首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The water-insoluble core of lepidopteran silk is composed of four major proteins, but only three genes have been identified. This study demonstrates that the 29- and 30-kDa components of Galleria mellonella silk are derived from a single gene designated P25. The gene is expressed exclusively in the posterior section of the silk glands as a 2-kb mRNA, which accumulates in the feeding larvae and declines at molting. The mRNA encodes a peptide of 24 864 Da that exhibits 51% identity with the putative product of the P25 gene of Bombyx. The conservation of several amino acid stretches, including the relative positions of all 8 cysteines in the mature polypeptide, implies that the P25 proteins play similar, and apparently significant roles in silk formation in the two species. A Galleria P25 cDNA yields a peptide of about 25?kDa when translated in vitro; the 29- and 30-kDa forms present in the silk are derived from this primary translation product by differential glycosylation.  相似文献   

2.
3.
4.
A partial cDNA clone, from the 3′ end of the dragline silk gene was isolated from Nephila clavipes major ampullate glands. This clone contains a 1.7-kb insert, consisting of a repetitive coding region of 1.4-kb and a 0.3-kb nonrepetitive coding region; 1.5-kb of the 1.7-kb fragment was cloned into Escherichia coli and a␣43-kDa recombinant silk protein was expressed. Characterization of the purified protein by Western blot, amino acid composition analysis, and matrix-assisted laser desorption ionization/time-of-flight mass spectrometry confirms it to be spider dragline silk. Received: 7 April 1997 / Received revision: 24 July 1997 / Accepted: 25 August 1997  相似文献   

5.
Homogenate fractions (soluble and particulate) from transformed roots of Catharanthus roseus (L.) G. Don showed several phosphorylated proteins when incubated with γ-[32P]ATP. The phosphorylation in the proteins of 55, 40, 25, 18 and 10 kDa in the particulate fraction and 63 kDa in the soluble fraction was resistant to alkali treatment. Several proteins in both fractions gave a positive signal with monoclonal antiphosphotyrosine antibodies. In-situ phosphorylation in both fractions showed several proteins that cross-reacted with the antiphosphotyrosine antibodies. Tyrosine kinase activity was detected using an exogenous substrate RR-SRC, a synthetic peptide derived from the amino acid sequence surrounding the phosphorylation site in pp60src. This activity was inhibited by genistein, a tyrosine kinase inhibitor. These results indicate, for the first time, the presence of protein-tyrosine kinase (EC 2.7.1.112) activity in transformed plant tissues. Received: 29 March 1997 / Accepted: 21 May 1997  相似文献   

6.
In the fission yeast Schizosaccharomyces pombe, cells of opposite mating type communicate via diffusible peptide pheromones prior to mating. We have cloned the S. pombe mam1 gene, which encodes a 1336-amino acid protein belonging to the ATP-binding cassette (ABC) superfamily. The mam1 gene is only expressed in M cells and the gene product is responsible for the secretion of the mating pheromone, M-factor, a nonapeptide that is S-farnesylated and carboxy-methylated on its C-terminal cysteine residue. The predicted Mam1 protein is highly homologous to mammalian multiple drug-resistance proteins and to the Saccharomyces cerevisiae STE6 gene product, which mediates export of a-factor mating pheromone. We show that STE6 can also mediate secretion of M-factor in S. pombe. Received: 20 December 1996 / Accepted: 29 January 1997  相似文献   

7.
Silkworm mutants are valuable resources for both transgenic breeding and gene discovery. PiggyBac-based random insertional mutagenesis has been widely used in gene functional studies. In order to discover genes involved in silk synthesis, a piggyBac-based random insertional library was constructed using Bombyx mori, and the mutants with abnormal cocoon were particularly screened. By this means, a “thin cocoon” mutant was identified. This mutant revealed thinner cocoon shell and shorter posterior silk gland (PSG) compared with the wild type. The messenger RNA (mRNA) levels of all the three fibroin genes, including Fib-H, Fib-L and P25, were significantly down-regulated in the PSG of mutants. Four piggyBac insertion sites were identified in Aquaporin (AQP), Longitudinals lacking protein-like {Lola), Glutamyl aminopeptidase-like (GluAP) and Loc101744460. The mRNA levels of all the four genes were significantly altered in the silk gland of mutants. In particular, the mRNA amount of AQP, a gene responsible for the regulation of osmotic pressure, decreased dramatically immediately prior to the spinning stage in the anterior silk gland of mutants. The identification of the genes disrupted in the “thin cocoon” mutant in this study provided useful information for understanding silk production and transgenic breeding of silkworms in the future.  相似文献   

8.
ABSTRACT. In the Amoeba-bacteria symbiosis, rod-shaped Gram-negative bacterial endosymbionts reside within symbiosomes in the host cytoplasm, and the host and symbionts are mutually dependent for survival. Three proteins and one group of lipopolysaccharides (LPS) synthesized by the bacterial endosymbionts and two proteins derived from the host cells have been found to be involved in the host-symbiont interactions, although their respective roles are not yet fully known. The symbiont-derived molecules included proteins with molecular weights of 29 kDa, 67 kDa and 96 kDa and LPS. The 29-kDa protein was most abundant in the host cytoplasm, while the 96-kDa protein and LPS were found mostly on the symbiosome membranes. The 67-kDa protein was a GroEL analog and stayed within the symbionts. The host-derived 43-kDa protein, actin, was selectively accumulated by the symbionts, while the 220/225-kDa protein, spectrin, was attached to the symbiosome membranes. The symbiont genes coding for the 29-kDa and 67-kDa proteins were cloned and sequenced. The 29-kDa protein gene was unique with no relation to any known DNA sequences but has a leucine zipper-like motif, suggesting a possible DNA-binding function. The DNA sequence of the 67-kDa protein gene showed a 70% identity with heat-shock-protein genes of Escherichia coli and Coxiella burnetii.  相似文献   

9.
The pollination droplet is a highly conservative pollination mechanism that is observed in all major gymnosperm taxa. Proteomics analysis of the pollination drops was carried out on four gymnosperm species: Juniperus communis (common juniper), Juniperus oxycedrus (prickly juniper), Chamaecyparis lawsoniana (Port Orford cedar), and Welwitschia mirabilis. Pollination drop proteins were purified by SDS-PAGE, and the most abundant proteins were analyzed by mass spectrometry and sequenced. Based on BLAST searching of combined amino acid sequences, the following proteins were identified in the following species: an 83-kDa subtilisin-like proteinase, a 62-kDa glycosyl hydrolase, a 47.5-kDa glucan 1,3-β-glucosidase precursor, a 30-kDa chitinase, and a 25-kDa thaumatin-like protein were identified in J. communis; a 30-kDa chitinase, a 25-kDa thaumatin-like protein, and a 32.5-kDa glucanase-like protein were identified in J. oxycedrus; an 83-kDa subtilisin-like proteinase, a 62-kDa β-d-glucan exohydrolase, a 47.5-kDa glucan 1,3-β-glucosidase, and two 25-kDa thaumatin-like proteins were identified in C. lawsoniana, and a 25-kDa chitinase was identified in W. mirabilis. Based on protein identifications, there is strong evidence that the pollination drop functions in both pathogen defense and pollen development. The discovery of similarities in terms of peptide sequence and protein identifications indicates that ovular secretions are functionally conservative, and that they are essential to reproductive success.  相似文献   

10.
11.
12.
Processing of the 3′ end of mRNA precursors depends on several proteins. The multisubunit cleavage and polyadenylation specificity factor (CPSF) is required for cleavage of the mRNA precursor as well as polyadenylation. CPSF interacts with the cleavage stimulatory factor complex (CstF), and this interaction increases the specificity of binding. Following cleavage downstream of the AAUAAA site, CPSF and poly(A) polymerase (PAP) are required for efficient polyadenylation. Recently, it has been shown that 160-kDa subunit of CPSF interacts directly with the 77-kDa subunit of CstF, which is homologous to the product encoded by the Drosophila gene su(f), and with PAP. Here we report the cloning and characterization of a Drosophila homologue of CPSF-160. The 1329-amino acid dCPSF protein exhibits about 45% and 20% sequence identity, respectively, to its mammalian and yeast counterparts over its entire length. We show that the CPSF homologue is expressed throughout development and that CPSF is essential for viability. Mutations in the cpsf gene did not alter the phenotype of homozygous su(f) mutations, suggesting that, for most genes, processing of 3′ termini is not sensitive to small changes in cpsf and su(f) dosage. Received: 6 June 1997 / Accepted: 5 November 1997  相似文献   

13.
14.
A xylose reductase gene (xyl1) of Candida guilliermondii ATCC 20118 was cloned and characterized. The open reading frame of xyl1 contained 954 nucleotides encoding a protein of 317 amino acids with a predicted molecular mass of 36 kDa. The derived amino acid sequence of C. guilliermondii xylose reductase was 70.4% homologous to that of Pichia stipitis. The gene was placed under the control of an alcohol oxidase promoter (AOX1) and integrated into the genome of a methylotrophic yeast, Pichia pastoris. Methanol induced the expression of the 36-kDa xylose reductase in both intracellular and secreted expression systems. The expressed enzyme preferentially utilized NADPH as a cofactor and was functional both in vitro and in vivo. The different cofactor specificity between P. pastoris and C. guilliermondii xylose reductases might be due to the difference in the numbers of histidine residues and their locations between the two proteins. The recombinant was able to ferment xylose, and the maximum xylitol accumulation (7.8 g/l) was observed when the organism was grown under aerobic conditions. Received: 26 August 1997 / Received revision: 6 November 1997 / Accepted: 21 November 1997  相似文献   

15.
Degradation of streptokinase (SK) has been frequently observed during large-scale protein production. An enhanced susceptibility of SK to degradation has been correlated with its existence in a partially unfolded state. The influence of the carbohydrate moiety on the stability and functional characteristics of SK has been examined by obtaining the glycoform of SK following its secretion through the methylotrophic yeast Pichia pastoris. Secretion of the protein product was achieved by replacing the native secretion signal codons of SK with those from α-factor leader peptide and expressing the fusion construct under the control of the methanol-inducible alcohol oxidase (ox) promoter of P. pastoris after its integration into the host chromosome. Western blot and zymographic analysis of proteins secreted from the recombinant P. pastoris indicated that SK was glycosylated by the host cells, which resulted in the appearance of a SK species migrating slowly, corresponding to a 55-kDa protein product as compared to the 47-kDa native SK. The glycosylated SK retained a plasminogen activation capability identical to that of its unglycosylated counterpart. Glycoform SK exhibited an enhanced stability profile at 25 °C and 37 °C and improved resistance towards protease treatment compared to unglycosylated SK secreted through P. pastoris after tunicamycin treatment or that secreted from the recombinant Escherichia coli. The results presented thus illustrate that N-linked glycosylation of SK results in 30–40% enhancement of the protein stability and resistance towards degradation but does not interfere with its fibrinolytic function. Received: 1 March 1999 / Received last revision: 5 October 1999 / Accepted: 10 October 1999  相似文献   

16.
17.
《Insect Biochemistry》1988,18(3):223-228
Galleria cocoon proteins have been extracted by different solubilizing agents. Nine protein bands were observed by gel electrophoresis, with molecular weights ranging from 18 to 420 kD. Three silk proteins of 24, 29 and 30 kD were extracted only in the presence of β-mercaptoethanol, suggesting that they are covalently linked by disulfide bonds to the large fibroin. They are likely to be the products of the highly abundant mRNA of the posterior silk gland cells. In vitro translation analysis of this mRNA yielded 24, 29 and 30 kD proteins. Thus, as in Bombyx, the Galleria silk is composed of several subunits, including fibroin and low molecular weight polypeptides. However, the genes coding for fibroin or low molecular weight silk proteins in Bombyx and Galleria do not show nucleotide base homology.  相似文献   

18.
We investigated the relationship between the two forms of rabies virus P protein, a non-catalytic subunit of rabies virus RNA polymerase. The two displayed different electrophoretic mobilities as 37- and 40-kDa polypeptides, hence termed as p37 and p40, respectively. Double labeling experiments with [3H]leucine and [32P]orthophosphate demonstrated that p40 was much more phosphorylated than p37. Treatment of the virion proteins with alkaline phosphatase eliminated only p40, and not 37-kDa polypeptide. The p37 was a major product of the P gene, and was accumulated in the infected cell and incorporated into the virion. On the other hand, p40 was apparently detected only in the virion, and little detected in the cells. Treatment of infected cells with okadaic acid, however, resulted in significant accumulation of p40 in the cell, suggesting that p40 was continuously produced in the cell but dephosphorylated quickly. We detected both 37- and 40-kDa products in P cDNA-transfected animal cells, while only a 37-kDa product was produced in Escherichia coli. Incubation of 37-kDa products from E. coli with the lysates of animal cells in vitro resulted in the production of a 40-kDa product, which was also shown to be suppressed by the heparin. From these results, it is suggested that p40 is produced by the hyperphosphorylation of a 37-kDa polypeptide, which depends on certain heparin-sensitive cellular enzyme(s) and occurs even in the absence of the other viral gene products, and that p40 is reverted quickly to p37 in the infected cells, probably being dependent on some virus-induced factor(s).  相似文献   

19.
The complicated process of exotoxin A production by Pseudomonas aeruginosa is controlled by several genes. We have recently described a toxA positive regulatory gene, ptxR. We also proposed the presence of another gene which is adjacent to ptxR and interferes with ptxR function on exotoxin A production. In the presence of a fragment that carries the putative gene, the enhancement in exotoxin A production by ptxR was reduced threefold. In this study, we describe the characterization of this gene. Nucleotide sequence analysis of the 2.1-kbp fragment at the 5′ end of ptxR revealed the presence of an open reading frame designated ptxS (the gene next to ptxR) which encodes a 37.4-kDa protein. The gene ptxS is transcribed in the opposite orientation to ptxR from the other DNA strand. The deduced amino acid sequence of ptxS exhibited a strong homology to several proteins of the GalR-LacI family of repressors. A putative helix-turn-helix DNA binding motif was identified at the amino-terminus region of PtxS. When PtxS was overexpressed in Escherichia coli using the T7 expression system, a single protein of 38-kDa molecular weight was detected. An isogenic mutant defective in ptxS was constructed in PAO1 using the gene replacement technique. The loss of ptxS resulted in a twofold increase in exotoxin A production compared to PAO1. The effect of ptxS on ptxR was examined using a ptxR-lacZ fusion. In the presence of ptxS, the level of β-galactosidase activity produced by the ptxR-lacZ fusion was significantly reduced. These results suggest that ptxS encodes a protein which negatively regulates ptxR expression in P. aeruginosa. Received: 29 September 1997 / Accepted: 22 December 1997  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号