首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isolation and culture of embryonic stem cells from porcine blastocysts   总被引:8,自引:0,他引:8  
This study was conducted to establish embryonic stem (ES) cell lines from porcine blastocysts. Blastocysts were collected from China miniature pigs at day 7-9 of pregnancy. Embryos were either directly (intact embryos) cultured on mitomysin C-inactivated murine embryonic fibroblasts (MEF) as feeder layers, or were used to isolate the inner cell masses (ICM) by enzyme digestive method and then cultured. It was found that enzyme digestive method could isolate ICMs without any damages of cells in all blastocysts (28). All ICMs attached to the feeder layers. Primary cell colonies were formed in 68% of ICM culture and 28% of intact blastocyst culture. Two ES cell lines derived from ICM passed six subcultures (passages). These cells morphologically resembled mouse ES cells and consistently expressed alkaline phosphatase activity. When the ES cells were cultured in a medium without feeder layer and leukemin inhibitory factor, they differentiated into several types of cells including neuron-like, smooth muscle-like, and epithelium-like cells. Some cells formed embryoid bodies in a suspension culture. These results indicate that porcine ES cell line can be established under the present experimental conditions and these ES cells are pluripotent.  相似文献   

2.
Goat embryonic stem (ES)-like cells could be isolated from primary materials-inner cell masses (ICMs) and remain undifferentiated for eight passages in a new culture system containing mouse ES cell conditioned medium (ESCCM) and on a feeder layer of mouse embryo fibroblasts (MEFs). However, when cultured in medium without mouse ESCCM, goat ES-like cells could not survive for more than three passages. In addition, no ES-like cells could be obtained when ICMs were cultured on goat embryo fibroblasts or the primary materials-whole goat blastocysts were cultured on MEFs. Goat ES-like cells isolated from ICMs had a normal karyotype and highly expressed alkaline phosphatase. Multiple differentiation potency of the ES-like cells was confirmed by differentiation into neural cells and fibroblast-like cells in vitro. These results suggest that mouse ES cells might secrete factors playing important roles in promoting goat ES-like cells' self-renewal, moreover, the feeder layers and primary materials could also influence the successful isolation of goat ES-like cells.  相似文献   

3.
Embryonic stem (ES)-like cells were isolated from in vivo-produced cat embryos. Total of 101 blastocysts were collected from female cats. The inner cell mass (ICM) were mechanically isolated and cultured on mitomycin-C-treated cat embryonic fibroblast feeder layers in medium supplemented with knockouttrade mark Serum Replacement (KSR-medium) or fetal bovine serum (FBS-medium). Putative ES-like cell colonies developed in both KSR- and FBS-medium conditions, but formed domed and flat colonies, respectively. ICM cell attachment and ES-like cell colony formation were significantly higher in KSR-medium, but subsequent cell proliferation was significantly lower than in FBS-medium. For passaging, 32 and 18 colonies in KSR- and FBS-medium were separated by enzymatic dissociation or mechanical disaggregation. Enzymatic dissociation resulted in cell differentiation; however, mechanical disaggregation generated cells that remained undifferentiated over more than four passages and yielded two cat ES-like cell lines that continued to grow for up to eight passages in FBS-medium. These cells had typical stem cell morphology, expressed high levels of alkaline phosphatase activity, and were positive for the ES cell-markers Oct-4, stage-specific embryonic antigen-1 (SSEA-1), SSEA-3, and SSEA-4. These cells formed embryoid bodies (EBs) in suspension culture after extended suspension culture. When simple EBs were cultured on tissue culture plates, they differentiated into several cell types, including epithelium-like and neuron-like cells. In addition, EBs were positive for mesoderm marker, desmin. After prolonged in vitro culture, some colonies spontaneously differentiated into beating myocardiocytes, and were positive for alpha-actinin. These observations indicate that cat ES-like cells were successfully isolated and characterized from in vivo-produced blastocysts.  相似文献   

4.
Embryonic stem (ES) cells are pluripotent cells with the capacity to generate any type of cell. Here we describe the isolation of ES-like cells from canine blastocysts. Canine embryos were collected from beagle bitches at day 11-16 of first estrus. A total of 80 normal embryos were obtained from 15 dogs. Of the embryos, 13 were at the morulae stage, 39 at the blastocyst stage, and 28 at the hatched blastocyst stage. The inside of morulae or inner cell masses (ICMs) of blastocysts were isolated mechanically, and cultured onto mouse embryonic fibroblasts (MEF) as feeder layers. Primary cell colonies were formed in 0% (0/13) of morulae, 25.6% (10/39) of blastocysts, and 67.9% (19/28) of hatched blastocysts. These colonies were separated either by enzymatic dissociation or by mechanical disaggregation. Dissociation with collagenase resulted in immediate differentiation, but with mechanical disaggregation these cells remained undifferentiated, and two ES-like cell lines (cES1, cES2) continued to grow in culture after eight passages. These cells had typical stem cell-like morphology and expressed specific markers such as alkaline phosphatase activity, stage specific embryonic antigen-1 and Oct-4. These cells formed embryoid bodies (EBs) in a suspension culture; extended culture of EBs resulted in the formation of cystic EBs. When the simple EBs were cultured on tissue culture plates, they differentiated into several types of cells including neuron-like, epithelium-like, fibroblast-like, melanocyte-like, and myocardium-like cells. These observations indicate that we successfully isolated and characterized canine ES-like cells.  相似文献   

5.
The aim of the present study was to isolate and characterize goat embryonic stem cell-like cells from in vitro produced goat embryos. Inner cell mass (ICM) cells were isolated either mechanically or by enzymatic digestion from 150 blastocysts and 35 hatched blastocysts whereas 100 morulae were used for blastomeres isolation mechanically. The ICM derived cells or blastomeres were cultured on a feeder layer. The primary colony formation was significantly higher (P?相似文献   

6.
In vitro produced (IVP) bovine embryos were subjected to in vitro culture with or without 1000 U/ml human recombinant leukemia inhibitory factor (LIF) added to the culture medium from Days 5 to 8 post insemination (p.i.). Resulting blastocysts were subsequently plated intact on mouse feeder cells in a medium with or without LIF. Significantly more embryos reached the hatched blastocyst stage, and the number of blastocysts with excellent morphology was significantly higher, when LIF was omitted. At Day 8 p.i., total cell count (TCC) and inner cell mass (ICM) cell count was significantly higher in embryos cultured without LIF. In embryos cultured with LIF, cytoplasmic vesicles and lipid droplets were abundant and a decreased expression of both Oct4 and laminin could be observed. Initial hypoblast formation was revealed in almost 1/3 of the LIF-cultured blastocysts whereas this feature was evident in 2/3 of the blastocysts cultured in the absence of LIF. Overall, almost 60% of the blastocysts cultured without LIF formed outgrowth colonies (OCs) when plated on feeders, whereas this phenomenon was only observed in 30% of the blastocysts cultured in the presence of LIF. A tendency for retaining a tightly packed central growth of putative ICM-derived cells was observed, when attachment to the feeder layer was initiated close to the embryonic pole of the blastocyst. At Day 8 of outgrowth culture, approximately 20% of the colonies contained a central core of putative ICM-derived cells appearing large enough for mechanical isolation and further subculture. Immunohistochemical labeling for Oct4 revealed staining of both trophectodermal and ICM-derived cells. The presence of LIF in the outgrowth culture medium did not have any apparent effect on the plating efficiency or colony type. In conclusion, LIF had an adverse effect on in vitro embryonic development when added to the culture medium in the period from Days 5 to 8 p.i., whereas it had no apparent effect on the OCs subsequently formed from such embryos.  相似文献   

7.
The aim of the present study was to isolate and characterize goat embryonic stem cell-like cells from in vitro produced goat embryos. Inner cell mass (ICM) cells were isolated either mechanically or by enzymatic digestion from 150 blastocysts and 35 hatched blastocysts whereas 100 morulae were used for blastomeres isolation mechanically. The ICM derived cells or blastomeres were cultured on a feeder layer. The primary colony formation was significantly higher (P < 0.01) for hatched blastocysts (77.14%) than early/expanded blastocysts (54%) or morula (14%). When ICMs were isolated mechanically the primary colony formation for hatched blastocysts (90%) as well as blastocysts (66%) were significantly more than when ICMs were isolated by enzymatic digestion (60% and 30%, respectively). The colonies were disaggregated either mechanically or by enzymatic digestion for further subculture. When mechanical method was followed, the colonies remained undifferentiated up to 15 passages and three ES cell-like cell lines were produced (gES-1, gES-2, and gES-3). However, enzymatic disaggregation resulted in differentiation. The undifferentiated cells showed stem cell like morphological features, normal karyotype, and expressed stem cell specific surface markers like alkaline phosphatase, TRA-1-61, TRA-1-81, and intracellular markers Oct4, Sox2, and Nanog. Following prolonged culture of the ES cell-like cells were differentiated into several types of cells including neuron like and epithelium-like cells. In conclusion, goat embryonic stem cell-like cells can be isolated from in vitro produced goat embryos and can be maintained for long periods in culture.  相似文献   

8.
Embryonic stem (ES) cell lines are routinely derived from in vivo produced blastocysts. We investigated the efficiency of ES cells derivation from in vitro produced blastocysts either in monoculture or sequential culture. Zygotes from hybrid F1 B6D2 mice were cultured in vitro to the blastocyst stage in Potassium (K(+)) simplex optimised medium (KSOM) throughout or in KSOM and switched to COOK blastocyst medium on day 3 (KSOM-CBM). Blastocysts were explanted on a feeder layer of mitomycin C-inactivated murine embryonic fibroblasts (MEF) in TX-WES medium for ES cell derivation. Sequential KSOM-CBM resulted in improved blastocyst formation compared to KSOM monoculture. ES cells were obtained from 32.1% of explanted blastocsyts cultured in KSOM-CBM versus 18.4% in KSOM alone. ES cell lines were characterized by morphology, expression of SSEA-1, Oct-4 and alkaline phosphatase activity, and normal karyotype. These results indicate that in vitro culture systems to produce blastocysts can influence the efficiency of ES cell line derivation.  相似文献   

9.
The efficiency of isolation and the characteristics of embryo-derived cell lines from murine, porcine, and ovine embryos cultured on STO feeders or homologous embryonic fibroblasts (HEF) feeders were compared. While murine isolated ICM or intact embryos plated on STO or HEF feeders gave rise to cell lines with embryonic stem cell-like (ES-like) morphology, ovine embryos did not. Cell lines with ES-like morphology were isolated from porcine intact embryos and isolated ICM when plated on STO feeders but not when plated on HEF. Neither murine nor porcine ES-like cell lines expressed cytokeratin 18 or vimentin. Unlike murine ES-like cell lines, porcine ES-like cells did not undergo observable differentiation in vitro or in vivo. Cell lines with epithelial-like morphology were isolated from porcine and ovine embryos. Both porcine and ovine epithelial-like cell kines expressed cytokeratin 18. When induced to differentiate in vitro, porcine and ovine epithelial-like cell lines formed vesicular structures. Electron microscopy revealed that the porcine vesicles were composed of polarized epithelial cells, each with a basally-located nucleus and an apical border containing numerous microvilli with a well organized microfilament core. The results of this study show that conditions which allow isolation of ES cells from murine embryos allow the isolation of porcine embryo-derived cell lines sharing some, but not all, the characteristics of murine ES cells.  相似文献   

10.
To increase our understanding of rat embryos in culture and to attempt the isolation of blastocyst-derived cell lines, we examinated the initial growth behaviour of rat blastocysts from four strains of rat on four different feeder cell layers. The feeders used were a continuous cell line of murine embryonic fibroblasts (STO), primary mouse (MEF) or primary rat (REF) embryonic fibroblasts, and a continuous cell line of rat uterine epithelial cells (RUCs). A medium that gave optimum plating efficiencies for murine ES cells was used in the rat embryo culture. Each culture system allowed hatching and attachment of the blastocysts, that is, the behaviour was similar on each feeder and each strain for the first 2 days in culture. Subsequently, there was a rapid differentiation of the Inner Cell Mass (ICM) cells on fibroblastic feeder cell layers (STO > MEF > REF), and this was generally complete after 3–6 days in primary culture. On RUCs, the ICM was found to increase in size without differentiation up to and including day 4 and in some cases longer. Embryo-derived cells were obtained by disaggregating and passaging ICMs on REF and RUC feeders. Rounded, refractile, and epithelial-like cells were isolated on REF and colonies of ES-like cells on the RUCs. The ES-like cells were positive for expression of alkaline phosphatase and stage-specific embryonic-antigen 1. This is an important first step towards the derivation and culture of pluripotent ES cells from the rat. © 1995 Wiley-Liss, Inc.  相似文献   

11.
Variable conditions were tested to determine an in-vitro cultivation method for the formation of morphologically undifferentiated embryonic stem cells from the inner cell mass (ICM) derived outgrowth of porcine blastocysts. Although all 16 Day-9 embryos failed to form colonies, 14 such colonies were obtained from a total of 69 Day-10 embryos when they were co-cultivated with porcine uterine fibroblast (PUF) cells over a 6-day period. The best results were obtained in Dulbecco's modified Eagle medium (DMEM) with 10% fetal calf serum and 10% porcine serum supplemented with bovine insulin and beta-mercaptoethanol, in which six out of seven embryos formed adequate ICM-derived colonies. Since murine fibroblasts were not found to be suitable feeder cells in this procedure, an endocrine synergistic interaction, which promotes embryonic attachment and colony formation, between porcine blastocysts and PUF cells is hypothesized. Continued propagation of the ICM-derived cells was not dependent on these factors; a total of seven cell lines were obtained after three to five subsequent passages on murine feeder-layers that resembled morphologically undifferentiated embryonic cells.  相似文献   

12.
The present study was conducted to isolate and culture inner cell mass (ICM) primarily derived from in vitro-produced blastocysts and to develop the culture conditions for the ICM cells. In Experiment 1, immunosurgically isolated ICMs of blastocysts derived from in vitro fertilization (IVF), somatic cell nuclear transfer (SCNT) or parthenogenetic activation (PA) were seeded onto STO cells. Primary colonies from each isolated ICM were formed with a ratio of 28.9, 30.0 and 4.9%, respectively. In Experiment 2, blastocysts collected from IVF were directly seeded onto a feeder layer with or without zona pellucida (ZP), or were subjected to ICM isolation by immunosurgery. Primary colonies were formed in 36.8% of isolated ICMs and 19.4% in intact blastocysts without ZP. In Experiment 3, ICMs from IVF blastocysts were seeded onto STO cells, mouse embryonic fibroblast (MEF) or porcine uterine epithelial cells (PUEC). On STO and MEF cells, 34.5 and 22.2% of primary colonies were formed, respectively. However, no primary colony was formed on the PUEC or in feeder-free condition. In Experiment 4, ICMs from IVF blastocysts were cultured in DMEM + Ham's F10 (D/H medium), DMEM + NCSU-23 (D/N medium) or DMEM alone. When D/H medium or D/N medium was used, 21.7 or 44.4% of primary colony were formed, respectively, while no primary colony was formed in DMEM alone. These cells showed alkaline phosphatase activity and could be maintained for up to five passages. In suspension culture, cells formed embryoid bodies. These results demonstrate that porcine ICM could be isolated and cultured primarily from in vitro-produced blastocysts with a suitable culture system.  相似文献   

13.
The present study was conducted to establish a porcine cell line from blastocysts produced in vitro and to examine the developmental ability of nuclear transfer embryos reconstituted with the cells and enucleated mature oocytes. When hatched blastocysts were cultured in Dulbecco's modified Eagle's medium with supplements, no colonies of embryo-derived cells were observed. In contrast, 56% of embryos that were attached to feeder layers of STO cells formed colonies in NCSU-23 with supplements. When the colonies were subcultured in the absence of feeder cells, a cell line with an epithelial-like cell morphology was obtained. This cell morphology was stable up to at least passage 30. Although no fused embryos were observed when a pulse of 100 V/mm was applied, the fusion rate increased significantly at 150 V/mm (28%) and 200 V/mm (64%). At 200 V/mm, 39% of fused embryos cleaved, but no embryos developed beyond the 3-cell stage. When cocultured with electro-activated oocytes, percentages of reconstructed embryos cleaved (65%) and developed to the 4-cell stage (23%) were significantly higher than percentages for those (cleavage: 38%; 4-cell stage: 3%) in the absence of activated oocytes. At 7 days after culture, one reconstructed embryo successfully developed to the blastocyst stage in the presence of activated oocytes. When green fluorescent protein-expressing cells and enucleated oocytes were fused and the fused embryos were cultured with electro-activated oocytes, 3 of 102 reconstructed embryos developed to the blastocyst stage. All of the blastocysts were positive for fluorescent green under ultraviolet light. The results of the present study indicate that a porcine cell line can be established from the hatched blastocyst and maintained in vitro for a long period, and that reconstructed embryos obtained by transferring the blastocyst-derived cells into enucleated oocytes have the ability to develop to the blastocyst stage in vitro.  相似文献   

14.
This study was carried out to isolate and characterize buffalo embryonic stem (ES) cell-like cells from in vitro-produced embryos. Inner cell mass (ICM) cells were isolated either mechanically or by enzymatic digestion from 120 blastocysts whereas 28 morulae were used for the isolation of blastomeres mechanically. The ICM cells/ blastomeres were cultured on mitomycin-C-treated feeder layer. Primary cell colony formation was higher (P < 0.05) for hatched blastocysts (73.1%, 30/41) than that for early/expanded blastocysts (25.3%, 20/79). However, no primary cell colonies were formed when blastomeres obtained from morulae were cultured. Primary colonies were formed in 14.1% (12/85) of intact blastocyst culture, which was significantly lower (P < 0.05) than that of 41.6% for ICM culture. These colonies were separated by enzymatic or mechanical disaggregation. Using mechanical disaggregation method, the cells remained undifferentiated and two buffalo ES cell-like cell lines (bES1, bES2) continued to grow in culture up to eight passages. However, disassociation through enzymatic method resulted in differentiation. Undifferentiated cells exhibited stem cell morphological features, normal chromosomal morphology, and expressed specific markers such as alkaline phosphatase (AP) and Oct-4. Cells formed embryoid bodies (EBs) in suspension culture; extended culture of EBs resulted in formation of cystic EBs. Following prolonged in vitro culture, these cells differentiated into several types of cells including neuron-like and epithelium-like cells. Furthermore, the vitrified-thawed ES cell-like cells also exhibited typical stem cell characteristics. In conclusion, buffalo ES cell-like cells could be isolated from in vitro-produced blastocysts and maintained in vitro for prolonged periods of time.  相似文献   

15.
Isolation of embryonic stem cells has been documented only in the mouse and perhaps the hamster and cow. We report results of experiments designed to determine the effect of age of porcine embryos (6 through 10 d after the first day of estrus) on isolation of cell lines with embryonic stem cell-like morphology. The capacity of fresh and short-term cultured inner cell mass (ICM) cells to differentiate into normal tissues after injection into blastocysts was also measured. Few Day-6 ICM survived in culture to the first passage onto fresh feeder cells, but cell lines with embryonic stem cell-like morphology developed from Day-7 through Day-10 ICM. Isolation of embryonic stem cell-like colonies was achieved at a higher frequency from ICM isolated from older embryos, but embryonic stem cell-like colonies from older embryos also tended to differentiate spontaneously in culture. Viable porcine chimeras were born after injection of fresh ICM into blastocysts that were transferred to recipients for development to term; no chimeras were born from blastocysts injected with ICM subjected to short-term (1 to 6 d) culture. Germ-cell chimerism was confirmed in one of the chimeras. These results document that undifferentiated cells can be removed from porcine blastocysts, transplanted to other embryos, and contribute to development of normal differentiated tissues, including germ cells. Cells with embryonic stem-like morphology can be isolated in culture from ICM at various embryonic ages, but ICM from young blastocysts (e.g., Day-7 embryos) yield embryonic stem cell-like colonies at lower frequency than do ICM from older blastocysts (e.g., Day-10 embryos).  相似文献   

16.
17.
Bovine embryonic stem cell-like cell lines cultured over several passages   总被引:3,自引:0,他引:3  
Summary A total of 14 microsurgically produced zona pellucida-free bovine demi-blastocysts were cultured for 3 days in tissue culture medium (TCM) 199 supplemented with 10% heat-inactivated newborn calf serum (NBCS). Developing embryos were continuously cultured in TCM 199 plus 10% NBCS on a feeder-layer of murine embryonic fibroblasts, that had been incubated with mitomycin C (10 g/ml) for 3 h prior to the onset of embryo cultivation to block mitotic activity of the fibroblasts. After 2 days, 3 expanded blastocysts were attached to the feeder-layer and both trophoblastic cells and inner cell mass (ICM) cells became apparent on the 9th day of culture in 2 out of the 3 expanded blastocysts. Five days later, the ICM cells were disaggregated by a short-term trypsin treatment. The resulting dissociated clumps were seeded on a new murine embryonic fibroblast feeder-layer and covered with modified minimum essential medium (MEM)-Alpha with 10% fetal calf serum (FCS), 0.1 mm mercaptoethanol, 4.5 g/l glucose and 20 mm HEPES-buffer (=passage 0). To prevent differentiation of the cells, approximately 1/3 of the MEM-Alpha was replaced by MEM previously incubated on cell line 5637 containing leucaemia inhibitory factor (LIF) for 3 days. Colonies of embryonic stem cell (ES)-like cells were observed 5 days after the 1st passage. These colonies were repeatedly passaged at approximately 2-week intervals. Two bovine ES-like cell lines were established, which grew considerably slower than murine ES cells, but were lost after the 4th passage, possibly because of toxic effects of a new FCS batch. After cytogenetic analysis, 16 out of 18 metaphase plates contained an euploid number of chromosomes with 2 X-chromosomes and 58 autosomes. Distribution of G-banding on the chromosomes of ES-like cells was in accordance with the diploid set of the bovine genome. ES-like cells were fused to in vitro matured bovine oocytes and, upon successful fusion, cultured in vitro over 5 days. Successful fusion was observed in 79.8% (67/84), 31.3% initiated cleavege and 10.4% reached the 8–16 cell stage at termination of culture. Offprint requests to: H. Niemann  相似文献   

18.
Porcine embryonic germ (EG) cells share common features with porcine embryonic stem (ES) cells, including morphology, alkaline phosphatase activity and capacity for in vitro differentiation. Porcine EG cells are also capable of in vivo development by producing chimeras after blastocyst injection; however, the proportion of injected embryos that yield a chimera and the proportion of cells contributed by the cultured cells in each chimera are too low for practical use in genetic manipulation. Moreover, somatic, but not germ-line chimerism, has been reported from blastocyst injection using porcine ES or EG cells. To test whether efficiency of chimera production from blastocyst injection can be improved upon by changing the host embryo, we used as host embryos four groups according to developmental stage or length in culture: fresh 4-cell and 8-cell stage embryos subsequently cultured into blastocysts, fresh morulae, fresh blastocysts, and cultured blastocysts. Injection and embryo transfer of fresh and cultured blastocysts produced similar percentages of live piglets (17% versus 19%). Four piglets were judged to have a small degree of pigmentation chimerism, but microsatellite analysis failed to confirm chimerism in these or other piglets. Polymerase chain reaction analysis for detection of the porcine SRY gene in female piglets born from embryos injected with male EG cells identified six chimeras, at least one, but not more than two, from each treatment. Chimerism was confirmed in two putative pigmentation chimeras and in four piglets without overt signs of chimerism. The low percentage of injected embryos that yielded a chimera and the small contribution by EG cells to development of each confirmed chimera indicated that procedural changes in how EG cells were combined with host embryos were unsuccessful in increasing the likelihood that porcine EG cells will participate in embryonic development. Alternatively, our results suggested that improvements are needed in EG cell isolation and culture procedures to ensure in vitro maintenance of EG cell developmental capacity.  相似文献   

19.
Embryonic stem (ES) cells with the capacity for germ line transmission have only been verified in mouse and rat. Methods for derivation, propagation, and differentiation of ES cells from domestic animals have not been fully established. Here, we describe derivation of ES cells from goat embryos. In vivo-derived embryos were cultured on goat fetal fibroblast feeders. Embryos either attached to the feeder layer or remained floating and expanded in culture. Embryos that attached showed a prominent inner cell mass (ICM) and those that remained floating formed structures resembling ICM disks surrounded by trophectodermal cells. ICM cells and embryonic disks were isolated mechanically, cultured on feeder cells in the presence of hLIF, and outgrown into ES-like colonies. Two cell lines were cultured for 25 passages and stained positive for alkaline phosphatase, POU5F1, NANOG, SOX2, SSEA-1, and SSEA-4. Embryoid bodies formed in suspension culture without hLIF. One cell line was cultured for 2 years (over 120 passages). This cell line differentiated in vitro into epithelia and neuronal cells, and could be stably transfected and selected for expression of a fluorescent marker. When cells were injected into SCID mice, teratomas were identified 5-6 weeks after transplantation. Expression of known ES cell markers, maintenance in vitro for 2 years in an undifferentiated state, differentiation in vitro, and formation of teratomas in immunodeficient mice provide evidence that the established cell line represents goat ES cells. This also is the first report of teratoma formation from large animal ES cells.  相似文献   

20.
A culture system was devised to study the differentiation of bovine blastomeres. Blastomeres (2–13 per well) from embryos produced by in vitro maturation, fertilization, and culture of oocytes obtained from slaughterhouse ovaries were cultured for 10 days in 24-well culture plates on feeder layers in blastomere culture medium (BCM: equal parts tissue culture medium 199 and low-glucose Dulbecco's modified Eagle's medium with 10% fetal bovine serum). Ovine embryonic fibroblasts and STO cells were superior to bovine and mouse embryonic fibroblasts as mitotically inactivated feeder cells. Over five studies in which four blastomeres from an embryo were added to each culture well, an average of one colony per well formed from the blastomeres. The colonies continued to grow throughout the culture period, and most colonies resembled trophectoderm in their cellular characteristics, although some cultures contained a mixture of trophectoderm and endoderm. When the number of blastomeres cultured in each well was varied from 2–8, the number of colonies formed was proportional to the number of blastomeres added. Blastomeres from day 5 and day 6 embryos produced fewer colonies than did those from day 4 embryos, perhaps as a result of differentiation and tighter blastomere adhesion resulting in damage during their separation. The absence of serum did not alter the number of colonies formed. A number of growth factors, including LIF, OM, PDGFα, and FGF4, had no effect on the number of colonies, the size of colonies, or their alkaline phosphatase staining score beyond that provided by the feeder layer or serum when present. Blastomeres did not form colonies in the absence of feeder layers. Mol. Reprod. Dev. 48:238–245, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号