首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hippocampal CA1 neurons express both mineralocorticoid and glucocorticoid receptors. Due to the difference in affinity of the two receptor types for corticosterone and variations in endogenous steroid levels, occupation of the receptors will range between a situation of predominant mineralocorticoid receptor activation and conditions where both receptor types are occupied. It was observed that local signal transduction is regulated by activation of the corticosteroid receptors. Particularly, transmission mediated by biogenic amines appears to be sensitive to steroid control. The data indicate that cholinergic and serotonergic responses are small with predominant mineralocorticoid receptor activation, while additional glucocorticoid receptor activation results in large responses; the reverse has been found for noradrenalin. The steroid-dependent control over transmission by biogenic amines will influence local excitability and therefore functional processes in which the hippocampal system is involved.  相似文献   

2.
Recent reports describe the ability of factors to modulate the position of the dose–response curve of receptor–agonist complexes, and the amount of partial agonist activity of receptor–antagonist complexes, of androgen, glucocorticoid (GRs), and progesterone receptors (PRs). We now ask whether this modulation extends to the two remaining steroid receptors: mineralocorticoid (MRs) and estrogen receptors (ERs). These studies of MR were facilitated by our discovery that the antiglucocorticoid dexamethasone 21-mesylate (Dex-Mes) is a new antimineralocorticoid with significant amounts of partial agonist activity. Elevated levels of MR, the co-activators TIF2 and SRC-1, and the co-repressor SMRT do modulate the dose–response curve and partial agonist activity of MR complexes. Interestingly, the precise responses are indistinguishable from those seen with GRs in the same cells. Thus, the unequal transactivation of common genes by MRs versus GRs probably cannot be explained by differential responses to changing cellular concentrations of homologous receptor, co-activators, or co-repressors. We also find that the dose–response curve of ER–estradiol complexes is left-shifted to lower steroid concentrations by higher amounts of exogenous ER. Therefore, the modulation of either the dose–response curve of agonists or the partial agonist activity of antisteroid, and in many cases the modulation of both properties, is a common phenomenon for all of the classical steroid receptors.  相似文献   

3.
An activation study of the membrane-associated carbonic anhydrase (CA, EC 4.2.1.1) isoform XV with a series of natural and non-natural amino acids and aromatic/heterocyclic amines is reported. Murine CA XV was strongly activated by some amino acids (d-Phe, l-/d-DOPA, d-Trp, l-Tyr) and amines (dopamine, serotonin, l-adrenaline and 4-(2-aminoethyl)-morpholine) with activation constants in the range of 4.0–9.5 μM. l-/d-His, l-Phe, histamine and several other heterocyclic amines showed less efficient activation (KAs in the range of 11.6–33.4 μM). The activation profile of CA XV is quite different from that of the cytosolic isoforms CA I and II or the membrane-associated CA IV. All mammalian isoforms CA I–XV are thus characterized for their interaction with this set of amino acid and amine activators, some of which are biogenic amines or neurotransmitters present in sufficiently high amounts in various tissues for exerting significant biologic responses.  相似文献   

4.
The binding pocket of family A GPCRs that bind small biogenic amines is well characterized. In this study we identify residues on CC chemokine receptor 7 (CCR-7) that are involved in agonist-mediated receptor activation but not in high affinity ligand binding. The mutations also affect the ability of the ligands to induce chemotaxis. Two of the residues, Lys3.33(137) and Gln5.42(227), are consistent with the binding pocket described for biogenic amines, while Lys3.26(130) and Asn7.32(305), are found at, or close to, the cell surface. Our observations are in agreement with findings from other peptide and chemokine receptors, which indicate that receptors that bind larger ligands contain contact sites closer to the cell surface in addition to the conventional transmembrane binding pocket. These findings also support the theory that chemokine receptors require different sets of interactions for high affinity ligand binding and receptor activation.  相似文献   

5.
6.
Corepressors are known to interact via their receptor interaction domains (RIDs) with the ligand binding domain in the carboxyl terminal half of steroid/nuclear receptors. We now report that a portion of the activation function-1 domain of glucocorticoid receptors (GRs) and progesterone receptors (PRs), which is the major transactivation sequence, is necessary but not sufficient for corepressor [nuclear receptor corepressor (NCoR) and silencing mediator of retinoid and thyroid hormone receptor (SMRT)] RID binding to GRs and PRs in both mammalian two-hybrid and coimmunoprecipitation assays. Importantly, these two receptor sequences are functionally interchangeable in the context of GR for transactivation, corepressor binding, and corepressor modulatory activity assays. This suggests that corepressors may act in part by physically blocking portions of receptor activation function-1 domains. However, differences exist in corepressor binding to GRs and PRs. The C-terminal domain of PRs has a higher affinity for corepressor than that of GRs. The ability of some segments of the coactivator TIF2 to competitively inhibit corepressor binding to receptors is different for GRs and PRs. With each receptor, the cell-free binding of corepressors to ligand-free receptor is prevented by sodium molybdate, which is a well-known inhibitor of receptor activation to the DNA-binding state. This suggests that receptor activation precedes binding to corepressors. Collectively, these results indicate that corepressor binding to GRs and PRs involve both N- and C-terminal sequences of activated receptors but differ in ways that may contribute to the unique biological responses of each receptor in intact cells.  相似文献   

7.
Mineralocorticoid receptors (MRs) in neurons of the anterior hypothalamus and the periventricular brain regions mediate aldosterone-selective actions on sodium hemeostasis, salt appetite and cardiovascular regulation. Corticosterone is not effective in these neurons, possibly because it is enzymatically inactivated. However, MRs in limbic brain regions, notably in the hippocampal neurons, do already respond to very low concentrations of both corticosterone and aldosterone. The MR-mediated effects stabilize neuronal transmission and appear critical for neuronal integrity of a sub-region of the hippocampus: the dentate gyrus. Higher concentrations of corticosterone induced by stress and the circadian rise progressively activate the lower affinity glucocorticoid receptors (GRs), which in coordination with MR-mediated actions then facilitate adaptive processes required for recovery of homeostasis. It is postulated that this balanced MR- and GR-mediated action of corticosterone is of critical importance for regulation of the stress response and behavioural adaptation.  相似文献   

8.
9.
Mineralocorticoid receptors (MRs) in the central nervous system play important roles in spatial memory, fear memory, salt sensitivity, and hypertension. Corticosterone binds to MRs to induce presynaptic vesicle release and postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor aggregation, which are necessary for induction of long-term potentiation under psychological stress. On the other hand, cognitive dysfunction is an important problem clinically in patients with hypertension, diabetes, and cerebral infarction, and all of these conditions are associated with an increase in reactive oxygen species (ROS) generation. Oxidative stress has been shown to modify the genomic actions of MRs in the peripheral organs; however, there have been no reports until now about the relation between the nongenomic actions of MRs and ROS in the central nervous system. In this study, we investigated the relationship between ROS and the nongenomic actions of MR. We examined the nongenomic actions of MR by measuring the slope of the field excitatory postsynaptic potentials and found that ROS induced an additive increase of these potentials, which was accompanied by Rac1 GTP activation and ERK1/2 phosphorylation. An NADPH oxidase inhibitor, apocynin, blocked the nongenomic actions of MRs. A Rac1 inhibitor, NSC23766, was also found to block synaptic enhancement and ERK1/2 phosphorylation induced by NADPH and corticosterone. We concluded that NADPH oxidase activity and Rac1 GTP activity are indispensable for the nongenomic actions of MRs and that Rac1 GTP activation induces ERK1/2 phosphorylation in the brain.  相似文献   

10.
In the present study the effects of intracerebroventricular (icv) and intrahippocampal administration of corticosteroid antagonists on basal hypothalamic-pituitary-adrenal (HPA) activity around the diurnal peak were compared in male Wistar rats. In two separate experiments the glucocorticoid receptor (GR) antagonist RU 38486 and the mineralocorticoid receptor (MR) antagonist RU 28318 were tested. One hour after GR antagonist injection, significant increases in plasma ACTH and corticosterone levels were observed in the icv treated rats, when compared to vehicle. In contrast, a significant decrease in ACTH levels, and a slight, but non-significant decrease in corticosterone concentrations were attained one hour after intrahippocampal injection of the GR antagonist. Injection of the MR antagonist, on the other hand, resulted in enhanced ACTH and corticosterone levels irrespective of the site of injection. These findings suggest that negative feedback inhibition at the circadian peak involves hippocampal MRs and extrahippocampal (hypothalamic) GRs. The latter feedback inhibition overrides a positive feedback influence exerted by endogenous corticosteroids through hippocampal GRs.  相似文献   

11.
The expression of glucocorticoid receptors (GRs) was investigated immunohistochemically in two different lineages of oligodendrocytes, using carbonic anhydrase (CA) II and neuron glial antigen (NG) 2 as markers of mature oligodendrocytes and oligodendrocyte progenitors, respectively. We focused on the gray matter regions, including CA1, CA3 and the dentate gyrus of the hippocampus, the primary somatosensory cortex barrel field and the basolateral amygdala, and the white matter regions, including the corpus callosum, external capsule and fimbria of the hippocampus. More than 80% of CAII-immunoreactive (IR) cells and more than 95% of NG2-IR cells expressed GRs in various regions of the brain. In contrast, neither CAII-IR cells nor NG2-IR cells expressed mineralocorticoid receptors (MRs) in the same regions. The intensity of GR expression was drastically reduced in CA II-IR cells and NG2-IR cells in the same regions in adrenalectomized mice. Finally, steroid receptor co-activator (SRC)-1 and p300, both of which are cofactors for GR, were expressed in the gray and white matter regions in NG2-IR cells, but not in CAII-IR cells. These results suggest that the expression of GRs in oligodendrocytes and their progenitor cells mediates several functions in vivo, including differentiation and myelination, as a major target of glucocorticoids and their cofactors.  相似文献   

12.
The first activation study of the human carbonic anhydrase (hCA, EC 4.2.1.1) isoforms associated to tumors, hCA IX and XII, with a small library of natural and non-natural amino acids as well as aromatic/heterocyclic amines is reported. hCA IX was activated efficiently by dopamine, adrenaline and heterocyclic amines possessing aminoethyl-/aminomethyl-moieties (K(A)s of 9 nM-1.07 microM), whereas the best hCA XII activators were serotonin, L-adrenaline, 4-(2-aminoethyl)-morpholine and d-Phe (K(A) of 0.24-0.41 microM). Precise steric and electronic requirements are needed to be present in the molecules of effective hCA IX/hCA XII activators, in order to assure an adequate fit within the enzyme active site cavity for the formation of the enzyme-activator complex, and for an efficient proton transfer process within this complex, leading to the release of a proton and formation of the catalytically active, zinc-hydroxide species of the enzyme. Selective activation of these CA isoforms might be useful to develop pharmacologic tools or to understand whether some of these biogenic amines/amino acids may influence the progression of tumors overexpressing CA IX and/or CA XII.  相似文献   

13.
The first QSAR study on the activation of the human secretory isoform of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1), CA VI, with a series of amines and amino acids is reported. A large set of topological indices have been used to obtain several tri-/tetra-parametric models. We compared the CA VI activating QSAR models with those calculated for activation of the cytosolic human isozymes hCA I and hCA II. In addition, the effect of D- and L-amino acids as activators of hCA I, hCA II and of hCA VI as compared to those of structurally related biogenic amines was investigated for obtaining statistically significant and predictive QSAR equations. The obtained models are discussed using a variety of statistical parameters. The best models were obtained for hCA II activation, followed by hCA I, whereas the QSAR models for the activation of hCA VI were statistically weaker.  相似文献   

14.
Glucocorticoids affect learning and memory but the cellular mechanisms involved are poorly understood. The present studies tested if the stress-responsive glucocorticoid receptor (GR) is present and regulated within dendritic spines, and influences local signaling to the actin cytoskeleton. In hippocampal field CA1, 13?% of synapses contained GR-immunoreactivity. Three-dimensional reconstructions of CA1 dendrites showed that GR aggregates are present in both spine heads and necks. Consonant with evidence that GR?? mRNA associates with the translation regulator Fragile X Mental Retardation Protein (FMRP), spine GR levels were rapidly increased by group 1 mGluR activation and reduced in mice lacking FMRP. Treatment of cultured hippocampal slices with the GR agonist dexamethasone rapidly (15?C30?min) increased total levels of phosphorylated (p) Cofilin and extracellular signal-regulated kinase (ERK) 1/2, proteins that regulate actin polymerization and stability. Dexamethasone treatment of adult hippocampal slices also increased numbers of PSD95+ spines containing pERK1/2, but reduced numbers of pCofilin-immunoreactive spines. Dexamethasone-induced increases in synaptic pERK1/2 were blocked by the GR antagonist RU-486. These results demonstrate that GRs are present in hippocampal spines where they mediate acute glucocorticoid effects on local spine signaling. Through effects on these actin regulatory pathways, GRs are positioned to exert acute effects on synaptic plasticity.  相似文献   

15.
Zhou M  Kindt M  Joëls M  Krugers HJ 《PloS one》2011,6(10):e26220

Background

Corticosteroid hormones regulate appraisal and consolidation of information via mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) respectively. How activation of these receptors modulates retrieval of fearful information and the subsequent expression of fear is largely unknown. We tested here whether blockade of MRs or GRs during retrieval also affects subsequent expression of fear memory.

Methodology/Principal Findings

Mice were trained in contextual or tone cue fear conditioning paradigms, by pairing mild foot shocks with a particular context or tone respectively. Twenty-four hours after training, context-conditioned animals were re-exposed to the context for 3 or 30 minutes (day 2); tone-conditioned animals were placed in a different context and re-exposed to one or six tones. Twenty-four hours (day 3) and one month later, freezing behavior to the aversive context/tone was scored again. MR or GR blockade was achieved by giving spironolactone or RU486 subcutaneously one hour before retrieval on day 2. Spironolactone administered prior to brief context re-exposure reduced freezing behavior during retrieval and 24 hours later, but not one month later. Administration of spironolactone without retrieval of the context or immediately after retrieval on day 2 did not reduce freezing on day 3. Re-exposure to the context for 30 minutes on day 2 significantly reduced freezing on day 3 and one month later, but freezing was not further reduced by spironolactone. Administration of spironolactone prior to tone-cue re-exposure on day 2 did not affect freezing behavior. Treatment with RU486 prior to re-exposure did not affect context or tone-cue fear memories at any time point.

Conclusions/Significance

We conclude that MR blockade prior to retrieval strongly reduces the expression of contextual fear, implying that MRs, rather than GRs, play an important role in retrieval of emotional information and subsequent fear expression.  相似文献   

16.
In our study, we tried to find whether changes in expressions of inducible nitric oxide synthase (iNOS), corticosteroid (gluco-and mineralocorticoid) receptors (GRs and MRs, respectively), and bcl2 protein within the early stages of streptozotocin (STZ)-induced diabetes in Wistar rats can be involved in hippocampal dysfunction. Expressions of iNOS and bcl2 were studied using indirect immunofluorescence techniques, while GR and MR expressions were estimated using in situ mRNA hybridization. The concentrations of insulin, ACTH, and corticosterone in the blood serum were measured using ELISA kits. It was found that expression of iNOS in the CA2 and CA3 hippocampal areas increased significantly at day 3 after STZ injection, and corticosterone and ACTH levels in the serum increased at day 14. The iNOS expression was downregulated at day 14 of the development of diabetes. These changes were accompanied by significantly increased expression of GRs in the hippocampus. Neither bcl2 nor MR expression increased in the CA2 and CA3 hippocampal areas within the examined period of the development of diabetes. Thus, we first obtained proof of noticeable early molecular events in the rat hippocampus related to experimental diabetes. These events may be linked with diabetes-associated cognitive decline observed in patients suffering from diabetes. Neirofiziologiya/Neurophysiology, Vol. 39, No. 6, pp. 498–502, November–December, 2007.  相似文献   

17.
Primary cultures of mouse embryonic neuronal or glial cells from the cerebral cortex, striatum, and mesencephalon were used to identify and determine the cellular localization of somatostatin receptors coupled to an adenylate cyclase. Somatostatin inhibited basal adenylate cyclase activity on neuronal but not on glial crude membranes in the three structures examined. The somatostatin-inhibitory effect on neuronal crude membranes was still observed in the presence of (-)-isoproterenol, 3,4-dihydroxyphenylethylamine (dopamine, DA), or 5-hydroxytryptamine (5-HT, serotonin) used at a concentration (10(-5) M) inducing maximal adenylate cyclase activation. In addition, in most cases biogenic amines modified the pattern of the somatostatin-inhibitory effect, triggering either an increase in the peptide apparent affinity for its receptors or an increase in the maximal reduction of adenylate cyclase activity or both. However, 5-HT did not modify the somatostatin-inhibitory response on striatal and cortical neuronal crude membranes. The changes in somatostatin-inhibitory responses were interpreted as a colocalization of the amine and the peptide receptors on subtypes of neuronal cell populations. Finally, somatostatin was shown to inhibit adenylate cyclase activity following its activation by (-)-isoproterenol on glial crude membranes of the striatum and the mesencephalon but not on those of the cerebral cortex.  相似文献   

18.
19.
The biogenic amines, octopamine and serotonin, modulate the synaptic activity of the lateral giant interneuron (LG) circuitry of the crayfish escape behavior. Bath application of both octopamine and serotonin enhances the synaptic responses of LG to sensory stimulation. We have shown previously (Araki et al. J Neurophysiol 94:2644-2652, 2005) that a serotonin-induced enhancement of the LG response was mediated by an increase in cAMP levels following activation of adenylate cyclase; however, octopamine acts independently. Here, we clarify how octopamine enhances the LG response during sensory stimulation using physiological and pharmacological analyses. When phospholipase C inhibitor U-73122 was directly injected into the LG before biogenic amine application, it abolished the enhancing effect of octopamine on direct sensory input to the LG, but did not block indirect input via sensory interneurons or the effect of serotonin. Direct injection of IP(3), and its analogue adenophostin A, into the LG increased the synaptic response of the LG to sensory stimulation. Thus, IP(3) mediates octopamine-induced synaptic enhancement of the LG, but serotonin acts independently. These results indicate that both octopamine and serotonin enhance the synaptic responses of the LG to sensory stimulation, but that they activate two different signaling cascades in the LG.  相似文献   

20.
Despite the central position of CA3 pyramidal cells in the hippocampal circuit, the experimental investigation of their synaptic properties has been limited. Recent slice experiments from adult rats characterized AMPA and NMDA receptor unitary synaptic responses in CA3b pyramidal cells. Here, excitatory synaptic activation is modeled to infer biophysical parameters, aid analysis interpretation, explore mechanisms, and formulate predictions by contrasting simulated somatic recordings with experimental data. Reconstructed CA3b pyramidal cells from the public repository NeuroMorpho.Org were used to allow for cell-specific morphological variation. For each cell, synaptic responses were simulated for perforant pathway and associational/commissural synapses. Means and variability for peak amplitude, time-to-peak, and half-height width in these responses were compared with equivalent statistics from experimental recordings. Synaptic responses mediated by AMPA receptors are best fit with properties typical of previously characterized glutamatergic receptors where perforant path synapses have conductances twice that of associational/commissural synapses (0.9 vs. 0.5 nS) and more rapid peak times (1.0 vs. 3.3 ms). Reanalysis of passive-cell experimental traces using the model shows no evidence of a CA1-like increase of associational/commissural AMPA receptor conductance with increasing distance from the soma. Synaptic responses mediated by NMDA receptors are best fit with rapid kinetics, suggestive of NR2A subunits as expected in mature animals. Predictions were made for passive-cell current clamp recordings, combined AMPA and NMDA receptor responses, and local dendritic depolarization in response to unitary stimulations. Models of synaptic responses in active cells suggest altered axial resistivity and the presence of synaptically activated potassium channels in spines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号