首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The crosses, T /+ or T/t w2× btm/btm , give rise to 50% incidence of the tailless mice, development of which was investigated. No difference was seen in external appearance of the embryos at 9 days of gestation. However, some embryos showed fusion of the notochord and the neural tube at the posterior part of the body on the histological examination. The prospective tailless individuals were distinguishable from the normal littermates by the constriction of the root of the tail at 10 days of gestation. Thereafter, they showed several abnormalities such as the poor growth of the posterior part of the body, thinning of the tail and a blood blister at the tail tip or in the lumbosacral region. The abnormal embryos of 11–12 days showed severer abnormalities in the medio-dorsal area, i.e., the notochord was branched or degenerated at several places and the neural tube was distorted, duplicated or fused with the mesenchyme. All the tailless newborn young had blood blisters or red scars on the dorsal skin at the middle of the lumbosacral region.
Histologically, the spinal cord posterior to the lumbosacral level was revealed to be severely distorted or duplicated and completely devoid of the bony vertebrae, and the dorsal blood blister was found to be the meningomyelocele derived from the abnormal development of the spinal cord. Skeletal abnormalities of the tailless young were as follows. The sacral and caudal vertebrae were absent. The cervical vertebrae were mostly normal, but the thoracic and lumbar vertebrae showed several abnormalities such as fusion of the ribs, lack of the vertebral body and vertebral arch.  相似文献   

2.
We describe a novel transgene insertional mouse mutant with skeletal abnormalities characterized by a kinked tail and severe curvature of the spine. The disrupted locus is designated kkt for "kyphoscoliosis kinked tail." Malformed vertebrae including bilateral ossification centers and premature fusion of the vertebral body to the pedicles are observed along the vertebral column, and the lower thoracic and lumbar vertebrae are the most affected. Some of the homozygous kkt neonates displayed two backward-pointing transverse processes in the sixth lumbar vertebra (L6) that resembled the first sacral vertebra, and some displayed one forward- and one backward-pointing transverse process in L6. The fourth and fifth sternebrae were also fused, and the acromion process of the scapula was missing in kkt mice. The skeletal abnormalities are similar to those observed in the mouse mutant undulated (un). The transgene is integrated at the distal end of chromosome 2 close to the Pax1 gene, as revealed by FISH analysis. However, mutation of the Pax1 gene is responsible for the un phenotype, but the Pax1 gene in the kkt mice is not rearranged or deleted. Pax1 is expressed normally in kkt embryos and in the thymus of mature animals, and there is no mutation in its coding sequence. Thus, the skeletal abnormalities observed in the kkt mutant are not due to a lack of functional Pax1. Mouse genomic sequences flanking the transgene and PAC clones spanning the wild-type kkt locus have been isolated, and reverse Northern analysis showed that the PACs contain transcribed sequence. Compound heterozygotes between un and kkt (un(+/-)/kkt(+/-)) display skeletal abnormalities similar to those of un or kkt homozygotes, but they have multiple lumbar vertebrae with a split vertebral body that is more severe than in homozygous un or kkt neonates. Furthermore, the sternebrae are not fused and no backward-pointing transverse processes are detected in L6. It is therefore apparent that these two mutations do not fully complement each other, and we propose that a gene in the kkt locus possesses a unique role that functions in concert with Pax1 during skeletal development.  相似文献   

3.
Hoxb13 mutations cause overgrowth of caudal spinal cord and tail vertebrae   总被引:3,自引:0,他引:3  
To address the expression and function of Hoxb13, the 5' most Hox gene in the HoxB cluster, we have generated mice with loss-of-function and beta-galactosidase reporter insertion alleles of this gene. Mice homozygous for Hoxb13 loss-of-function mutations show overgrowth in all major structures derived from the tail bud, including the developing secondary neural tube (SNT), the caudal spinal ganglia, and the caudal vertebrae. Using the beta-galactosidase reporter allele of Hoxb13, also a loss-of-function allele, we found that the expression patterns of Hoxb13 in the developing spinal cord and caudal mesoderm are closely associated with overgrowth phenotypes in the tails of homozygous mutant animals. These phenotypes can be explained by the observed increased cell proliferation and decreased levels of apoptosis within the tail of homozygous mutant mice. This analysis of Hoxb13 function suggests that this 5' Hox gene may act as an inhibitor of neuronal cell proliferation, an activator of apoptotic pathways in the SNT, and as a general repressor of growth in the caudal vertebrae.  相似文献   

4.
In adult humans, active bone marrow is confined to the proximal portion of the skeleton. Huggins and Blocksom (J. Exp. Med., 64: 253, '36) concluded that a high temperature is needed for hematopoiesis in rats. However, precise thermal regulation of human marrow was not found (Petrakis, J. Appl. Physiol., 4: 549, '52). Because these experiments made on the rat tail are the basis for a commonly accepted hypothesis attempting to explain marrow distribution in man, it was considered of importance to re-examine the caudal vertebra model upon which the temperature-gradient hypothesis is based. The sacral and coccygeal vertebrae were examined in rats, mice and humans with respect to marrow cellularity and temperature. In rats and mice and man it was observed that the transition between hematopoietically-active and inactive (fatty) vertebral marrow cavities is abrupt, occurring at the level of the first and second caudal and coccygeal vertebrae. All vertebrae distal to this point have fatty marrow. Of significance was the finding that the vertebral and coccygeal temperatures, as measured with a thermister needle, remain unaltered over this area of changing cellular activity. These anatomical and thermal observations of the caudal vertebrae of rats, mice, and humans indicate that the use of the tail as an experimental model does not support the hypothesis that temperature is a primary factor in the physiological maintenance of hematopoiesis in bone marrow. The possible relationship of hematopoietic activity to developmental and other factors peculiar to the caudal vertebra model is under study.  相似文献   

5.
We have established a new mouse strain with vertebral deformities caused by an autosomal single recessive mutation (oma). The mutant mice showed short trunk and short and kinky tail. The skeletal preparations of newborn and prenatal mice showed disorganized vertebrae and numerous vertebral and rib fusions which are thought to be caused by patterning defects at the stage of somitegenesis. Linkage analysis localized the oma locus on the proximal region of mouse chromosome 7 close to Dll3 gene. Dll3 is the gene involved in the Notch signaling pathway and null-mutation of the gene has been reported to cause vertebral deformities. The phenotypic similarity between oma and Dll3 null-mutant mice suggests that the causative gene for the oma mutant is the Dll3 gene. We, therefore, investigated the nucleotide sequence of the Dll3 gene of the oma mouse and found a single nucleotide substitution of G to T which causes missense mutation of glycine to cysteine at codon 409. Since the amino acid substitution is a nonconservative amino acid substitution at the conserved portion of the Dll3 protein, and the substitution is specific to the mutant mice, we concluded that the nucleotide substitution of the Dll3 gene is responsible for the skeletal deformities of the oma mouse.  相似文献   

6.
We established the mutant mouse line, B6;CB-SktGtAyu8021IMEG (SktGt), through gene-trap mutagenesis in embryonic stem cells. The novel gene identified, called Sickle tail (Skt), is composed of 19 exons and encodes a protein of 1352 amino acids. Expression of a reporter gene was detected in the notochord during embryogenesis and in the nucleus pulposus of mice. Compression of some of the nuclei pulposi in the intervertebral discs (IVDs) appeared at embryonic day (E) 17.5, resulting in a kinky-tail phenotype showing defects in the nucleus pulposus and annulus fibrosus of IVDs in SktGt/Gt mice. These phenotypes were different from those in Danforth's short tail (Sd) mice in which the nucleus pulposus was totally absent and replaced by peripheral fibers similar to those seen in the annulus fibrosus in all IVDs. The Skt gene maps to the proximal part of mouse chromosome 2, near the Sd locus. The genetic distance between them was 0.95 cM. The number of vertebrae in both [Sd +/+ SktGt] and [Sd SktGt/+ +] compound heterozygotes was less than that of Sd heterozygotes. Furthermore, the enhancer trap locus Etl4lacZ, which was previously reported to be an allele of Sd, was located in the third intron of the Skt gene.  相似文献   

7.
Growth and differentiation factor 11 (GDF11) is a transforming growth factor β family member that has been identified as the central player of anterior–posterior (A–P) axial skeletal patterning. Mice homozygous for Gdf11 deletion exhibit severe anterior homeotic transformations of the vertebrae and craniofacial defects. During early embryogenesis, Gdf11 is expressed predominantly in the primitive streak and tail bud regions, where new mesodermal cells arise. On the basis of this expression pattern of Gdf11 and the phenotype of Gdf11 mutant mice, it has been suggested that GDF11 acts to specify positional identity along the A–P axis either by local changes in levels of signaling as development proceeds or by acting as a morphogen. To further investigate the mechanism of action of GDF11 in the vertebral specification, we used a Cdx2-Cre transgene to generate mosaic mice in which Gdf11 expression is removed in posterior regions including the tail bud, but not in anterior regions. The skeletal analysis revealed that these mosaic mice display patterning defects limited to posterior regions where Gdf11 expression is deficient, whereas displaying normal skeletal phenotype in anterior regions where Gdf11 is normally expressed. Specifically, the mosaic mice exhibited seven true ribs, a pattern observed in wild-type (wt) mice (vs. 10 true ribs in Gdf11−/− mice), in the anterior axis and nine lumbar vertebrae, a pattern observed in Gdf11 null mice (vs. six lumbar vertebrae in wt mice), in the posterior axis. Our findings suggest that GDF11, rather than globally acting as a morphogen secreted from the tail bud, locally regulates axial vertebral patterning.  相似文献   

8.
Chameleons (Chamaeleonidae) are known for their arboreal lifestyle, in which they make use of their prehensile tail. Yet, some species have a more terrestrial lifestyle, such as Brookesia and Rieppeleon species, as well as some chameleons of the genera Chamaeleo and Bradypodion. The main goal of this study was to identify the key anatomical features of the tail vertebral morphology associated with prehensile capacity. Both interspecific and intra-individual variation in skeletal tail morphology was investigated. For this, a 3D-shape analysis was performed on vertebral morphology using μCT-images of different species of prehensile and nonprehensile tailed chameleons. A difference in overall tail size and caudal vertebral morphology does exist between prehensile and nonprehensile taxa. Nonprehensile tailed species have a shorter tail with fewer vertebrae, a generally shorter neural spine and shorter transverse processes that are positioned more anteriorly (with respect to the vertebral center). The longer tails of prehensile species have more vertebrae as well as an increased length of the processes, likely providing a greater area for muscle attachment. At the intra-individual level, regional variation is observed with more robust proximal tail vertebrae having longer processes. The distal part has relatively longer vertebrae with shorter processes. Although longer, the small size and high number of the distal vertebrae allows the tail to coil around perches.  相似文献   

9.
Tail length in primates can vary greatly between species or even between local conspecific populations, and the tail is markedly reduced in several lineages. In Old World monkeys, tail length is considered as an important feature reflecting their phylogeny and adaptations. The number of caudal vertebrae is one of the important factors which determine tail length, and it is known that this number varies with tail length. Caudal vertebrae can be divided into two types (proximal and distal), and tail mobility and function are considered to be different in these two regions. Though the number of vertebrae in each region is important for understanding tail length evolution in Old World monkeys, there have been few attempts to investigate this matter. This study focused only on the proximal caudal vertebrae, which are more easily preserved than the distal ones, and tested if there is variation in their number with tail length or phylogenic differences. As a result, two important findings were obtained: (1) the variation of the number of proximal caudal vertebrae was different among the phylogenic groups, and (2) especially in Papionini, there was a great variation in the number of proximal caudal vertebrae, and it correlated strongly with relative tail length [RTL = (tail length/head and body length (sitting height)) × 100 %]. I speculate that these variations in the number of proximal caudal vertebrae were possibly caused by a change of the embryonic developmental mechanism of tail morphogenesis, a common mechanism of morphological evolution. To clarify the mechanisms and evolutionary trends of the variation in the proximal caudal vertebrae, not only morphological approaches but also developmental biological approaches will be necessary in the future.  相似文献   

10.
In primates, tail length is subject to wide variation, and the tail may even be absent. Tail length varies greatly between each species group of the genus Macaca, which is explained by climatic factors and/or phylogeographic history. Here, tail length variability was studied in hybrids of the Japanese (M. fuscata) and Taiwanese (Macaca cyclopis) macaque, with various degrees of hybridization being evaluated through autosomal allele typing. Relative tail length (percent of crown–rump length) correlated well with the number of caudal vertebrae. Length profiles of caudal vertebrae of hybrids and parent species revealed a common pattern: the length of several proximal-most vertebrae do not differ greatly; then from the third or fourth vertebra, the length rapidly increases and peaks at around the fifth to seventh vertebra; then the length plateaus for several vertebrae and finally shows a gentle decrease. As the number of caudal vertebrae and relative tail length increase, peak vertebral length and lengths of proximal vertebrae also increase, except that of the first vertebra, which only shows a slight increase. Peak vertebral length and the number of caudal vertebrae explained 92?% of the variance in the relative tail length of hybrids. Relative tail length correlated considerably well with the degree of hybridization, with no significant deviation from the regression line being observed. Thus, neither significant heterosis nor hybrid depression occurred.  相似文献   

11.
The administration of a single dose of all-trans retinoic acid on day 8 of gestation to pregnant mice, ICR strain, led to malformed fetuses in all of the litters. All-trans retinoic acid (RA) was dissolved in olive oil and given in doses of 60 or 40 mg/kg of body weight. The control mice were given vehicle alone. Examination on day 18 of gestation of the fetuses exposed to 60 mg/kg showed various malformations, such as exencephaly, exophthalmus, micrognathia, agnathia, cleft palate, cleft lower lip, spina bifida, atresia ani, tail anomalies, agenesis of the kidneys, or hydronephrosis. In the fetuses exposed to 40 mg/kg, isolated cleft palate was much more common than in those exposed to 60 mg/kg. Double-stained preparations of bone and cartilage showed cranio-facial anomalies and axial skeletal anomalies: a- or hypogenesis of palatine or maxillary bones, tympanic ring, squamosal temporal bone or otic ossicles in cartilage, and fusion of basioccipital to basisphenoid and maxilla, zygomatic and mandibular bones; a- or hypogenesis of caudal vertebrae and supernumerary thoracic and lumbar vertebrae. These results indicate that anomalies comparable to those seen in the infants of mothers treated with isotretinoin, 13-cis retinoic acid, during pregnancy can also be induced in mice and suggest that the site affected by RA may be neural crest cells, including those in the cephalic and caudal regions, and cells committed to somitic mesoderm in the trunk region.  相似文献   

12.
The bone morphogenetic protein (BMP) type II receptor (BMPR2) has a long cytoplasmic tail domain whose function is incompletely elucidated. Mutations in the tail domain of BMPR2 are found in familial cases of pulmonary arterial hypertension. To investigate the role of the tail domain of BMPR2 in BMP signaling, we generated a mouse carrying a Bmpr2 allele encoding a non-sense mediated decay-resistant mutant receptor lacking the tail domain of Bmpr2. We found that homozygous mutant mice died during gastrulation, whereas heterozygous mice grew normally without developing pulmonary arterial hypertension. Using pulmonary artery smooth muscle cells (PaSMC) from heterozygous mice, we determined that the mutant receptor was expressed and retained its ability to transduce BMP signaling. Heterozygous PaSMCs exhibited a BMP7‑specific gain of function, which was transduced via the mutant receptor. Using siRNA knockdown and cells from conditional knockout mice to selectively deplete BMP receptors, we observed that the tail domain of Bmpr2 inhibits Alk2‑mediated BMP7 signaling. These findings suggest that the tail domain of Bmpr2 is essential for normal embryogenesis and inhibits Alk2‑mediated BMP7 signaling in PaSMCs.  相似文献   

13.
Viperids are a species rich clade of snakes that vary greatly in both morphology and ecology. Many species in the family express tail specializations used for defensive warnings, prey lures, and stability during locomotion and striking. To examine the relationships among ecology, behavior, and vertebral number in the family Viperidae, morphological data (maximum total length and the number of pre-cloacal and caudal vertebrae), macrohabitat use, and tail specialization for 157 viperids were gleaned from published sources. A composite tree topology was constructed from multiple published viperid phylogenies for independent contrasts analysis. The number of vertebrae was strongly correlated with the total length of the snake. Results of both non-phylogenetic and phylogenetically corrected analysis showed that macrohabitat use did not strongly influence total snake length. However, the number of vertebrae per unit length did vary among species according to macrohabitat. Specifically, vertebral density increased with increasing arboreality. Overall, viperids showed a positive correlation between the number of caudal and pre-cloacal vertebrae, but separately rattlesnakes had a significant negative correlation. Species with prehensile tails and those that caudal lure had the most caudal vertebrae. The increased caudal segments of prehensile and luring tails likely improve performance when grasping small vegetation for support or imitating invertebrate prey. These results illustrate that vertebral number is a primary characteristic involved in the diversification of viper species and ecology.  相似文献   

14.
Sperm motility and hence male fertility strictly depends on proper development of the sperm tail and its tight anchorage to the head. The main protein of sperm tail outer dense fibers, ODF1/HSPB10, belongs to the family of small heat shock proteins that function as molecular chaperones. However, the impact of ODF1 on sperm tail formation and motility and on male fecundity is unknown. We therefore generated mutant mice in which the Odf1 gene was disrupted. Heterozygous mutant male mice are fertile while sperm motility is reduced, but Odf1-deficient male mice are infertile due to the detachment of the sperm head. Although headless tails are somehow motile, transmission electron microscopy revealed disturbed organization of the mitochondrial sheath, as well as of the outer dense fibers. Our results thus suggest that ODF1, besides being involved in the correct arrangement of mitochondrial sheath and outer dense fibers, is essential for rigid junction of sperm head and tail. Loss of function of ODF1, therefore, might account for some of the cases of human infertility with decapitated sperm heads. In addition, since sperm motility is already affected in heterozygous mice, impairment of ODF1 might even account for some cases of reduced fertility in male patients.  相似文献   

15.
Eph receptors have been implicated in cell-to-cell interaction during embryogenesis. We generated EphA2 mutant mice using a gene trap method. Homozygous mutant mice developed short and kinky tails. In situ hybridization using a Brachyury probe found the notochord to be abnormally bifurcated at the caudal end between 11.5 and 12.5 days post coitum. EphA2 was expressed at the tip of the tail notochord, while one of its ligands, ephrinA1, was at the tail bud in normal mice. In contrast, EphA2-deficient notochordal cells were spread broadly into the tail bud. These observations suggest that EphA2 and its ligands are involved in the positioning of the tail notochord through repulsive signals between cells expressing these molecules on the surface.  相似文献   

16.
The relative numbers of trunk (body) and caudal (tail) vertebrae in snakes might be influenced by at least four processes: (1) natural selection for crawling speed, (2) fecundity selection for larger trunk size in females, (3) sexual selection for longer bodies or tails in males and/or (4) developmental constraints (if an increase in the number of body vertebrae requires a decrease in the number of tail vertebrae, or vice versa). These four hypotheses generate different predictions about the relationship between sex differences in the numbers of body vertebrae vs. tail vertebrae. I collated published data to test these predictions, both with raw data and using phylogenetically independent contrasts. Some snake lineages show a negative correlation between the magnitude of sex disparities in trunk vs. caudal vertebrae whereas other lineages show the reverse pattern, or no correlation. Thus, different selective pressures seem to have been important in different lineages. Vertebral numbers in snakes may offer a useful model system in which to explore the conflicts between natural, fecundity and sexual selection.  相似文献   

17.
D J Nash 《Teratology》1975,12(2):121-124
A malformation that resulted in the formation of 2 complete tails is described in a mouse that was heterozygous for the sex-linked gene Bent-tail (Bn). One of the tails appeared normal and contained 29 vertebrae, whereas the other tail consisted of 27 vertebrae and had several bends or kinks in it and also had malformed vertebrae similar to those described for the Bn gene. A comparison of the malformation with previously described bifurcated tail conditions in the mouse is presented. It is possible that this 2-tailed mouse represents a special case of X-chromosome inactivation.  相似文献   

18.
We previously reported that deletion of the Fgf2 gene (Fgf2-/-) resulted in decreased bone mass in adult mice. This study examines the effect of haplo-insuffiency (Fgf2+/-) on bone loss in vertebrae from these mutant mice. Fgf2+/+ mice attained peak bone mass at 8-9 months of age. In contrast BMD was significantly reduced in vertebrae from adult (8-9) Fgf2+/- mice. Exogenous FGF-2 rescued reduced bone nodule formation in Fgf2+/- and Fgf2-/- cultures. Runx2 mRNA was reduced in cultures from Fgf2+/- and Fgf2-/- mice. FGF receptor2 mRNA and protein were markedly reduced in Fgf2+/- and Fgf2-/- mice. Decreased bone formation in Fgf2 mutant mice may correlate with impaired FGFR signaling, decreased Runx2 gene expression.  相似文献   

19.
Understanding both the role of selection in driving phenotypic change and its underlying genetic basis remain major challenges in evolutionary biology. Here, we use modern tools to revisit a classic system of local adaptation in the North American deer mouse, Peromyscus maniculatus, which occupies two main habitat types: prairie and forest. Using historical collections, we find that forest‐dwelling mice have longer tails than those from nonforested habitat, even when we account for individual and population relatedness. Using genome‐wide SNP data, we show that mice from forested habitats in the eastern and western parts of their range form separate clades, suggesting that increased tail length evolved independently. We find that forest mice in the east and west have both more and longer caudal vertebrae, but not trunk vertebrae, than nearby prairie forms. By intercrossing prairie and forest mice, we show that the number and length of caudal vertebrae are not correlated in this recombinant population, indicating that variation in these traits is controlled by separate genetic loci. Together, these results demonstrate convergent evolution of the long‐tailed forest phenotype through two distinct genetic mechanisms, affecting number and length of vertebrae, and suggest that these morphological changes—either independently or together—are adaptive.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号