PS II activity. The mutantFl 39 lacked both these cytochrome b-559 pools and did not displayany PS II activity. The double mutants Fl 39 Pg 28 and Fl 50Pg 27 had defects similar to those of their respective parentsFl 39 or Fl 50 but, in addition, they were devoid of Chi b andof CP II. In these four mutants having impaired PS II function,five proteins of Mr=50,000, 47,000, 33,000, 27,000 and 19,000were totally (Fl 39, Fl 39 Pg 28) or partly (Fl 50, Fl 50 Pg27) missing. The first two of these proteins corresponded tothe apoproteins of CP III and IV. These results pointed out a strong correlation between thesefive proteins, cytochrome b-559 and PS II primary photochemistry.In mutation and cross experiments, these five PS II-associatedproteins and cytochrome b-559 appeared to be linked characterscontrolled by nuclear gene(s), but they behaved independentlyof CP II. (Received January 24, 1983; Accepted July 20, 1983)  相似文献   

14.
The function of the cytochrome b559, a Photosystem II (PS II) reaction center ubiquitous component is not yet known. Cytochrome b559appears in a high (HP) or low (LP) potential form. The HP form is converted into the LP form during aerobic photoinhibition. It has been proposed before that this conversion, assumed to be reversible, ascribes protection against light stress of PS II by redirecting electron flow within PS II thus avoiding charge recombination of the primary radical pair and related oxidative damage. Here, we have used an experimental system allowing to assay the relation between the cytochrome b559redox potential shift, its reversibility and protection against light induced PS II inactivation. Under anaerobic conditions fast reversible photoinactivation of PS II in isolated spinach thylakoids is observed accompanied by monomerisation of PS II. Monomers did not dissociate further into PS II sub-particles and did not migrate out of the grana partitions as observed in aerobic photoinactivation. The anaerobic photoinactivation is accompanied by an increase in the cytochrome b559LP/HP ratio. However, despite recovery of PS II activity and partially of its dimeric form in darkness under aerobic conditions, no reversal of the cytochrome b559redox potential shift accompanied these processes. Re-exposure of reactivated thylakoids having an increased PS II population in the LP form of the cytochrome b559to strong illumination under aerobic conditions, did not result in a measurable protection of PS II as compared to control thylakoids. While it is possible that cytochrome b559may play a protective role against light stress in PS II, the results presented here do not indicate that the increase in the ratio LP/HP form is involved in this process.  相似文献   

15.
Amphiphilic, cationic Polymyxin B is shown to displace Ca2+ from ‘gas dissected’ cardiac sarcolemma in a dose-dependent, saturable fashion. The Ca2+ displacement is only partially reversible, 57% and 63%, in the presence of 1 mM or 10 mM Ca2+, respectively. Total Ca2+ displaced by a non-specific cationic probe, lanthanum (La3+), at maximal displacing concentration (1 mM) was 0.172 ± 0.02 nmol/μg membrane protein. At 0.1 mM, Polymyxin B displaced 42% of the total La3+-displaceable Ca2+ or 0.072 ± 0.01 nmol/μg protein. 5 mM Polymyxin displaced Ca2+ in amounts equal to those displaced by 1 mM La3+. Pretreatment of the membranes with neuraminidase (removal of sialic acid) and protease leads to a decrease in La3+-displaceable Ca2+ but to an increase in the fraction displaced by 0.1 mM Polymyxin from 42% to 54%. Phospholipase D (cabbage) treatment significantly increased the La3+-displaceable Ca2+ to 0.227 ± 0.02 nmol/μg protein (P < 0.05), a gain of 0.055 nmol. All of this phospholipid specific increment in bound Ca2+ was displaced by 0.1 mM Polymyxin B. The results suggest that Polymyxin B will be useful as a probe for phospholipid Ca2+-binding sites in natural membranes.  相似文献   

16.
Light-induced absorption changes in an oxygen-evolving photosystem II (PS II) preparation from the thermophilic cyanobacterium Synechococcus sp. were analyzed using continuous illumination which caused the reduction of both QA (first stable quinone electron acceptor) and QB (second quinone electron acceptor of photosystem II). In this photosystem II preparation in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) the amount of QA was estimated to be 1 per 42 chlorophylls. In the absence of DCMU, plastoquinone (1.68 per QA) was photoreduced to plastohydroquinone within a few seconds, indicating that QB is reduced and protonated during this period. An electrochromic band shift centered around 685 nm was observed with and without DCMU. The extent of this band shift caused by QB reduction per electron was about a third or half of that caused by QA reduction. A significant amount of cytochrome b-559 (0.86 per QA) was photoreduced. Only 60% of the photoreduction of cytochrome b-559 was inhibited by a DCMU concentration that inhibited electron transfer beyond QB, indicating that the site of the reduction of cytochrome b-559 is located before the QB site and possibly on the donor side of PS II.  相似文献   

17.
The inhibitory effect of Zn2+ on photosynthetic electron transport was investigated in native and CaCl2-treated (depleted in extrinsic polypeptides) Photosystem II (PS II) submembrane preparations. Inhibition of 2,6-dichlorophenolindophenol photoreduction by Zn2+ was much stronger in protein-depleted preparations in comparison to the native form. It was found that Ca2+ significantly reduced the inhibition in the native PS II preparations, as did Mn2+ in a combination with H2O2 in the protein-depleted counterparts. No other tested monovalent or divalent cations could replace Ca2+ or Mn2+ in the respective experiments. Diphenylcarbazide could partially relieve (40–45%) the inhibition in both types of preparations. The above indicates the presence of an active Zn2+ inhibitory site on the donor side of PS II. However, neither Ca2+ nor Mn2+ could completely prevent inhibition by high concentrations of Zn2+ (>1 mM). We propose that elevated levels of Zn2+ strongly perturb the conformation of the PS II core complex and might also affect the acceptor side of the photosystem.Abbreviations PMSF phenylmethanesulfonyl fluoride - MES 2-(N-morpholino)ethane sulphonic acid - Chl chlorophyll - PS II Photosystem II - DCIP 2,6-dichlorophenolindophenol - DPC sym-diphenylcabazide - DCBQ 2,5-dichlorobenzoquinone  相似文献   

18.
The electron-electron double resonance (ELDOR) method was applied to measure the dipole interaction between cytochrome (Cyt) b(+)(559) and the primary acceptor quinone (Q(-)(A)), observed at g=2.0045 with the peak to peak width of about 9 G, in Photosystem II (PS II) in which the non-heme Fe(2+) was substituted by Zn(2+). The paramagnetic centers of Cyt b(+)(559)Y(D)Q(-)(A) were trapped by illumination at 273 K for 8 min, followed by dark adaptation for 3 min and freezing into 77 K. The distance between the pair Cyt b(+)(559)-Q(-)(A) was estimated from the dipole interaction constant fitted to the observed ELDOR time profile to be 40+/-1 A. In the membrane oriented PS II particles the angle between the vector from Q(A) to Cyt b(559) and the membrane normal was determined to be 80+/-5 degrees. The position of Cyt b(559) relative to Q(A) suggests that the heme plane is located on the stromal side of the thylakoid membrane. ELDOR was not observed for Cyt b(+)(559) Y(D) spin pair, suggesting the distance between them is more than 50 A.  相似文献   

19.
We have found that plastoquinone-A (PQ-A) and α-tocopherol (α-Toc) increased the reduction level of the high-potential form of cytochrome b-559 (cyt. b-559 HP) and α-tocopherol quinone (α-TQ) decreased the level of this cytochrome form in Scenedesmus obliquus wild-type, while the investigated prenyllipids were not active in the restoration of the cyt. b-559 HP form in Scenedesmus PS28 mutant and Synechococcus 6301 (Anacystis nidulans) where the cyt. b-559 HP form is naturally not present. Among the tested prenyllipids, α-TQ quenched fluorescence in thylakoids of S. obliquus wild-type, the PS28 mutant and tobacco to the highest extent, while PQ-A was less effective in this respect. α-Tocopherol showed the opposite effect to α-TQ and it was rather small. The fluorescence quenching measurements of thylakoids in the presence of DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea) showed that the α-Toc and FCCP (carbonylcyanide-p-trifluoromethoxy-phenyl-hydrazone) did not quench non-photochemically chlorophyll fluorescence while PQ-9 and α-TQ were effective fluorescence quenchers at higher concentrations (> 15 μM). However, at the lower α-TQ concentrations where its effective fluorescence quenching was found in DCMU-free samples, there was nearly no quenching effect by α-TQ observed in DCMU-treated thylakoids. This suggested a specific, not non-photochemical, DCMU sensitive, fluorescence quenching of photosystem II (PSII) at low α-TQ concentrations which is probably connected with the cyclic electron transport around PSII and might have a function of excess light energy dissipation. The effects of α-TQ on PSII resembled those of FCCP under many respects which might suggest similar mechanism of action of these compounds on PSII, i.e. the catalytic deprotonation and/or redox changes of some components of PSII such as the water splitting system, tyrosine D, Chlz or cytochrome b-559.  相似文献   

20.
Spin-trapping electron spin resonance (ESR) was used to monitor the formation of superoxide and hydroxyl radicals in D1/D2/cytochrome b-559 Photosystem II reaction center (PS II RC) Complex. When the PS II RC complex was strongly illuminated, superoxide was detected in the presence of ubiquinone. SOD activity was detected in the PS II RC complex. A primary product of superoxide, hydrogen peroxide, resulted in the production of the most destructive reactive oxygen species, *OH, in illuminated PS II RC complex. The contributions of ubiquinone, SOD and H(2)O(2) to the photobleaching of pigments and protein photodamage in the PS II RC complex were further studied. Ubiquinone protected the PS II RC complex from photodamage and, interestingly, extrinsic SOD promoted this damage. All these results suggest that PS II RC is an active site for the generation of superoxide and its derivatives, and this process protects organisms during strong illumination, probably by inhibiting more harmful ROS, such as singlet oxygen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号