首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glycosylation of mucins produced by human intestinal goblet cells plays a crucial role in their functions: mucus gel physico-chemical protective properties, host-bacteria interactions, cell-cell adhesion, cell migration, and cell signaling. Colonic mucin glycosylation can be modified by luminal metabolites of fiber fermentation like butyrate. Our aim was to assess the effect of butyrate on the expression of a large panel of glycosylation-related genes in human intestinal epithelial goblet cells HT29-Cl.16E. We found that only a very scarce group of genes: 9 out of 252 were evidenced by microarray screening, and only three had their modulation significantly confirmed by real time PCR quantification. The most striking effect of butyrate was its 8- to 18-fold increase of galectin-1 gene expression, which was confirmed at the protein level, specifically with a central and apical intracellular localization. Significant butyrate effects will be discussed in regard to their possible link with mucins expressed by HT29-Cl.16E cells.  相似文献   

2.
We hypothesized that sodium butyrate, a product of enteric bacterial fermentation, modulates gene expression in gut microvascular endothelium which plays a central role in mucosal immunity. We examined sodium butyrate's effect on LPS-induced gene and protein expression in primary cultures of human intestinal microvascular endothelial cells. cDNA array analysis revealed that sodium butyrate augmented ICAM-1 mRNA expression, while it inhibited IL-6 and COX-2 expression in response to LPS stimulation. These results were confirmed at the protein level. Prostaglandin E2 production by LPS was also strongly inhibited by butyrate. The pattern of altered gene expression by butyrate was reproduced by the histone deacetylase inhibitor tricostatin A, suggesting that the regulatory mechanism of butyrate on HIMEC gene expression involves histone deacetylase inhibition. IkappaBalpha degradation and NF-kappaB activation were unaffected by butyrate. In addition to effects on epithelium, sodium butyrate modulates the innate mucosal immune response towards LPS through effects on microvascular endothelial function.  相似文献   

3.
Yang Y  Zhu R  Bai J  Zhang X  Tian Y  Li X  Peng Z  He Y  Chen L  Ji Q  Chen W  Fang D  Wang R 《Experimental cell research》2011,(11):1640-1648
Numb was originally identified as an important cell fate determinant that is asymmetrically inherited during mitosis and controls the fate of sibling cells by inhibiting the Notch signaling pathway in neural tissue. The small intestinal epithelium originates from the division of stem cells that reside in the crypt, which further differentiate into goblet cells, absorptive cells, paneth cells, and enteroendocrine cells. However, Numb's involvement in the differentiation process of intestinal epithelium is largely unknown. In the present study, we confirm that both the Numb mRNA and protein isoforms are expressed in adult mouse intestinal mucosa. Numb protein is ubiquitously expressed throughout the crypt–villus axis of the small intestinal epithelium and is mainly localized to the cytoplasmic membrane. Down-regulation of endogenous Numb using RNA interference in cultured intestinal LS174T cells increased Notch signaling, leading to the up-regulation of Hes1 and the down-regulation of Hath1. Knockdown of Numb alleviated MUC2 protein expression and led to loss of the goblet cell phenotype in LS174Tl cells. Our results provide the first evidence that Numb, an important cell fate determinant, modulates intestinal epithelial cells towards the goblet cell phenotype by inhibiting the Notch signaling pathway.  相似文献   

4.
5.
6.
Serotonin is a neuromodulator mainly synthesized by intestinal enterochromaffin cells that regulate overall intestinal physiology. The serotonin transporter (SERT) determines the final serotonin availability and has been described as altered in inflammatory bowel diseases. IL-10 is an anti-inflammatory cytokine that is involved in intestinal inflammatory processes and also contributes to intestinal mucosa homeostasis. The regulation of SERT by pro-inflammatory factors is well known; however, the effect of IL-10 on the intestinal serotoninergic system mediated by SERT remains unknown. Therefore, the aim of the present study is to determine whether IL-10 affects SERT activity and expression in enterocyte-like Caco-2 cells. Treatment with IL-10 was assessed and SERT activity was determined by 5-HT uptake. SERT mRNA and protein expression was analyzed using quantitative RT-PCR and western blotting. The results showed that IL-10 induced a dual effect on SERT after 6 h of treatment. On one hand, IL-10, at a low concentration, inhibited SERT activity, and this effect might be explained by a non-competitive inhibition of SERT. On the other hand, IL-10, at a high concentration, increased SERT activity and molecular expression in the membrane of the cells. This effect was mediated by the IL-10 receptor and triggered by the PI3K intracellular pathway. Our results demonstrate that IL-10 modulates SERT activity and expression, depending on its extracellular conditions. This study may contribute to understand serotoninergic responses in intestinal pathophysiology.  相似文献   

7.
8.
9.
10.
Notch signaling has previously been implicated in the regulation of the cell fate of intestinal epithelial cells. However, the expression and function of Notch ligands in the human intestine remain largely unknown. In the present study, we showed that Notch ligands Delta-like 1 (Dll1) and Delta-like 4 (Dll4) are expressed in a goblet cell-specific manner in human colonic tissue. Additionally, we found that Dll1 and Dll4 expression was regulated in-parallel with Atoh1 and MUC2, which are both under the control of the Notch-Hes1 signaling pathway. Because knockdown of Dll1 expression completely abrogated the acquisition of the goblet cell phenotype in Notch-inactivated colonic epithelial cells, we postulate that Dll1 might function as a cis-acting regulatory element that induces undifferentiated cells to become goblet cells. Our results suggest a link between Dll1 expression and human goblet cell differentiation that might be mediated by a function that is distinct from its role as a Notch receptor ligand.  相似文献   

11.
12.
Several studies demonstrated that fermented milks may provide a large number of bioactive peptides into the gastrointestinal tract. We previously showed that beta-casomorphin-7, an opioid-like peptide produced from bovine β-casein, strongly stimulates intestinal mucin production in ex vivo and in vitro models, suggesting the potential benefit of milk bioactive peptides on intestinal protection. In the present study, we tested the hypothesis that the total peptide pool (TPP) from a fermented milk (yoghurt) may act on human intestinal mucus-producing cells (HT29-MTX) to induce mucin expression. Our aim was then to identify the peptide(s) carrying the biological activity and to study its impact in vivo on factors involved in gut protection after oral administration to rat pups (once a day, 9 consecutive days). TPP stimulated MUC2 and MUC4 gene expression as well as mucin secretion in HT29-MTX cells. Among the four peptide fractions that were separated by preparative reversed-phase high-performance liquid chromatography, only the C2 fraction was able to mimic the in vitro effect of TPP. Interestingly, the sequence [94-123] of β-casein, present only in C2 fraction, also regulated mucin production in HT29-MTX cells. Oral administration of this peptide to rat pups enhanced the number of goblet cells and Paneth cells along the small intestine. These effects were associated with a higher expression of intestinal mucins (Muc2 and Muc4) and of antibacterial factors (lysozyme, rdefa5). We conclude that the peptide β-CN(94-123) present in yoghurts may maintain or restore intestinal homeostasis and could play an important role in protection against damaging agents of the intestinal lumen.  相似文献   

13.
In chronic obstructive pulmonary diseases, the airway epithelium is chronically exposed to neutrophil elastase, an inflammatory protease. The cellular response to neutrophil elastase dictates the balance between epithelial injury and repair. Key regulators of epithelial migration and proliferation are the ErbB receptor tyrosine kinases, including the epidermal growth factor receptor. In this context, we investigated whether neutrophil elastase may regulate expression of MUC4, a membrane-tethered mucin that has recently been identified as a ligand for ErbB2, the major heterodimerization partner of the epidermal growth factor receptor. In normal human bronchial epithelial cells, neutrophil elastase increased MUC4 mRNA levels in both a concentration- and time-dependent manner. RNA stability assays revealed that neutrophil elastase increased MUC4 mRNA levels by prolonging the mRNA half-life from 5 to 21 h. Neutrophil elastase also increased MUC4 glycoprotein levels as determined by Western analysis, using a monoclonal antibody specific for a nontandem repeat MUC4 sequence. Therefore, airway epithelial cells respond to neutrophil elastase exposure by increasing expression of MUC4, a potential activator of epithelial repair mechanisms.  相似文献   

14.
15.
16.
17.
18.
Separate populations of M cells have been detected in the follicle-associated epithelium of Peyer's patches (PPs) and the villous epithelium of the small intestine, but the traits shared by or distinguishing the two populations have not been characterized. Our separate study has demonstrated that a potent mucosal modulator cholera toxin (CT) can induce lectin Ulex europaeus agglutinin-1 and our newly developed M cell-specific mAb NKM 16-2-4-positive M-like cells in the duodenal villous epithelium. In this study, we determined the gene expression of PP M cells, CT-induced villous M-like cells, and intestinal epithelial cells isolated by a novel approach using FACS. Additional mRNA and protein analyses confirmed the specific expression of glycoprotein 2 and myristoylated alanine-rich C kinase substrate (MARCKS)-like protein by PP M cells but not CT-induced villous M-like cells. Comprehensive gene profiling also suggested that CT-induced villous M-like cells share traits of both PP M cells and intestinal epithelial cells, a finding that is supported by their unique expression of specific chemokines. The genome-wide assessment of gene expression facilitates discovery of M cell-specific molecules and enhances the molecular understanding of M cell immunobiology.  相似文献   

19.
Mucins are high molecular weight proteins that make up the major components of mucus. Hypersecretion of mucus is a feature of several chronic inflammatory airway diseases. MUC8 is an important component of airway mucus, and its gene expression is upregulated in nasal polyp epithelium. Little is known about the molecular mechanisms of MUC8 gene expression. We first observed overexpression of activator protein‐2alpha (AP2α) in human nasal polyp epithelium. We hypothesized that AP2α overexpression in nasal polyp epithelium correlates closely with MUC8 gene expression. We demonstrated that phorbol 12‐myristate 13‐acetate (PMA) treatment of the airway epithelial cell line NCI‐H292 increases MUC8 gene and AP2α expression. In this study, we sought to determine which signal pathway is involved in PMA‐induced MUC8 gene expression. The results show that the protein kinase C and mitogen‐activating protein/ERK kinase (MAPK) pathways modulate MUC8 gene expression. PD98059 or ERK1/2 siRNA and RO‐31‐8220 or PKC siRNA significantly suppress AP2α as well as MUC8 gene expression in PMA‐treated cells. To verify the role of AP2α, we specifically knocked down AP2α expression with siRNA. A significant AP2α knock‐down inhibited PMA‐induced MUC8 gene expression. While dominant negative AP2α decreased PMA‐induced MUC8 gene expression, overexpressing wildtype AP2α increased MUC8 gene expression. Furthermore, using lentiviral vectors for RNA interference in human nasal polyp epithelial cells, we confirmed an essential role for AP2α in MUC8 gene expression. From these results, we concluded that PMA induces MUC8 gene expression through a mechanism involving PKC, ERK1/2, and AP2α activation in human airway epithelial cells. J. Cell. Biochem. 110: 1386–1398, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
We isolated the novel cDNA gob-4, which was shown to be expressed in intestinal goblet cells. The deduced amino acid sequence is similar to the gene coding for the Xenopus laevis cement gland-specific XAG-2. These sequence and expression data suggest this gene may be involved in the secretory function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号