首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Following immunization with Plasmodium yoelii sporozoites, the CD8(+) T cell population specific for the SYVPSAEQI epitope expressed in sporozoite and liver stages of this malaria parasite revealed the existence of a short term Ag presentation process that translated into a single clonal burst. Further expansion of this CD8(+) T cell population in conditions of sustained Ag exposure and additional supply of naive cells was inhibited by regulatory mechanisms that were developed as early as 24-48 h after priming. Studies using mouse models for Plasmodium or influenza virus infections revealed that this mechanism is Ag specific and is mediated by activated CD8(+) T cells that inhibit the priming of naive cells. This interference of the priming of naive cells appeared to result from limited access to Ag-presenting dendritic cells, which become disabled or are eliminated after contact with activated cells. Thus, concomitantly with the development of their effector antimicrobial capacity, CD8(+) T cells also acquire a self-regulatory role that is likely to represent one of the earliest mechanisms induced in the course of an immune response and that limits the magnitude of the early expansion of CD8(+) T lymphocytes reactive to microorganisms.  相似文献   

2.
Gene expression in antigen-specific CD8+ T cells during viral infection   总被引:3,自引:0,他引:3  
Following infection with intracellular pathogens, Ag-specific CD8(+) T cells become activated and begin to proliferate. As these cells become activated, they elaborate effector functions including cytokine production and cytolysis. After the infection has been cleared, the immune system returns to homeostasis through apoptosis of the majority of the Ag-specific effector cells. The surviving memory cells can persist for extended periods and provide protection against reinfection. Little is known about the changes in gene expression as Ag-specific cells progress through these stages of development, i.e., naive to effector to memory. Using recombinant MHC class I tetramers, we isolated Ag-specific CD8(+) T cells from mice infected with lymphocytic choriomeningitis virus at various time points and performed semiquantitative RT-PCR. We examined expression of: 1) genes involved in cell cycle control, 2) effector and regulatory functions, and 3) susceptibility to apoptosis. We found that Ag-specific CD8(+) memory T cells contain high steady-state levels of Bcl-2, BAX:, IFN-gamma, and lung Kruppel-like factor (LKLF), and decreased levels of p21 and p27 mRNA. Moreover, the pattern of gene expression between naive and memory cells is distinct and suggests that these two cell types control susceptibility to apoptosis through different mechanisms.  相似文献   

3.
As acute infections resolve, most effector CD8(+) T cells die, whereas some persist and become memory T cells. Recent work showed that subsets of effector CD8(+) T cells, identified by reciprocal expression of killer cell lectin-like receptor G1 (KLRG1) and CD127, have different lifespans. Similar to previous reports, we found that effector CD8(+) T cells reported to have a longer lifespan (i.e., KLRG1(low)CD127(high)) have increased levels of Bcl-2 compared with their shorter-lived KLRG1(high)CD127(low) counterparts. Surprisingly, we found that these effector KLRG1(low)CD127(high) CD8(+) T cells also had increased levels of Bim compared with KLRG1(high)CD127(low) cells. Similar effects were observed in memory cells, in which CD8(+) central memory T cells expressed higher levels of Bim and Bcl-2 than did CD8(+) effector memory T cells. Using both pharmacologic and genetic approaches, we found that survival of both subsets of effector and memory CD8(+) T cells required Bcl-2 to combat the proapoptotic activity of Bim. Interestingly, inhibition or absence of Bcl-2 led to significantly decreased expression of Bim in surviving effector and memory T cells. In addition, manipulation of Bcl-2 levels by IL-7 or IL-15 also affected expression of Bim in effector CD8(+) T cells. Finally, we found that Bim levels were significantly increased in effector CD8(+) T cells lacking Bax and Bak. Together, these data indicate that cells having the highest levels of Bim are selected against during contraction of the response and that Bcl-2 determines the level of Bim that effector and memory T cells can tolerate.  相似文献   

4.
Jakmip1 belongs to a family of three related genes encoding proteins rich in coiled-coils. Jakmip1 is expressed predominantly in neuronal and lymphoid cells and colocalizes with microtubules. We have studied the expression of Jakmip1 mRNA and protein in distinct subsets of human primary lymphocytes. Jakmip1 is absent in naive CD8(+) and CD4(+) T lymphocytes from peripheral blood but is highly expressed in Ag-experienced T cells. In cord blood T lymphocytes, induction of Jakmip1 occurs upon TCR/CD28 stimulation and parallels induction of effector proteins, such as granzyme B and perforin. Further analysis of CD8(+) and CD4(+) T cell subsets showed a higher expression of Jakmip1 in the effector CCR7(-) and CD27(-) T cell subpopulations. In a gene expression follow-up of the development of CMV-specific CD8(+) response, Jakmip1 emerged as one of the most highly up-regulated genes from primary infection to latent stage. To investigate the relationship between Jakmip1 and effector function, we monitored cytotoxicity of primary CD8(+) T cells silenced for Jakmip1 or transduced with the full-length protein or the N-terminal region. Our findings point to Jakmip1 being a novel effector memory gene restraining T cell-mediated cytotoxicity.  相似文献   

5.
Bone marrow-derived APC are critical for both priming effector/memory T cell responses to pathogens and inducing peripheral tolerance in self-reactive T cells. In particular, dendritic cells (DC) can acquire peripheral self-Ags under steady state conditions and are thought to present them to cognate T cells in a default tolerogenic manner, whereas exposure to pathogen-associated inflammatory mediators during the acquisition of pathogen-derived Ags appears to reprogram DCs to prime effector and memory T cell function. Recent studies have confirmed the critical role of DCs in priming CD8 cell effector responses to certain pathogens, although the necessity of steady state DCs in programming T cell tolerance to peripheral self-Ags has not been directly tested. In the current study, the role of steady state DCs in programming self-reactive CD4 cell peripheral tolerance was assessed by combining the CD11c-diphtheria toxin receptor transgenic system, in which DC can be depleted via treatment with diphtheria toxin, with a TCR-transgenic adoptive transfer system in which either naive or Th1 effector CD4 cells are induced to undergo tolerization after exposure to cognate parenchymally derived self-Ag. Although steady state DCs present parenchymal self-Ag and contribute to the tolerization of cognate naive and Th1 effector CD4 cells, they are not essential, indicating the involvement of a non-DC tolerogenic APC population(s). Tolerogenic APCs, however, do not require the cooperation of CD4(+)CD25(+) regulatory T cells. Similarly, DC were required for maximal priming of naive CD4 cells to vaccinia viral-Ag, but priming could still occur in the absence of DC.  相似文献   

6.
The ability to initiate and sustain CD8(+) T cell responses to tumors in vivo is hindered by the development of peripheral T cell tolerance against tumor-associated Ags. Approaches that counter the onset of T cell tolerance may preserve a pool of potentially tumor-reactive CD8(+) T cells. Administration of agonist Ab to the CD40 molecule, expressed on APCs, can enhance immunization approaches targeting T lymphocytes in an otherwise tolerance-prone environment. In this report, the effects of anti-CD40 administration on priming of naive CD8(+) T cells against an endogenous tumor Ag were investigated. Line 501 mice express the SV40 large T Ag oncoprotein as a transgene from the alpha-amylase promoter, resulting in the development of peripheral CD8(+) T cell tolerance to the H-2-D(b)-restricted immunodominant epitope I of T Ag by 6 mo of age, before the appearance of osteosarcomas. We demonstrate that naive epitope I-specific TCR transgenic (TCR-I) T cells undergo peripheral tolerance following adoptive transfer into 6-mo-old 501 mice. In contrast, administration of agonistic anti-CD40 Ab led to increased expansion of TCR-I T cells in 501 mice, the acquisition of effector function by TCR-I T cells and the establishment of T cell memory. Importantly, this enhanced priming effect of anti-CD40 administration did not require immunization and was effective even if administered after naive TCR-I T cells had encountered the endogenous T Ag. Thus, anti-CD40 administration can block the onset of peripheral tolerance and enhance the recruitment of functionally competent effector T cells toward an endogenous tumor Ag.  相似文献   

7.
8.
9.
We determined the dynamics of CD8(+) T cells specific for influenza virus and respiratory syncytial virus in blood and tracheostoma aspirates of children during the course of respiratory infections. We showed that during localized respiratory infections the ratio of activated effector CD8(+) T cells to resting memory/naive CD8(+) T cells in peripheral blood increased significantly. Furthermore, the number of effector/memory T cells specific for respiratory viruses declined in blood and increased in the airways, suggesting that these T cells redistributed from blood to airways. T cells specific for the infecting virus were present in the airways for longer periods at increased levels than nonspecifically recruited bystander T cells. After clearance of the infection, the ratio of resting memory and naive CD8(+) T cells normalized in peripheral blood and also memory T cell numbers specific for unrelated viruses that declined during the infection due to bystander recruitment were restored. Taken together, these results showed a significant systemic T cell response during relatively mild secondary infections and extensive dynamics of virus-specific and nonspecific Ag-experienced T cells.  相似文献   

10.
11.
Reactive oxygen intermediates (ROI) generated in response to receptor stimulation play an important role in mediating cellular responses. We have examined the importance of reversible cysteine sulfenic acid formation in naive CD8(+) T cell activation and proliferation. We observed that, within minutes of T cell activation, naive CD8(+) T cells increased ROI levels in a manner dependent upon Ag concentration. Increased ROI resulted in elevated levels of cysteine sulfenic acid in the total proteome. Analysis of specific proteins revealed that the protein tyrosine phosphatases SHP-1 and SHP-2, as well as actin, underwent increased sulfenic acid modification following stimulation. To examine the contribution of reversible cysteine sulfenic acid formation to T cell activation, increasing concentrations of 5,5-dimethyl-1,3-cyclohexanedione (dimedone), which covalently binds to cysteine sulfenic acid, were added to cultures. Subsequent experiments demonstrated that the reversible formation of cysteine sulfenic acid was critical for ERK1/2 phosphorylation, calcium flux, cell growth, and proliferation of naive CD8(+) and CD4(+) T cells. We also found that TNF-alpha production by effector and memory CD8(+) T cells was more sensitive to the inhibition of reversible cysteine sulfenic acid formation than IFN-gamma. Together, these results demonstrate that reversible cysteine sulfenic acid formation is an important regulatory mechanism by which CD8(+) T cells are able to modulate signaling, proliferation, and function.  相似文献   

12.
Although much is known about the initiation of immune responses, much less is known about what controls the effector phase. CD8(+) T cell responses are believed to be programmed in lymph nodes during priming without any further contribution by dendritic cells (DCs) and Ag. In this study, we report the requirement for DCs, Ag, and CD28 costimulation during the effector phase of the CD8(+) T cell response. Depleting DCs or blocking CD28 after day 6 of primary influenza A virus infection decreases the virus-specific CD8(+) T cell response by inducing apoptosis, and this results in decreased viral clearance. Furthermore, effector CD8(+) T cells adoptively transferred during the effector phase fail to expand without DC, CD28 costimulation, and cognate Ag. The absence of costimulation also leads to reduced survival of virus-specific effector cells as they undergo apoptosis mediated by the proapoptotic molecule Bim. Finally, IL-2 treatment restored the effector response in the absence of CD28 costimulation. Thus, in contrast to naive CD8(+) T cells, which undergo an initial Ag-independent proliferation, effector CD8(+) T cells expanding in the lungs during the effector phase require Ag, CD28 costimulation, and DCs for survival and expansion. These requirements would greatly impair effector responses against viruses and tumors that are known to inhibit DC maturation and in chronic infections and aging where CD28(-/-) CD8(+) T cells accumulate.  相似文献   

13.
Previous reports have focused on the ability of IL-27 to promote naive T cell responses but the present study reveals that surface expression of WSX-1, the ligand-specific component of the IL-27R, is low on these cells and that highest levels are found on effector and memory CD4(+) and CD8(+) T cells. Accordingly, during infection with Toxoplasma gondii, in vivo T cell activation is associated with enhanced expression of WSX-1, and, in vitro, TCR ligation can induce expression of WSX-1 regardless of the polarizing (Th1/Th2) environment present at the time of priming. However, while these data establish that mitogenic stimulation promotes expression of WSX-1 by T cells, activation of NK cells and NKT cells prompts a reduction in WSX-1 levels during acute toxoplasmosis. Together, with the finding that IL-2 can suppress expression of WSX-1 by activated CD4(+) T cells, these studies indicate that surface levels of the IL-27R can be regulated by positive and negative signals associated with lymphoid cell activation. Additionally, since high levels of WSX-1 are evident on resting NK cells, resting NKT cells, effector T cells, regulatory T cells, and memory T cells, the current work demonstrates that IL-27 can influence multiple effector cells of innate and adaptive immunity.  相似文献   

14.
15.
Protective immune responses during Mycobacterium tuberculosis (M. tuberculosis) infection are regulated at multiple levels and critically dependent on the balance in the secretion of pro-inflammatory and regulatory cytokines. A key factor that governs this balance at the cellular level is suppressors of cytokine signaling (SOCS). We recently demonstrated that toll-like receptor 2 and dendritic cell (DC)-SIGNR1 differentially regulate SOCS1 expression in DCs during M. tuberculosis infection. This consecutively regulated IL-12 production and determined M. tuberculosis survival. In this study, we characterized the role of SOCS1 in regulating effector responses from CD4(+) and CD8(+) T cells during M. tuberculosis infection. Our data indicate that T cells from M. tuberculosis-infected mice show increased and differential association of SOCS1 with CD3 and CD28, when compared with uninfected mice. While SOCS1 displays increased association with CD3 than CD28 in CD4(+) T cells; SOCS1 is associated more with CD28 than CD3 in CD8(+) T cells. Further, SOCS1 shows increased association with IL-12 and IL-2 receptors in both CD4(+) and CD8(+) T cells from infected mice when compared with naive mice. Silencing SOCS1 in T cells increased signal transduction from T cell receptor (TCR) and CD28 with enhanced activation of key signaling molecules and proliferation. Significantly, SOCS1-silenced T cells mediated enhanced clearance of M. tuberculosis inside macrophages. Finally, adoptive transfer of SOCS1-silenced T cells in M. tuberculosis-infected mice mediated significant reduction in M. tuberculosis loads in spleen. These results exemplify the negative role played by SOCS1 during T cell priming and effector functions during M. tuberculosis infection.  相似文献   

16.
The response of T cells to liver Ags sometimes results in immune tolerance. This has been proposed to result from local, intrahepatic priming, while the expression of the same Ag in liver-draining lymph nodes is believed to result in effective immunity. We tested this model, using an exogenous model Ag expressed only in hepatocytes, due to infection with an adeno-associated virus vector. T cell activation was exclusively intrahepatic, yet in contrast to the predictions of the current model, this resulted in clonal expansion, IFN-gamma synthesis, and cytotoxic effector function. Local activation of naive CD8(+) T cells can therefore cause full CD8(+) T cell activation, and hepatocellular presentation cannot be used to explain the failure of CTL effector function against some liver pathogens such as hepatitis C.  相似文献   

17.
CD8(+) T cell responses have been shown to be regulated by dendritic cells (DCs) and CD4(+) T cells, leading to the tenet that CD8(+) T cells play a passive role in their own differentiation. In contrast, by using a DNA vaccination model, to separate the events of vaccination from those of CD8(+) T cell priming, we demonstrate that CD8(+) T cells, themselves, actively limit their own memory potential through CD8(+) T cell-derived IFN-γ-dependent modification of the IL-12/IL-15Rα axis on DCs. Such CD8(+) T cell-driven cytokine alterations result in increased T-bet and decreased Bcl-2 expression, and thus decreased memory progenitor formation. These results identify an unrecognized role for CD8(+) T cells in the regulation of their own effector differentiation fate and a previously uncharacterized relationship between the balance of inflammation and memory formation.  相似文献   

18.
19.
Both a dramatic decline in CD8 responses and a switch to memory T cell predominance occur with aging. The extent to which the loss of responsiveness is the consequence of the accumulation of more differentiated vs intrinsically defective T cells (or both) has been unclear. Using similar conditions of Ag stimulation, we have examined the responses generated by CD8(+) cells isolated from aged TCR transgenic mice. We found that the naive transgene(+) CD8(+) cells from aged 2C mice expressed activation markers, produced IL-2, proliferated, and differentiated into cytotoxic T cells as efficiently as their young counterparts. The extent of responsiveness and the level of the responses were comparable in both age groups regardless of the stimulatory conditions used, i.e., partial costimulation/adhesion molecule expression on APCs, or presentation of lower affinity peptide or diminished peptide concentrations. By day 4 after Ag stimulation, no significant age-related differences were observed in the number of effector cells generated nor in the levels of secreted IL-2 or IFN-gamma. Upon restimulation of effector cells, IL-2 secretion and to a lesser extent TNF-alpha expression, but not IFN-gamma secretion, were diminished with age. These findings suggest that age-associated alterations in naive CD8 cell function are not found after primary stimulation, but may become apparent upon restimulation.  相似文献   

20.
Despite several studies examining the contribution of allorecognition pathways to acute and chronic rejection of vascularized murine allografts, little data describing activation of alloreactive T cells by mouse vascular endothelium exist. We have used primary cultures of resting or IFN-gamma-activated C57BL/6 (H-2(b)) vascular endothelial cells as stimulators and CD8(+) T lymphocytes isolated from CBA/J (H-2(k)) mice as responders. Resting endothelium expressed low levels of MHC class I, which was markedly up-regulated after activation with IFN-gamma. It also expressed moderate levels of CD80 at a resting state and after activation. Both resting and activated endothelium were able to induce proliferation of unprimed CD8(+) T lymphocytes, with proliferation noted at earlier time points after coculture with activated endothelium. Activated endothelium was also able to induce proliferation of CD44(low) naive CD8(+) T lymphocytes. Activated CD8(+) T lymphocytes had the ability to produce IFN-gamma and IL-2, acquired an effector phenotype, and showed up-regulation of the antiapoptotic protein Bcl-x(L). Treatment with CTLA4-Ig led to marked reduction of T cell proliferation and a decrease in expression of Bcl-x(L). Moreover, we demonstrate that nonhemopoietic cells such as vascular endothelium induce proliferation of CD8(+) T lymphocytes in a B7-dependent fashion in vivo. These results suggest that vascular endothelium can act as an APC for CD8(+) direct allorecognition and may, therefore, play an important role in regulating immune processes of allograft rejection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号