首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ca(2+) activation of Cl and K channels is a key event underlying stimulated fluid secretion from parotid salivary glands. Cl channels are exclusively present on the apical plasma membrane (PM), whereas the localization of K channels has not been established. Mathematical models have suggested that localization of some K channels to the apical PM is optimum for fluid secretion. A combination of whole cell electrophysiology and temporally resolved digital imaging with local manipulation of intracellular [Ca(2+)] was used to investigate if Ca(2+)-activated K channels are present in the apical PM of parotid acinar cells. Initial experiments established Ca(2+)-buffering conditions that produced brief, localized increases in [Ca(2+)] after focal laser photolysis of caged Ca(2+). Conditions were used to isolate K(+) and Cl(-) conductances. Photolysis at the apical PM resulted in a robust increase in K(+) and Cl(-) currents. A localized reduction in [Ca(2+)] at the apical PM after photolysis of Diazo-2, a caged Ca(2+) chelator, resulted in a decrease in both K(+) and Cl(-) currents. The K(+) currents evoked by apical photolysis were partially blocked by both paxilline and TRAM-34, specific blockers of large-conductance "maxi-K" (BK) and intermediate K (IK), respectively, and almost abolished by incubation with both antagonists. Apical TRAM-34-sensitive K(+) currents were also observed in BK-null parotid acini. In contrast, when the [Ca(2+)] was increased at the basal or lateral PM, no increase in either K(+) or Cl(-) currents was evoked. These data provide strong evidence that K and Cl channels are similarly distributed in the apical PM. Furthermore, both IK and BK channels are present in this domain, and the density of these channels appears higher in the apical versus basolateral PM. Collectively, this study provides support for a model in which fluid secretion is optimized after expression of K channels specifically in the apical PM.  相似文献   

2.
The physiological success of fluid-secreting tissues relies on a regulated interplay between Ca(2+)-activated Cl(-) and K(+) channels. Parotid acinar cells express two types of Ca(2+)-activated K(+) channels: intermediate conductance IK1 channels and maxi-K channels. The IK1 channel is encoded by the K(Ca)3.1 gene, and the K(Ca)1.1 gene is a likely candidate for the maxi-K channel. To confirm the genetic identity of the maxi-K channel and to probe its specific roles, we studied parotid glands in mice with the K(Ca)1.1 gene ablated. Parotid acinar cells from these animals lacked maxi-K channels, confirming their genetic identity. The stimulated parotid gland fluid secretion rate was normal, but the sodium and potassium content of the secreted fluid was altered. In addition, we found that the regulatory volume decrease in acinar cells was substantially impaired in K(Ca)1.1-null animals. We examined fluid secretion from animals with both K(+) channel genes deleted. The secretion rate was severely reduced, and the ion content of the secreted fluid was significantly changed. We measured the membrane potentials of acinar cells from wild-type mice and from animals with either or both K(+) channel genes ablated. They revealed that the observed functional effects on fluid secretion reflected alterations in cell membrane voltage. Our findings show that the maxi-K channels are critical for the regulatory volume decrease in these cells and that they play an important role in the sodium uptake and potassium secretion process in the ducts of these fluid-secreting salivary glands.  相似文献   

3.
Elevations of cytoplasmic free calcium concentrations ([Ca(2+)](i)) evoked by cholinergic agonists stimulate isotonic fluid secretion in salivary acinar cells. This process is driven by the apical exit of Cl(-) through Ca(2+)-activated Cl(-) channels, while Cl(-) enters the cytoplasm against its electrochemical gradient via a loop diuretic-sensitive Na(+)-K(+)-2Cl(-) cotransporter (NKCC) and/or parallel operations of Cl(-)-HCO(3)(-) and Na(+)-H(+) exchangers, located in the basolateral membrane. To characterize the contributions of those activities to net Cl(-) secretion, we analyzed carbachol (CCh)-activated Cl(-) currents in submandibular acinar cells using the "gramicidin-perforated patch recording configuration." Since the linear polypeptide antibiotic gramicidin creates monovalent cation-selective pores, CCh-activated Cl(-) currents in the gramicidin-perforated patch recording were carried by Cl(-) efflux via Cl(-) channels, dependent upon Cl(-) entry through Cl(-) transporters expressed in the acinar cells. CCh-evoked oscillatory Cl(-) currents were associated with oscillations of membrane potential. Bumetanide, a loop diuretic, decreased the CCh-activated Cl(-) currents and hyperpolarized the membrane potential. In contrast, neither methazolamide, a carbonic anhydrase inhibitor, nor elimination of external HCO(3)(-) had significant effects, suggesting that the cotransporter rather than parallel operations of Cl(-)-HCO(3)(-) and Na(+)-H(+) exchangers is the primary Cl(-) uptake pathway. Pharmacological manipulation of the activities of the Ca(2+)-activated Cl(-) channel and the NKCC revealed that the NKCC plays a substantial role in determining the amplitude of oscillatory Cl(-) currents, while adjusting to the rate imposed by the Ca(2+)-activated Cl(-) channel, in the gramicidin-perforated patch configuration. By concerting with and being controlled by the cation steps, the oscillatory form of secretory Cl(-) movements may effectively provide a driving force for fluid secretion in intact acinar cells.  相似文献   

4.
Bronchial glands, which consist of mucous and serous cells, are abundant in human airways, playing a major role in the airway secretion. Cl(-) secretion is accompanied by water transport to the lumen in the acinar cells of bronchial glands. Agonists that increase [Ca(2+)]i induce the Cl(-) secretion in bronchial glands. Ca(2+) release from a IP(3)-sensitive Ca(2+) pool at the apical portion stimulates and opens Ca(2+)-sensitive Cl(-) channels at the apical membrane, producing Cl(-) secretion in bronchial glands. K(+) channels at the basolateral membranes are Ca(2+)-sensitive and activated by Ca(2+) release from a cADPribose-sensitive Ca(2+) pool, maintaining the Cl(-) secretion in bronchial glands. Further, cADP ribose in concert with IP(3) induce [Ca(2+)]i oscillation, inducing Cl(-) secretion in bronchial glands. Some tyrosine kinases are involved in the Cl(-) secretion in bronchial glands. Mucous and serous cells in bronchial glands take part in mucin secretion and the secretion of defensive substances (glycoconjugates), respectively. [Ca(2+)]i oscillations are shown to play a central role in the exocytosis of secretory granules in serous cells of bronchial glands. Other signal transductions of mucin and glycoconjugates in airway gland cells remain to be studied, although agonists which increase [cAMP]i are also well known to induce mucin and glycoconjugate secretion from airway glands.  相似文献   

5.
A synthetic Cl(-) channel-forming peptide, C-K4-M2GlyR, applied to the apical membrane of human epithelial cell monolayers induces transepithelial Cl(-) and fluid secretion. The sequence of the core peptide, M2GlyR, corresponds to the second membrane-spanning region of the glycine receptor, a domain thought to line the pore of the ligand-gated Cl(-) channel. Using a pharmacological approach, we show that the flux of Cl(-) through the artificial Cl(-) channel can be regulated by modulating basolateral K(+) efflux through Ca(2+)-dependent K(+) channels. Application of C-K4-M2GlyR to the apical surface of monolayers composed of human colonic cells of the T84 cell line generated a sustained increase in short-circuit current (I(SC)) and caused net fluid secretion. The current was inhibited by the application of clotrimazole, a non-specific inhibitor of K(+) channels, and charybdotoxin, a potent inhibitor of Ca(2+)-dependent K(+) channels. Direct activation of these channels with 1-ethyl-2-benzimidazolinone (1-EBIO) greatly amplified the Cl(-) secretory current induced by C-K4-M2GlyR. The effect of the combination of C-K4-M2GlyR and 1-EBIO on I(SC) was significantly greater than the sum of the individual effects of the two compounds and was independent of cAMP. Treatment with 1-EBIO also increased the magnitude of fluid secretion induced by the peptide. The cooperative action of C-K4-M2GlyR and 1-EBIO on I(SC) was attenuated by Cl(-) transport inhibitors, by removing Cl(-) from the bathing solution and by basolateral treatment with K(+) channel blockers. These results indicate that apical membrane insertion of Cl(-) channel-forming peptides such as C-K4-M2GlyR and direct activation of basolateral K(+) channels with benzimidazolones may coordinate the apical Cl(-) conductance and the basolateral K(+) conductance, thereby providing a pharmacological approach to modulating Cl(-) and fluid secretion by human epithelia deficient in cystic fibrosis transmembrane conductance regulator Cl(-) channels.  相似文献   

6.
Large conductance, Ca(2+)-activated, and voltage-dependent K(+) (BK) channels control a variety of physiological processes in nervous, muscular, and renal epithelial tissues. In bronchial airway epithelia, extracellular ATP-mediated, apical increases in intracellular Ca(2+) are important signals for ion movement through the apical membrane and regulation of water secretion. Although other, mainly basolaterally expressed K(+) channels are recognized as modulators of ion transport in airway epithelial cells, the role of BK in this process, especially as a regulator of airway surface liquid volume, has not been examined. Using patch clamp and Ussing chamber approaches, this study reveals that BK channels are present and functional at the apical membrane of airway epithelial cells. BK channels open in response to ATP stimulation at the apical membrane and allow K(+) flux to the airway surface liquid, whereas no functional BK channels were found basolaterally. Ion transport modeling supports the notion that apically expressed BK channels are part of an apical loop current, favoring apical Cl(-) efflux. Importantly, apical BK channels were found to be critical for the maintenance of adequate airway surface liquid volume because continuous inhibition of BK channels or knockdown of KCNMA1, the gene coding for the BK α subunit (KCNMA1), lead to airway surface dehydration and thus periciliary fluid height collapse revealed by low ciliary beat frequency that could be fully rescued by addition of apical fluid. Thus, apical BK channels play an important, previously unrecognized role in maintaining adequate airway surface hydration.  相似文献   

7.
Hormones and neurotransmitters mobilize Ca(2+) from the endoplasmic reticulum via inositol trisphosphate (IP(3)) receptors, but how a single target cell encodes different extracellular signals to generate specific cytosolic Ca(2+) responses is unknown. In pancreatic acinar cells, acetylcholine evokes local Ca(2+) spiking in the apical granular pole, whereas cholecystokinin elicits a mixture of local and global cytosolic Ca(2+) signals. We show that IP(3), cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate (NAADP) evoke cytosolic Ca(2+) spiking by activating common oscillator units composed of IP(3) and ryanodine receptors. Acetylcholine activation of these common oscillator units is triggered via IP(3) receptors, whereas cholecystokinin responses are triggered via a different but converging pathway with NAADP and cyclic ADP-ribose receptors. Cholecystokinin potentiates the response to acetylcholine, making it global rather than local, an effect mediated specifically by cyclic ADP-ribose receptors. In the apical pole there is a common early activation site for Ca(2+) release, indicating that the three types of Ca(2+) release channels are clustered together and that the appropriate receptors are selected at the earliest step of signal generation.  相似文献   

8.
Li J  Lee S  Choi SY  Lee SJ  Oh SB  Lee JH  Chung SC  Kim JS  Lee JH  Park K 《Life sciences》2006,79(26):2441-2447
Pilocarpine has been used as a choice of drugs for treatment of impaired salivary flow. Although considerable data are available as to the stimulatory effect of pilocarpine on the salivary secretion in human, its underlying mechanism, at the cellular level, has not been rigorously studied. In this experiment, we studied the effect of pilocarpine on the ion channel activity, cytoplasmic free Ca(2+) concentration ([Ca(2+)](i)) and aquaporin (AQP)-5 expression, which play key roles in the secretary process and determine the capacity of fluid secretion. In human submandibular gland (SMG) acinar cells, 10(-5) M pilocarpine activated the outward rectifying-current, which was predominantly K(+) selective in the whole cell patch clamp study. The pilocarpine increased [Ca(2+)](i) in a concentration-dependent manner in the range of 10(-6) M to 10(-4) M. We found that both increases of [Ca(2+)](i) and outward rectifying- K(+) current were inhibited by 10(-5) M U-73122, a specific phospholipase C inhibitor. The magnitudes of pilocarpine-induced [Ca(2+)](i) transients were approximately 55% lower than those with the same concentration of carbachol (CCh). Pilocarpine also increased the amount of AQP-5 protein in the apical membrane (APM) in human SMG acinar cells. Our results suggest that pilocarpine induce salivary secretions in human by activating K(+) channels, increasing [Ca(2+)](i) via phospholipase C dependent pathway, and increasing AQP-5 protein expression in the APM of SMG acinar cells.  相似文献   

9.
Sympathetic stimulation induces weak salivation compared with parasympathetic stimulation. To clarify this phenomenon in salivary glands, we investigated cAMP-induced modulation of Ca(2+)-activated Cl(-) secretion from rat parotid and submandibular acinar cells because fluid secretion from salivary glands depends on the Cl(-) secretion. Carbachol (Cch), a Ca(2+)-increasing agent, induced hyperpolarization of the cells with oscillatory depolarization in the current clamp mode of the gramicidin-perforated patch recording. In the voltage clamp mode at -80 mV, Cch induced a bumetanide-sensitive oscillatory inward current, which was larger in rat submandibular acinar cells than in parotid acinar cells. Forskolin and IBMX, cAMP-increasing agents, did not induce any marked current, but they evoked a small nonoscillatory inward current in the presence of Cch and suppressed the Cch-induced oscillatory inward current in all parotid acinar cells and half (56%) of submandibular acinar cells. In the current clamp mode, forskolin + IBMX evoked a small nonoscillatory depolarization in the presence of Cch and reduced the amplitude of Cch-induced oscillatory depolarization in both acinar cells. The oscillatory inward current estimated at the depolarized membrane potential was suppressed by forskolin + IBMX. These results indicate that cAMP suppresses Ca(2+)-activated oscillatory Cl(-) secretion of parotid and submandibular acinar cells at -80 mV and possibly at the membrane potential during Cch stimulation. The suppression may result in the weak salivation induced by sympathetic stimulation.  相似文献   

10.
The lactogenic hormone prolactin (PRL) has been known to affect Ca(2+) and electrolyte transport in the intestinal epithelium. In the present study we analyzed ion transport in mouse proximal and distal colon, and acute changes induced by PRL. In the proximal colon, carbachol activated a Ca(2+) dependent Cl(-) secretion that was sensitive to DIDS and NFA. In the distal colon, both ATP and carbachol activated K(+) secretion. Ca(2+) -activated KCl transport in proximal and distal colon was inhibited by PRL (200 ng/ml), while amiloride sensitive Na(+) absorption and cAMP induced Cl(-) secretion remained unaffected. Luminal large conductance Ca(2+) -activated K(+) (BK) channels were largely responsible for Ca(2+) -activated K(+) secretion in the distal colon, and basolateral BK channels supported Ca(2+) -activated Cl(-) secretion in the proximal colon. Ca(2+) chelating by BAPTA-AM attenuated effects of carbachol and abolished effects of PRL. Both inhibition of PI3 kinase with wortmannin and blockage of MAP kinases with SB 203580 or U 0126, interfered with the acute inhibitory effect of PRL on ion transport, while blocking of Jak/Stat kinases with AG 490 was without effects. PRL attenuated the increase in intracellular Ca(2+) that was caused by stimulation of isolated colonic crypts with carbachol. Thus PRL inhibits Ca(2+) dependent Cl(-) and K(+) secretion by interfering with intracellular Ca(2+) signaling and probably by activating PI3 kinase and MAP kinase pathways.  相似文献   

11.
We have investigated the characteristics of cytosolic Ca2+ signals induced by muscarinic receptor activation of pancreatic acinar cells that reside within intact pancreatic tissue. We show that these cells exhibit global Ca2+ waves and local apical Ca2+ spikes. This is the first evidence for local Ca2+ signaling in undissociated pancreatic tissue. The mechanism of formation of localized Ca2+ signals was examined using a novel approach involving photolysis of caged carbachol inside a patch pipette attached to the basal surface of an acinar unit. This local activation of basal muscarinic receptors elicited local cytosolic Ca2+ spikes in the apical pole more than 15 microm away from the site of stimulation. In some experiments, local basal receptor activation elicited a Ca2+ wave that started in the apical pole and then spread toward the base. Currently, there are two competing hypotheses for preferential apical Ca2+ signaling. One invokes the need for structural proximity of the cholinergic receptors and the Ca2+ release channels in the apical pole, whereas the other postulates long distance communication between basal receptors and the channels. Our intrapipette uncaging experiments provide definitive evidence for long distance communication between basal muscarinic receptors and apical Ca2+ release channels.  相似文献   

12.
The secondary active Cl(-) secretion in seawater (SW) teleost fish gills and elasmobranch rectal gland involves basolateral Na(+),K(+)-ATPase and NKCC, apical membrane CFTR anion channels, and a paracellular Na(+)-selective conductance. In freshwater (FW) teleost gill, the mechanism of NaCl uptake is more controversial and involves apical V-type H(+)-ATPase linked to an apical Na(+) channel, apical Cl(-)-HCO-3 exchange and basolateral Na(+),K(+)-ATPase. Ca(2+) uptake (in FW and SW) is via Ca(2+) channels in the apical membrane and Ca(2+)-ATPase in the basolateral membrane. Mainly this transport occurs in mitochondria rich (MR) chloride cells, but there is a role for the pavement cells also. Future research will likely expand in two major directions, molded by methodology: first in physiological genomics of all the transporters, including their expression, trafficking, operation, and regulation at the molecular level, and second in biotelemetry to examine multivariable components in behavioral physiological ecology, thus widening the integration of physiology from the molecular to the environmental levels while deepening understanding at all levels.  相似文献   

13.
Large volumes of saliva are generated by transepithelial Cl(-) movement during parasympathetic muscarinic receptor stimulation. To gain further insight into a major Cl(-) uptake mechanism involved in this process, we have characterized the anion exchanger (AE) activity in mouse serous parotid and mucous sublingual salivary gland acinar cells. The AE activity in acinar cells was Na(+) independent, electroneutral, and sensitive to the anion exchange inhibitor DIDS, properties consistent with the AE members of the SLC4A gene family. Localization studies using a specific antibody to the ubiquitously expressed AE2 isoform labeled acini in both parotid and sublingual glands. Western blot analysis detected an approximately 170-kDa protein that was more highly expressed in the plasma membranes of sublingual than in parotid glands. Correspondingly, the DIDS-sensitive Cl(-)/HCO(3)(-) exchanger activity was significantly greater in sublingual acinar cells. The carbonic anhydrase antagonist acetazolamide markedly inhibited, whereas muscarinic receptor stimulation enhanced, the Cl(-)/HCO(3)(-) exchanger activity in acinar cells from both glands. Intracellular Ca(2+) chelation prevented muscarinic receptor-induced upregulation of the AE, whereas raising the intracellular Ca(2+) concentration with the Ca(2+)-ATPase inhibitor thapsigargin mimicked the effects of muscarinic receptor stimulation. In summary, carbonic anhydrase activity was essential for regulating Cl(-)/HCO(3)(-) exchange in salivary gland acinar cells. Moreover, muscarinic receptor stimulation enhanced AE activity through a Ca(2+)-dependent mechanism. Such forms of regulation may play important roles in modulating fluid and electrolyte secretion by salivary gland acinar cells.  相似文献   

14.
The central feature of fluid and electrolyte secretion by salivary acinar cells is transepithelial Cl- movement as a driving force for the secretion. However, little is known about the membrane localization and regulation by agonists of various anion channels. To characterize the anion transport and fluid secretion, we visualized the secretory process induced by the cholinergic agonist, carbachol (CCh), using the anionic fluorescent dye, calcein, under a confocal laser scanning microscope. The fluorescence of calcein loaded into the isolated acini was spread diffusely throughout the cytoplasm and was less intense in the secretory vesicles which occupied the apical pole. Cytoplasmic calcein was released into intercellular canaliculi just after the addition of CCh, depending upon a rise in [Ca2+]i by Ca2+ release from intracellular stores. Thereafter, the formation of watery vacuoles connected with intercellular canaliculi was visualized in the calcein-loaded acini, depending upon external Ca2+. Both the calcein release and vacuole formation were inhibited by suppressing the Ca(2+)-activated K+ efflux. The calcein release was also affected by the external anion substitution, suggesting that calcein is released through an anion channel. In the isolated, perfused glands, CCh-induced fluid secretion was sustained in two phases, whereas the loaded calcein was initially and transiently released into the saliva. By revealing the [Ca2+]i dependence and sensitivities to channel blockers, our results suggest that the initial phase of CCh-induced fluid secretion was evoked in association with the release of the organic anion, calcein, and the late phase of fluid secretion, during which calcein is less permeable, was associated with the formation of watery vacuoles. Thus, the anion channels possessing the distinct property of anion permeation may be activated in the initial phase and late phase. These results indicate that the anionic fluorescent dye, calcein, is useful for visualizing the process of Ca(2+)-dependent fluid secretion, and for clarifying the relation between fluid secretion and anion transport.  相似文献   

15.
Biliary disease is a major cause of acute pancreatitis. In this study we investigated the electrophysiological effects of bile acids on pancreatic acinar cells. In perforated patch clamp experiments we found that taurolithocholic acid 3-sulfate depolarized pancreatic acinar cells. At low bile acid concentrations this occurred without rise in the cytosolic calcium concentration. Measurements of the intracellular Na(+) concentration with the fluorescent probe Sodium Green revealed a substantial increase upon application of the bile acid. We found that bile acids induce Ca(2+)-dependent and Ca(2+)-independent components of the Na(+) concentration increase. The Ca(2+)-independent component was resolved in conditions when the cytosolic Ca(2+) level was buffered with a high concentration of the calcium chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA). The Ca(2+)-dependent component of intracellular Na(+) increase was clearly seen during stimulation with the calcium-releasing agonist acetylcholine. During acetylcholine-induced Ca(2+) oscillations the recovery of cytosolic Na(+) was much slower than the recovery of Ca(2+), creating a possibility for the summation of Na(+) transients. The bile-induced Ca(2+)-independent current was found to be carried primarily by Na(+) and K(+), with only small Ca(2+) and Cl(-) contributions. Measurable activation of such a cationic current could be produced by a very low concentration of taurolithocholic acid 3-sulfate (10 microm). This bile acid induced a cationic current even when applied in sodium- and bicarbonate-free solution. Other bile acids, taurochenodeoxycholic acid, taurocholic acid, and bile itself also induced cationic currents. Bile-induced depolarization of acinar cells should have a profound effect on acinar fluid secretion and, consequently, on transport of secreted zymogens.  相似文献   

16.
17.
Intermediate-conductance K(+) (Kcnn4) channels in the apical and basolateral membranes of epithelial cells play important roles in agonist-induced fluid secretion in intestine and colon. Basolateral Kcnn4 channels have been well characterized in situ using patch-clamp methods, but the investigation of Kcnn4 channels in apical membranes in situ has been hampered by a layer of mucus that prevents seal formation. In the present study, we used patch-clamp methods to characterize Kcnn4 channels in the apical membrane of IEC-18 cells, a cell line derived from rat small intestine. A monolayer of IEC-18 cells grown on a permeable support is devoid of mucus, and tight junctions enable selective access to the apical membrane. In inside-out patches, Ca(2+)-dependent K(+) channels observed with iberiotoxin (a Kcnma1/large-conductance, Ca(2+)-activated K(+) channel blocker) and apamin (a Kcnn1-3/small-conductance, Ca(2+)-activated K(+) channel blocker) present in the pipette solution exhibited a single-channel conductance of 31 pS with inward rectification. The currents were reversibly blocked by TRAM-34 (a Kcnn4 blocker) with an IC(50) of 8.7 ± 2.0 μM. The channels were not observed when charybdotoxin, a peptide inhibitor of Kcnn4 channels, was added to the pipette solution. TRAM-34 was less potent in inhibiting Kcnn4 channels in patches from apical membranes than in patches from basolateral membranes, which was consistent with a preferential expression of Kcnn4c and Kcnn4b isoforms in apical and basolateral membranes, respectively. The expression of both isoforms in IEC-18 cells was confirmed by RT-PCR and Western blot analyses. This is the first characterization of Kcnn4 channels in the apical membrane of intestinal epithelial cells.  相似文献   

18.
Isolated salivary glands of Periplaneta americana were used to measure secretion rates and, by quantitative capillary electrophoresis, Na(+), K(+), and Cl(-) concentrations in saliva collected during dopamine (1 micro M) and serotonin (1 micro M) stimulation in the absence and presence of ouabain (100 micro M) or bumetanide (10 micro M). Dopamine stimulated secretion of a NaCl-rich hyposmotic saliva containing (mM): Na(+) 95 +/- 2; K(+) 38 +/- 1; Cl(-) 145 +/- 3. Saliva collected during serotonin stimulation had a similar composition. Bumetanide decreased secretion rates induced by dopamine and serotonin; secreted saliva had lower Na(+), K(+) and Cl(-) concentrations and osmolarity. Ouabain caused increased secretion rates on a serotonin background. Saliva secreted during dopamine but not serotonin stimulation in the presence of ouabain had lower K(+) and higher Na(+) and Cl(-) concentrations, and was isosmotic. We concluded: The Na(+)-K(+)-2Cl(-) cotransporter is of cardinal importance for electrolyte and fluid secretion. The Na(+)/K(+)-ATPase contributes to apical Na(+) outward transport and Na(+) and K(+) cycling across the basolateral membrane in acinar P-cells. The salivary ducts modify the primary saliva by Na(+) reabsorption and K(+) secretion, whereby Na(+) reabsorption is energized by the basolateral Na(+)/K(+)-ATPase which imports also some of the K(+) needed for apical K(+) extrusion.  相似文献   

19.
In order to assess the role of different classes of K(+) channels in recirculation of K(+) across the basolateral membrane of rabbit distal colon epithelium, the effects of various K(+) channel inhibitors were tested on the activity of single K(+) channels from the basolateral membrane, on macroscopic basolateral K(+) conductance, and on the rate of Na(+) absorption and Cl(-) secretion. In single-channel measurements using the lipid bilayer reconstitution system, high-conductance (236 pS), Ca(2+)-activated K(+) (BK(Ca)) channels were most frequently detected; the second most abundant channel was a low-conductance K(+) channel (31 pS) that exhibited channel rundown. In addition to Ba(2+) and charybdotoxin (ChTX), the BK(Ca) channels were inhibited by quinidine, verapamil and tetraethylammonium (TEA), the latter only when present on the side of the channel from which K(+) flow originates. Macroscopic basolateral K(+) conductance, determined in amphotericin-permeabilised epithelia, was also markedly reduced by quinidine and verapamil, TEA inhibited only from the lumen side, and serosal ChTX was without effect. The chromanol 293B and the sulphonylurea tolbutamide did not affect BK(Ca) channels and had no or only a small inhibitory effect on macroscopic basolateral K(+) conductance. Transepithelial Na(+) absorption was partly inhibited by Ba(2+), quinidine and verapamil, suggesting that BK(Ca) channels are involved in basolateral recirculation of K(+) during Na(+) absorption in rabbit colon. The BK(Ca) channel inhibitors TEA and ChTX did not reduce Na(+) absorption, probably because TEA does not enter intact cells and ChTX is 'knocked off' its extracellular binding site by K(+) outflow from the cell interior. Transepithelial Cl(-) secretion was inhibited completely by Ba(2+) and 293B, partly by quinidine but not by the other K(+) channel blockers, indicating that the small (<3 pS) K(V)LQT1 channels are responsible for basolateral K(+) exit during Cl(-) secretion. Hence different types of K(+) channels mediate basolateral K(+) exit during transepithelial Na(+) and Cl(-) transport.  相似文献   

20.
The effects of inhibitors and specific ion-free salines on fluid secretion rates in the distal and main segments showed that there were major differences in secretory mechanisms in the two segments. Both main and distal segments of the Malpighian tubules were sensitive to DIDs, SITS and acetazolamide but in different ways. The evidence suggests that the main segment does not contain a Cl(-)/HCO(3)(-) exchanger in the basal membrane, whereas the distal segment may do so. Secretion in both segments was K(+) dependent. Ba(2+) markedly reduced fluid secretion by the main segment and K(+) entry into the cells of the main segment is suggested to be predominantly via K(+) channels. Entry of K(+) may be primarily by other routes, such as Na K ATPase, in the distal segment. In the distal segment secretion was highly Mg(2+) dependent. Both segments were sensitive to amiloride analogs suggesting the presence of apical cation/H(+) exchangers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号