首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The melanocortin 1 receptor (MC1R), a key regulator of melanogenesis, is known to control inflammation, acting in concert with the MC1R ligand α-melanocyte-stimulating hormone. Although cell migration is a key event in inflammation, few studies have addressed the function of MC1R in this context. Using highly motile melanoma cells, we found that the expression level of MC1R was associated with the extent of migration of mouse melanoma cells, suggesting that MC1R plays a functional role in controlling this migration. Overexpression of MC1R enhanced melanoma cell migration, whereas the opposite was true when MC1R levels were knocked down using small inhibitory RNAs. Interestingly, MC1R expression enhanced the synthesis of syndecan-2, a cell surface heparan sulfate proteoglycan known to be involved in melanoma cell migration. Knockdown of syndecan-2 expression decreased MC1R-mediated cell migration. Further, MC1R inhibited the activation of p38 MAPK, subsequently enhancing expression of sydnecan-2, in parallel with an increase in the extent of cell migration. Consistently, activation of p38 by H(2)O(2) inhibited syndecan-2 expression and cell migration, whereas inhibition of p38 activation enhanced syndecan-2 expression and cell migration. Finally, we found that α-melanocyte-stimulating hormone inhibited MC1R-mediated cell migration via activation of p38 and inhibition of syndecan-2 expression. Together, the data strongly suggest that MC1R regulates melanoma cell migration via inhibition of syndecan-2 expression.  相似文献   

2.
Syndecans are single-pass transmembrane proteins on the cell surface that are involved in various cellular functions. Previously, we reported that both homo- and hetero-form of syndecan dimers affected their functionality. However, little is known about the structural role of the transmembrane domain of syndecan-3. A series of glutathione-S-transferase syndecan-3 proteins showed that syndecan-3 formed SDS-resistant dimers and oligomers. SDS-resistant oligomer formation was barely observed in the syndecan deletion mutants lacking the transmembrane domain. Interestingly, the presence of an alanine 397 residue in the transmembrane domain correlated with SDS-resistant oligomer, and its replacement by phenylalanine (AF mutant) significantly reduced SDS-resistant oligomer formation. Beside the AF mutant significantly reduced syndecan-3 mediated cellular processes such as cell adhesion, migration and neurite outgrowth of SH-SY5Y neuroblastoma. Furthermore, the alanine residue regulated hetero-oligomer formation of syndecan-3, and hetero-oligomer formation significantly reduced syndecan-3-mediated neurite outgrowth of SH-SY5Y cells. Taken together, all these data suggest that syndecan-3 has a specific feature of oligomerization by the transmembrane domain and this oligomerization tendency is crucial for the function of syndecan-3.  相似文献   

3.
Mutation of the melanocortin-receptor 4 (MC4R) is the most frequent cause of severe obesity in humans. Binding of agouti-related peptide (AgRP) to MC4R involves the co-receptor syndecan-3, a heparan sulfate proteoglycan. The proteoglycan can be structurally modified by the enzyme heparanase. Here we tested the hypothesis that heparanase plays a role in food intake behaviour and energy balance regulation by analysing body weight, body composition and food intake in genetically modified mice that either lack or overexpress heparanase. We also assessed food intake and body weight following acute central intracerebroventricular administration of heparanase; such treatment reduced food intake in wildtype mice, an effect that was abolished in mice lacking MC4R. By contrast, heparanase knockout mice on a high-fat diet showed increased food intake and maturity-onset obesity, with up to a 40% increase in body fat. Mice overexpressing heparanase displayed essentially the opposite phenotypes, with a reduced fat mass. These results implicate heparanase in energy balance control via the central melanocortin system. Our data indicate that heparanase acts as a negative modulator of AgRP signaling at MC4R, through cleavage of heparan sulfate chains presumably linked to syndecan-3.  相似文献   

4.
Agouti-related peptide (AgRP), the endogenous antagonist to the melanocortin 3 and 4 receptors, elicits robust hyperphagia and weight gain in rodents when administered directly into the central nervous system. The relative influence of AgRP to cause weight gain in rodents partially depends on the activity level of the melanocortin agonist-producing proopiomelanocortin neurons. Both proopiomelanocortin and AgRP neurons within the arcuate nucleus receive energy storage information from circulating peripheral signals such as leptin and insulin. Another modulator of AgRP activity includes the cell surface molecule syndecan-3. Because leptin and insulin affect food intake in a sexually dimorphic way in rodents and syndecan-3-deficient mice regulate adiposity levels through distinct physiological mechanisms, we hypothesized that AgRP-induced weight gain would also be sexually dimorphic in rats. In the present study, the behavioral and physiological effects of centrally-administered AgRP in male and female were investigated. In male rats, AgRP (1 nmol) induced 5 days (P < 0.0001) of significantly elevated feeding compared with vehicle-treated controls, while females displayed 3 days of hyperphagia (P < 0.05). However, 1 wk after the injection, both male and female rats gained the same percent body weight (6%). Interestingly, female rats exhibited a greater reduction in energy expenditure (Vo2) following AgRP compared with male rats (P < 0.05). Removal of the gonads did not alter cumulative food intake in male or female rats but did attenuate the dramatic reduction in Vo2 exhibited by females. Both intact and gonadectomized rats demonstrated significantly increased respiratory quotient supporting the anabolic action of AgRP (P < 0.01). These findings are novel in that they reveal sex-specific underlying physiology used to achieve weight gain following central AgRP in rats.  相似文献   

5.
6.
7.
Irani BG  Haskell-Luevano C 《Peptides》2005,26(10):1788-1799
The process of energy homeostasis is a highly regulated process involving interacting signals between a variety of anorexigenic and orexigenic peptides, proteins and signaling molecules. The melanocortin system is an important component of this complex regulatory network. Involvement of the melanocortin pathway in the control of food intake and body weight regulation has been studied extensively in the past two decades. Previous studies that involve central administration of melanocortin molecules and examination of molecules that effect food intake in melanocortin knockout (KO) mice (MC3R, MC4R, POMC, AGRP and NPY) have been examined. In this review, we have summarized feeding studies that have resulted in the recognition of the melanocortin system as a major contributor to the complex neuroendocrine system regulating energy homeostasis.  相似文献   

8.
Among the four members of the syndecan family there exists a high level of divergence in the ectodomain core protein sequence. This has led to speculation that these core proteins bear important functional domains. However, there is little information regarding these functions, and thus far, the biological activity of syndecans has been attributed largely to their heparan sulfate chains. We have previously demonstrated that cell surface syndecan-1 inhibits invasion of tumor cells into three-dimensional gels composed of type I collagen. Inhibition of invasion is dependent on the syndecan heparan sulfate chains, but a role for the syndecan-1 ectodomain core protein was also indicated. To more closely examine this possibility and to map the regions of the ectodomain essential for syndecan-1-mediated inhibition of invasion, a panel of syndecan-1 mutational constructs was generated, and each construct was transfected individually into myeloma tumor cells. The anti-invasive effect of syndecan-1 is dramatically reduced by deletion of an ectodomain region close to the plasma membrane. Further mutational analysis identified a stretch of 5 hydrophobic amino acids, AVAAV (amino acids 222-226), critical for syndecan-1-mediated inhibition of cell invasion. This invasion regulatory domain is 26 amino acids from the start of the transmembrane domain. Importantly, this domain is functionally specific because its mutation does not affect syndecan-1-mediated cell binding to collagen, syndecan-1-mediated cell spreading, or targeting of syndecan-1 to specific cell surface domains. This invasion regulatory domain may play an important role in inhibiting tumor cell invasion, thus explaining the observed loss of syndecan-1 in some highly invasive cancers.  相似文献   

9.
Syndecans comprise a major family of cell surface heparan sulfate proteoglycans (HSPGs). Syndecans bind and modulate a wide variety of biological molecules through their heparan sulfate (HS) moiety. Although all syndecans contain the ligand binding HS chains, they likely perform specific functions in vivo because their temporal and spatial expression patterns are different. However, how syndecan expression is regulated has yet to be clearly defined. In this study, we examined how syndecan-1 expression is regulated in epithelial cells. Our results showed that among several bioactive agents tested, only forskolin and three isoforms of TGFbeta (TGFbeta1-TGFbeta3) significantly induced syndecan-1, but not syndecan-4, expression on various epithelial cells. Steady-state syndecan-1 mRNA was not increased by TGFbeta treatment and cycloheximide did not inhibit syndecan-1 induction by TGFbeta, indicating that TGFbeta induces syndecan-1 in a post-translational manner. However, TGFbeta induction of syndecan-1 was inhibited by transient expression of a dominant-negative construct of protein kinase A (PKA) and by specific inhibitors of PKA. Further (i) syndecan-1 cytoplasmic domains were Ser-phosphorylated when cells were treated with TGFbeta and this was inhibited by a PKA inhibitor, (ii) PKA was co-immunoprecipitated from cell lysates by anti-syndecan-1 antibodies, (iii) PKA phosphorylated recombinant syndecan-1 cytoplasmic domains in vitro, and (iv) expression of a syndecan-1 construct with its invariant Ser(286) replaced with a Gly was not induced by TGFbeta. Together, these findings define a regulatory mechanism where TGFbeta signals through PKA to phosphorylate the syndecan-1 cytoplasmic domain and increases syndecan-1 expression on epithelial cells.  相似文献   

10.
BALB/3T3 cells transfected with plasmids pcDNA3.1-[S-ras(Q(61)K)] of shrimp Penaeus japonicus were applied to reveal a complex of p120-GAP/syndecan-2 being highly expressed upon transformation. Of interest, most of the p120-GAP/syndecan-2 complex was localized at caveolae, a membrane microdomain enriched with caveolin-1. To confirm the molecular interaction between syndecan-2 and p120-GAP, we further purified p120-GAP protein from mouse brains by using an affinity column of HiTrap-RACK1 and expressed mouse RACK1-encoded fusion protein and mouse syndecan-2-encoded fusion protein in bacteria. We report molecular affinities exist between p120-GAP and RACK1, syndecan-2 and RACK1 as well as p120-GAP and syndecan-2. The selective affinity between p120-GAP and syndecan-2 was found to be sufficient to detach RACK1. The p120-GAP/syndecan-2 complex was demonstrated to keep Src tyrosine kinase in an activated form. On the other hand, the syndecan-2/RACK1 complex was found to have Src in an inactivated form. These data indicate that the p120-GAP/syndecan-2 complex at caveolae could provide a docking site for Src to transmit tyrosine signaling, implying that syndecan-2/p120-GAP functions as a tumor promoter upon transformation with oncogenic ras of shrimp P. japonicus.  相似文献   

11.
Syndecans are cell-surface heparan sulfate proteoglycans, which perform a variety of functions in the cell. Most important, they are co-receptors for growth factors and mediate cell-cell and cell-matrix interactions. Four syndecans (syndecan 1-4) have been described in different species. The aim of this work was the cloning and characterization of human syndecan-3. The human syndecan-3 sequence has high homology to the rat and mouse sequences, with the exception of the 5'-region. Syndecan-3 mRNA is mostly expressed in the nervous system, the adrenal gland, and the spleen. When different cell lines were transiently transfected with full-length syndecan-3 cDNA, it was localized to the membrane and induced the formation of long filopodia-like structures, microspikes, and varicosities. Consequently, the actin cytoskeleton was re-organized, since actin staining was mostly found in the cellular extensions and at the cell periphery, co-localizing with the syndecan-3 staining. The development of the phenotype depended on the presence of sugar chains, as transfected glycosaminoglycan-deficient Chinese hamster ovary (CHO) 745 cells did not show these structural changes, nor did transfected CHO K1 cells in the presence of heparin. The similarity of the cloned DNA sequence with that of other mammalian species and the high expression in the nervous system led us to the assumption that human syndecan-3 could perform comparable functions to those described for syndecan-3 in rat and mouse. Additionally, transient transfection experiments suggest a role of human syndecan-3 in the organization of cell shape by affecting the actin cytoskeleton, possibly by transferring signals from the cell surface in a sugar-dependent mechanism.  相似文献   

12.
The syndecans are a type of cell surface adhesion receptor that initiates intracellular signaling events through receptor clustering mediated by their highly conserved transmembrane domains (TMDs). However, the exact function of the syndecan TMD is not yet fully understood. Here, we investigated the specific regulatory role of the syndecan-2 TMD. We found that syndecan-2 mutants in which the TMD had been replaced with that of syndecan-4 were defective in syndecan-2-mediated functions, suggesting that the TMD of syndecan-2 plays one or more specific roles. Interestingly, syndecan-2 has a stronger tendency to form sodium dodecyl sulfate (SDS)-resistant homodimers than syndecan-4. Our structural studies showed that a unique phenylalanine residue (Phe167) enables an additional molecular interaction between the TMDs of the syndecan-2 homodimer. The presence of Phe167 was correlated with a higher tendency toward oligomerization, and its replacement with isoleucine significantly reduced the SDS-resistant dimer formation and cellular functions of syndecan-2 (e.g. cell migration). Conversely, replacement of isoleucine with phenylalanine at this position in the syndecan-4 TMD rescued the defects observed in a mutant syndecan-2 harboring the syndecan-4 TMD. Taken together, these data suggest that Phe167 in the TMD of syndecan-2 endows the protein with specific functions. Our work offers new insights into the signaling mediated by the TMD of syndecan family members.  相似文献   

13.
Martin NM  Smith KL  Bloom SR  Small CJ 《Peptides》2006,27(2):333-339
Recent studies of transgenic mice and humans have provided compelling evidence for the importance of the hypothalamic melanocortin system in the regulation of energy balance. Energy homeostasis is a balance between food intake (energy input) and energy expenditure. The melanocortin system regulates feeding via effects of the endogenous agonist, alpha-melanocyte stimulating hormone (alpha-MSH) and the endogenous antagonist agouti-related protein (AGRP) on melanocortin 3 and 4 receptors (MC3-Rs and MC4-Rs). It has been demonstrated that the melanocortin system interacts with the hypothalamo-pituitary-thyroid (HPT) axis. Thyroid hormones influence metabolism and hence energy expenditure. Therefore, an interaction between the HPT axis and the melanocortin system would allow control of both sides of the energy balance equation, by the regulation of both energy input and energy expenditure. Here we will discuss the evidence demonstrating interactions between the melanocortin system and the HPT axis.  相似文献   

14.
15.

Background  

In order to unravel the interactions between the epithelium and the extra cellular matrix (ECM) in breast tissue progressing to cancer, it is necessary to understand the relevant interactions in healthy tissue under normal physiologic settings. Proteoglycans in the ECM play an important role in the signaling between the different tissue compartments. The proteoglycan decorin is abundant in the breast stroma. Decreased expression in breast cancer tissue is a sign of a poor tumor prognosis. The heparane sulphate proteoglycans syndecan-1 and syndecan-4 promote the integration of cellular adhesion and proliferation. The aim of this study was to investigate the gene expression and location of decorin, syndecan-1 and syndecan-4 in the healthy breast during the menstrual cycle.  相似文献   

16.
Heparan sulfate proteoglycans are found on the surface of most cells. Syndecan-4 is a widely expressed transmembrane heparan sulfate proteoglycan. Using quantitative RNase protection assays and immunoblotting, syndecan-4 expression was characterized in 3T3-F442A mouse adipoblasts. These cells exhibit dramatic changes in their biological and morphological characteristics during differentiation to adipocytes. During this process, the levels of syndecan-4 protein and mRNA expression changed dramatically. They peaked at the time when quiescent cells reentered the cell cycle before differentiation. Serum depletion-repletion also replicated the syndecan-4 mRNA induction when the cells were released back into proliferation, and a cycloheximide treatment abolished the peak of induction. In addition, inhibiting syndecan-4 induction with antisense oligonucleotides inhibited the proliferation of 3T3-F442A cells. In the terminally differentiated adipocytes characterized by the loss of proliferation capability, the serum inducibility of syndecan-4 is repressed, emphasizing the link between syndecan-4 induction in 3T3-F442A cells and cell proliferation.  相似文献   

17.
Zhou L  Williams T  Lachey JL  Kishi T  Cowley MA  Heisler LK 《Peptides》2005,26(10):1728-1732
Multiple lines of research provide compelling support for an important role for central serotonergic (5-hydroxytryptamine, 5-HT) and melanocortin pathways in the regulation of food intake and body weight. In this brief review, we outline data supporting a model in which serotonergic pathways affect energy balance, in part, by converging upon central melanocortin systems to stimulate the release of the endogenous melanocortin agonist, alpha-melanocyte stimulating hormone (alpha-MSH). Further, we review the neuroanatomical mapping of a downstream target of alpha-MSH, the melanocortin 4 receptor (MC4R), in the rodent brain. We propose that downstream activation of MC4R-expressing neurons substantially contributes to serotonin's effects on energy homeostasis.  相似文献   

18.

Background

Tissue factor (TF) pathway inhibitor (TFPI) exists in two isoforms; TFPIα and TFPIβ. Both isoforms are cell surface attached mainly through glycosylphosphatidylinositol (GPI) anchors. TFPIα has also been proposed to bind other surface molecules, like glycosaminoglycans (GAGs). Cell surface TFPIβ has been shown to exert higher anticoagulant activity than TFPIα, suggesting alternative functions for TFPIα. Further characterization and search for novel TFPI binding partners is crucial to completely understand the biological functions of cell associated TFPI.

Methods and Results

Potential association of TFPI to heparan sulphate (HS) proteoglycans in the syndecan family were evaluated by knock down studies and flow cytometry analysis. Cell surface colocalization was assessed by confocal microscopy, and native PAGE or immunoprecipitation followed by Western blotting was used to test for protein interaction. Heparanase was used to enzymatically degrade cell surface HS GAGs. Anticoagulant potential was evaluated using a factor Xa (FXa) activity assay. Knock down of syndecan-3 in endothelial,- smooth muscle- and breast cancer cells reduced the TFPI surface levels by 20-50%, and an association of TFPIα to syndecan-3 on the cell surface was demonstrated. Western blotting indicated that TFPIα was found in complex with syndecan-3. The TFPI bound to syndecan-3 did not inhibit the FXa generation. Removal of HS GAGs did not release TFPI antigen from the cells.

Conclusions

We demonstrated an association between TFPIα and syndecan-3 in vascular cells and in cancer cells, which did not appear to depend on HS GAGs. No anticoagulant activity was detected for the TFPI associated with syndecan-3, which may indicate coagulation independent functions for this cell associated TFPI pool. This will, however, require further investigation.  相似文献   

19.
Our previous studies indicated that stromal cell-derived syndecan-4 might mediate some form of communication with pre-B cells in bone marrow. We now report additional aspects of this recognition and show that syndecan-4 is also present on pre-B cells. Indeed, the molecule is acquired at an early stage of differentiation and retained until mature B cells undergo Ig isotype switching. mAbs developed to two portions of the syndecan-4 protein core were used to probe possible functions on B lineage lymphocytes. Syndecan-4 ligation had no obvious influence on B lymphocyte formation or activation, but this treatment caused a dramatic morphological change in appropriately stimulated leukocytes. Extended filopodia appeared on transfected Ba/F3 or FDCP-1 cells, as well as activated B cell blasts that were placed on syndecan-4 Ab-coated surfaces. The dendritic processes contained polymerized actin as well as pp52(LSP1), a prominent F-actin binding protein in lymphocytes. The cytoplasmic domain of syndecan-4 was not required for this response. Shape changes of this type could facilitate interactions between B lymphocytes and other components of the immune system. Not only is syndecan-4 a useful marker for discriminating normal B lineage lymphocyte subsets, but our results suggest new ways for the syndecans to participate in immune responses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号