首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The establishment of renewable biofuel and chemical production is desirable because of global warming and the exhaustion of petroleum reserves. Sebacic acid (decanedioic acid), the material of 6,10-nylon, is produced from ricinoleic acid, a carbon-neutral material, but the process is not eco-friendly because of its energy requirements. Laccase-catalyzing oxidative cleavage of fatty acid was applied to the production of dicarboxylic acids using hydroxy and oxo fatty acids involved in the saturation metabolism of unsaturated fatty acids in Lactobacillus plantarum as substrates. Hydroxy or oxo fatty acids with a functional group near the carbon–carbon double bond were cleaved at the carbon–carbon double bond, hydroxy group, or carbonyl group by laccase and transformed into dicarboxylic acids. After 8 h, 0.58 mM of sebacic acid was produced from 1.6 mM of 10-oxo-cis-12,cis-15-octadecadienoic acid (αKetoA) with a conversion rate of 35% (mol/mol). This laccase-catalyzed enzymatic process is a promising method to produce dicarboxylic acids from biomass-derived fatty acids.  相似文献   

2.
Saccharomyces cerevisiae catalyses the asymmetric reductive biotransformation of a variety of compounds containing a carbonyl group or carbon-carbon double bond. Oxidoreductases participating in these reactions which have commercial potential in biotransformation processes are likely to have relatively broad substrate specificity. Important carbonyl reductases falling into this category include YADH- and yeast NADP-dependent beta-ketoester reductases. The enoyl reductase component of the FAS complex may have a role in asymmetric yeast reduction of carbon-carbon double bonds of unnatural substrates. Other nicotinamide-requiring oxidoreductases of yeast are also surveyed to rationalize observed biotransformations of whole yeast cells in terms of specific enzymes. Genetic and protein engineering may enable enzymes to be tailored to accept new substrates. A greater understanding of the enzymes and reactions involved will facilitate further optimization and exploitation of these catalytic systems in industrial processes.  相似文献   

3.
Genotoxic properties of 4-hydroxyalkenals and analogous aldehydes   总被引:5,自引:0,他引:5  
4-Hydroxynonenal (HNE), one of the major products of lipid peroxidation, has been demonstrated to induce genotoxic effects in the micromolar range. HNE has too structural domains, a lipophilic tail and a polar head with three functional groups: the aldehyde and hydroxy groups and the trans CC double bond. To evaluate their relative importance, the genotoxic effects of HNE were compared with those of the homologous aldehydes 4-hydroxyhexenal and 4-hydroxyundecenal (different lengths of the lipophilic tail), and the analogous aldehydes 2-trans-nonenal (lacking the OH group) and nonanal (lacking the OH group and the trans CC double bond). This investigation was carried out on primary cultures of adult rat hepatocytes in order to further determine the influence of biotransformation- and/or detoxification reactions.

A 3-h treatment with HNE induces statistically significant levels of SCE at concentrations ≥0.1 μM, micronuclei at concentrations ≥ 1 μM and chromosomal aberrations at a concentration of 10 μM. Compared to HNE the homologous aldehydes induced a significant genotoxic effect at higher concentrations. Statistically significant increases in SCE frequency were obtained at concentrations ≥ 1 μM for 4-hydroxyundecenal and at a concentration of 10 μM for 4-hydroxyhexenal. The induction of chromosomal aberrations was significantly elevated at concentrations of ≥ 10 μM and 10 μM for 4-hydroxyhexenal and 4-hydroxyundecenal, respectively. Except for a 4-hydroxyhexenal concentration of 1 μM, both aldehydes did not induce statistically significant levels of micronucleis.

The HNE analogous aldehydes 2-trans-nonenal and nonanal induced statistically significant frequencies of SCE at concentrations of ≥ 1 μM (nonanal) and ≥ 10 μM (2-trans-nonenal). No significant induction of chromosomal aberrations or micronuclei could be demonstrated.

The structure of the aldehydes investigated appears to influence the cyto- and genotoxic potential in the following ways. (1) The lenght of the lipophilic tail has no influence on chromosomal aberration induction, but appears to determine the yield of SCE and micronuclei, and the cytotoxic potential. (2) The lack of the OH group (2-trans-nonenal) reduces the SCE-inducing potential of the aldehyde shifting the dose-effect curve to higher concentrations. The similar shape compared to SCE induction by HNE indicates that possibly the same active metabolite is formed. (3) The lack of both the OH group and the CC double bond (nonanal) does not result in a complete loss of the SCE-inducing activity. The different shape of the dose-response curve suggests a different metabolism and/or a different mode of interaction with DNA.  相似文献   


4.
The hepatic enzyme bile acid CoA:amino acid N-acyltransferase (BAT) catalyzes the formation of amino acid-conjugated bile acids. In the present study, protein carbonylation of BAT, consistent with modification by reactive oxygen species and their products, was increased in hepatic homogenates of apolipoprotein E knock-out mice. 4-Hydroxynonenal (4HNE), an electrophilic lipid generated by oxidation of polyunsaturated long-chain fatty acids, typically reacts with the amino acids Cys, His, Lys, and Arg to form adducts, some of which (Michael adducts) preserve the aldehyde (i.e., carbonyl) moiety. Because two of these amino acids (Cys and His) are members of the catalytic triad of human BAT, it was proposed that 4HNE would cause inactivation of this enzyme. As expected, human BAT (1.6 microM) was inactivated by 4HNE in a dose-dependent manner. To establish the sites of 4HNE's reaction with BAT, peptides from proteolysis of 4HNE-treated, recombinant human BAT were analyzed by peptide mass fingerprinting and by electrospray ionization-tandem mass spectrometry using a hybrid linear ion trap Fourier transform-ion cyclotron resonance mass spectrometer. The data revealed that the active-site His (His362) dose-dependently formed a 4HNE adduct, contributing to loss of activity, although 4HNE adducts on other residues may also contribute.  相似文献   

5.
Lipid peroxidation involves a cascade of reactions in which production of free radicals occurs selectively in the lipid components of cellular membranes. Polyunsaturated fatty acids easily undergo lipid peroxidation chain reactions, which, in turn, lead to the formation of highly reactive electrophilic aldehydes. Among these, the most abundant aldehydes are 4-hydroxy-2-nonenal (HNE) and malondialdehyde, while acrolein is the most reactive. Proteins are susceptible to posttranslational modifications caused by aldehydes binding covalently to specific amino acid residues, in a process called Michael adduction, and these types of protein adducts, if not efficiently removed, may be, and generally are, dangerous for cellular homeostasis. In the present review, we focused the discussion on the selective proteins that are identified, by redox proteomics, as selective targets of HNE modification during the progression and pathogenesis of Alzheimer disease (AD). By comparing results obtained at different stages of the AD, it may be possible to identify key biochemical pathways involved and ideally identify therapeutic targets to prevent, delay, or treat AD.  相似文献   

6.
Chlorosubstitution reactions occur readily during HCl hydrolysis of delta- and epsilon-hydroxynorleucines (Hnle), the products of deamination of poly-L-lysine by nitrite at low pH. During amino acid analysis, chloronorleucines elute as new peaks after delta- and epsilon-Hnle. To determine if other hydroxyamino acids undergo similar changes during hydrolysis, they were subjected individually to HCl hydrolysis conditions with and without added phenol. Amino acid analyses indicated that terminal hydroxy groups on linear side chains undergo reactions during HCl hydrolysis; the products appear as new peaks which may be chloroderivatives. In contrast, no new peaks are observed in HCl hydrolysates of delta-hydroxylysine or amino acids with beta-hydroxy groups (beta-hydroxynorvaline, serine, and threonine). Phenol did not protect linear amino acids from reactions during HCl hydrolysis but did prevent loss of the cyclic amino acids tyrosine, hydroxyproline, and 3,4-dihydroxyphenylalanine. Although the gamma-hydroxy group of homoserine would be expected to undergo reaction, HCl catalyzes its cyclization to form homoserine lactone instead.  相似文献   

7.
P J Tonge  P R Carey 《Biochemistry》1990,29(48):10723-10727
Resonance Raman (RR) spectroscopy has been used to obtain the vibrational spectrum of the acyl carbonyl group in a series of acylchymotrypsins and acylsubtilisins at the pH of optimum hydrolysis. The acyl-enzymes, which utilize arylacryloyl acyl groups, include three oxyanion hole mutants of subtilisin BPN', Asn155Leu, Asn155Gln, and Asn155Arg, and encompass a 500-fold range of deacylation rate constants. For each acyl-enzyme a RR carbonyl band has been identified which arises from a population of carbonyl groups undergoing nucleophilic attack in the active site. As the deacylation rate (k3) increases through the series of acyl-enzymes, the carbonyl stretching band (vC = O) is observed to shift to lower frequency, indicating an increase in single bond character of the reactive acyl carbonyl group. Experiments involving the oxyanion hole mutants of subtilisin BPN' indicate that a shift of vC = O to lower frequency results from stronger hydrogen bonding of the acyl carbonyl group in the oxyanion hole. A plot of log k3 against vC = O is linear over the range investigated, demonstrating that the changes in vC = O correlate with the free energy of activation for the deacylation reaction. By use of an empirical correlation between carbonyl frequency (vC = O) and carbonyl bond length (rC = O) it is estimated that rC = O increases by 0.015 A as the deacylation rate increases 500-fold through the series of acyl-enzymes. This change in rC = O is about 7% of that expected for going from a formal C = O double bond in the acyl-enzyme to a formal C-O single bond in the tetrahedral intermediate for deacylation. The data also allow us to estimate the energy needed to extend the acyl carbonyl group along its axis to be 950 kJ mol-1 A-1.  相似文献   

8.
Derivatization of carbonyl compounds with 2,4-dinitrophenylhydrazine (DNPH) is one of the most widely used analytical methods. In this article, we highlight recent advances using DNPH provided by our studies over past seven years. DNPH reacts with carbonyls to form corresponding stable 2,4-DNPhydrazone derivatives (DNPhydrazones). This method may result in analytical error because DNPhydrazones have both E- and Z-stereoisomers caused by the CN double bond. Purified aldehyde-2,4-DNPhydrazone demonstrated only the E-isomer, but under UV irradiation and the addition of acid, both E- and Z-isomers were seen. In order to resolve the isometric problem, a method for transforming the CN double bond of carbonyl-2,4-DNPhydrazone into a C-N single bond, by reductive amination using 2-picoline borane, has been developed. The amination reactions of C1-C10 aldehyde DNPhydrazones are completely converted into the reduced forms and can be analyzed with high-performance liquid chromatography. As a new application using DNPH derivatization, the simultaneous measurement of carbonyls with carboxylic acids or ozone is described in this review.  相似文献   

9.
An isolated uncharged hydrogen bond acceptor such as the carbonyl functionality of an aldehyde or a keto group is absent in natural amino acids. Although glutamine and asparagine are known to hydrogen bond through the amide carbonyl group in their side chains, they also possess the amide ? NH2 group, which can act as a hydrogen bond donor. This makes the structural study of peptides containing an oxo residue, with an isolated carbonyl group in the side chain, interesting. Here, we report the synthesis of δ‐ and ε‐oxo amino acids and their incorporation into oligopeptides as the N‐terminal residue. The resultant oxo peptides were extensively studied using X‐ray crystallography to understand the interactions offered by the oxo group in peptide crystals. We find that the oxo groups are capable of providing additional hydrogen bonding opportunities to the peptides, resulting in increased intermolecular interactions in crystals. The study thus offers avenues for the utilization of oxo residues to introduce intermolecular interactions in synthetic peptides.  相似文献   

10.
11.
Rontani JF  Beker B  Volkman JK 《Phytochemistry》2004,65(24):3269-3278
Two groups of previously unidentified C37-C39 epoxyalkenones and alkenediones were detected in late stationary phase cultures of the haptophyte microalga Chrysotila lamellosa. The formation of these compounds is attributed to the involvement of enzymatic processes acting specifically on the C-21 or C-22 allylic carbon and the omega15 double bond of methyl and ethyl alkenones respectively. Thus, the epoxyalkenones appear to be derivatives of alkenones where the omega15 double bond is oxidized to the epoxide. These epoxyalkenones disappear as the cells age to be replaced by a series of alkenediones. The structures of these compounds indicate that they are derivatives of methyl and ethyl alkenones with an additional carbonyl group on the C-21 or C-22 carbon respectively and without the omega15 double bond. We propose that these compounds are formed by an initial regiospecific lipoxygenase-catalyzed peroxidation of methyl and ethyl alkenones on their C-21 or C-22 allylic carbon, respectively. Lipohydroperoxidase-catalyzed homolytic cleavage of the O-O bond could then result in the formation of conjugated ketones which may then undergo a saturation reaction to form the diketones identified. This work demonstrates that alkenones can be degraded by enzymatic reactions in senescent cells, and by implication this could also occur in the natural environment.  相似文献   

12.
1H n.m.r. studies of Z-Thr-OMe, Z-Thr-Ala-OMe, Z-Ala-Thr-OMe and their glycosylated derivatives indicate the possibility of an intramolecular hydrogen bond between Thr N alpha H and the N-acetyl carbonyl of the carbohydrate moiety, 3,4,6-tri-O-acetyl-2-acetamido-2-deoxy-alpha-D-galactopyranose (AcGalNAc). This is especially true in the case of Z-Thr(AcGalNAc)-Ala-OMe, suggesting that the strength of this hydrogen bond is dependent on the neighboring amino acids on the carbonyl terminal side of Thr. The existence of such a hydrogen bond implies a conformation in which the carbohydrate moiety is restricted to an orientation with its plane roughly perpendicular to the peptide backbone. In such an orientation, steric problems will be minimized in the case of clustered O-glycosidically linked Thr(Ser) residues as found in human erythrocyte glycophorin. A locked orientation of the carbohydrate moiety with respect to the peptide backbone may also play a conformational role in antifreeze glycoproteins.  相似文献   

13.
The primary electron donor in the photosynthetic reaction center from purple bacteria is a bacteriochlorophyll dimer containing four conjugated carbonyl groups that may form hydrogen bonds with amino acid residues. Spectroscopic analyses of a set of mutant reaction centers confirm that hydrogen bonds can be formed between each of these carbonyl groups and histidine residues in the reaction center subunits. The addition of each hydrogen bond is correlated with an increase in the oxidation potential of the dimer, resulting in a 355-mV range in the midpoint potential. The resulting changes in the free-energy differences for several reactions involving the dimer are related to the electron transfer rates using the Marcus theory. These reactions include electron transfer from cytochrome c2 to the oxidized dimer, charge recombination from the primary electron acceptor quinone, and the initial forward electron transfer.  相似文献   

14.
Semisynthetic zinc chlorins are shown for the first time to self-assemble in the absence of an intrinsic hydroxy group, which is always present in the chlorosomal bacteriochlorophylls (BChl's) c, d and e. Instead, the presently studied compounds have carbonyl groups. These cannot function as hydrogen bond donating groups. However due to interspacing water molecules bound to the zinc ion, double hydrogen bonding can occur to adjacent tetrapyrrolic macrocycles equipped with carbonyl recognition groups. Solution studies comprising UV-Vis absorption, electronic circular dichroism (ECD) and FT-IR show that different aggregates are formed in hydrated solvents in comparison to dry nonpolar solvents. Single crystal X-ray studies show variable supramolecular interactions either with interspacing water molecules coordinating the Zn ion within a porphyrin or with the 17(2) carbonyl group of a chlorin ligating the Zn ion. Our findings have implications for a minimalistic design of self-assembling chromophores, which can act as efficient light-harvesting units.  相似文献   

15.
The melatonin metabolite N1-acetyl-5-methoxykynuramine (AMK; 1), which was previously shown to be a potent radical scavenger, was oxidized using the ABTS cation radical [ABTS = 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid)]. Several new oxidation products were obtained, which were separated by repeated chromatography and characterized by spectroscopic methods such as mass spectrometry (ESI-MS and ESI-HRMS), 1H-NMR and 13C-NMR, HMBC, HSQC, H,H COSY correlations and IR spectroscopy. The main products were oligomers of 1 (3 dimers, 1 trimer and 2 tetramers). In all cases, the amino group N2 was involved in the reactions. Two of the dimers turned out to be cis (2a) and trans (2b) isomers containing an azo bond. In the other dimer (3a), the nitrogen atom N2 was attached to atom C5 of the second aromatic amine, with loss of the methoxy group. In the trimer (5), one N2 formed a bridge to C5 of unit B, as in the respective dimer, while this one of C had bridged to C6 of B. One of the tetramers (6) was composed of a trimer 5 attached to N2 of a fourth 1 molecule via an azo bond as in 2a/b. In the other tetramer (7), an additional C-C bond between rings B and C in 6 is assumed. Although oligomers of AMK may only attain low in vivo concentrations, the types of reactions observed shed light on the physiologically possible metabolism of AMK once reacted with a free radical. The displacement of a methoxy group, rarely seen in the oxidation of methoxylated biomolecules, underlines the reactivity of AMK (1). Preliminary data show that, in the presence of ABTS cation radicals, AMK (1) can interact with side chains of aromatic amino acids, a finding which may be crucial for understanding to date unidentified protein modification by a melatonin metabolite detected earlier in experiments with radioactively labeled melatonin.  相似文献   

16.
Substrate specificity of cis-desaturation of alipahtic compounds by resting cells of a mutant, Rhodococcus sp. strain KSM-MT66, was examined. Among substrates tested, the rhodococcal cells were able to convert n-alkanes (C13-C19), 1-chloroalkanes (C16 and C18), ethyl fatty acids (C14-C17) and alkyl (C1-C4) esters of palmitic acid to their corresponding unsaturated products of cis configuration. The products from n-alkanes and 1-chloroalkanes had a double bond mainly at the 9th carbon from their terminal methyl groups, and the products from acyl fatty acids had a double bond mainly at the 6th carbon from their carbonyl carbons.  相似文献   

17.
Breton J  Chitnis PR  Pantelidou M 《Biochemistry》2005,44(14):5402-5408
P700, the primary electron donor of photosystem I, is an asymmetric dimer made of one molecule of chlorophyll a' (P(A)) and one of chlorophyll a (P(B)) that are bound to the homologous PsaA and PsaB polypeptides. While the carbonyl groups of P(A) are involved in hydrogen-bonding interactions with several surrounding amino acid side chains and a water molecule, P(B) does not engage hydrogen bonds with the protein. Notably, the residue Thr A739 is donating a strong hydrogen bond to the 9-keto C=O group of P(A) and the homologous residue Tyr B718 is free from interaction with P(B). Light-induced FTIR difference spectroscopy of the photooxidation of P700 has been combined with a site-directed mutagenesis attempt to introduce hydrogen bonds to the carbonyl groups of P(B) in Synechocystis sp. PCC 6803. The FTIR study of the Y(B718)T mutant provides evidence that the 9-keto C=O group of P(B) and P(B)(+) engages a relatively strong hydrogen-bonding interaction with the surroundings in a significant fraction (40 +/-10%) of the reaction centers. Additional mutations on the two PsaB residues homologous to those involved in the main interactions between the PsaA polypeptide and the 10a-carbomethoxy groups of P(A) affect only marginally the vibrational frequency of the 10a-ester C=O group of P(B). The FTIR data on single, double, and triple mutants at these PsaB sites indicate a plasticity of the interactions of the carbonyl groups of P(B) with the surrounding protein. However, these mutations do not perturb the hydrogen-bonding interactions assumed by the 9-keto and 10a-ester C=O groups of P(A) and P(A)(+) with the protein and have only a limited effect on the relative charge distribution between P(A)(+) and P(B)(+).  相似文献   

18.
A spectrophotometric method has been developed for the determination of long-chain unsaturated and hydroxy fatty acids in concentrated sulfuric acid. The assay is based on the absorbance produced in the 290 to 300-nm range from their reaction with sulfuric acid at 100°C. α,β-Unsaturated aliphatic acids give absorption bands at 235–240 nm and thus can be easily differentiated from unsaturated fatty acids having the double bond(s) at positions not conjugated with the carboxyl group. A certain minimum chain length is required for full development of the absorption band at 300 nm. Position and intensity of the so-formed absorption band is independent on the position and number of the double bonds or hydroxyl groups. Carboxyl groups are not essential, as unsaturated hydrocarbons and higher alcohols likewise react with sulfuric acid to produce the absorbing species at 300 nm, providing a minimum chain length of 5 carbon atoms is present. The nature of the absorbing species at 300 nm is discussed.  相似文献   

19.
We have developed a model based on the analyses of modern and Pleistocene eggshells and mammalian bones which can be used to understand the preservation of amino acids and other important biomolecules such as DNA in fossil specimens. The model is based on the following series of diagenetic reactions and processes involving amino acids: the hydrolysis of proteins and the subsequent loss of hydrolysis products from the fossil matrix with increasing geologic age; the racemization of amino acids which produces totally racemized amino acids in 10(5)-10(6) years in most environments on the Earth; the introduction of contaminants into the fossil that lowers the enantiomeric (D:L) ratios produced via racemization; and the condensation reactions between amino acids, as well as other compounds with primary amino groups, and sugars which yield humic acid-like polymers. This model was used to evaluate whether useful amino acid and DNA sequence information is preserved in a variety of human, amber-entombed insect and dinosaur specimens. Most skeletal remains of evolutionary interest with respect to the origin of modern humans are unlikely to preserve useful biomolecular information although those from high latitude sites may be an exception. Amber-entombed insects contain well-preserved unracemized amino acids, apparently because of the anhydrous nature of the amber matrix, and thus may contain DNA fragments which have retained meaningful genetic information. Dinosaur specimens contain mainly exogenous amino acids, although traces of endogenous amino acids may be present in some cases. Future ancient biomolecule research which takes advantage of new methologies involving, for example, humic acid cleaving reagents and microchip-based DNA-protein detection and sequencing, along with investigations of very slow biomolecule diagenetic reactions such as the racemization of isoleucine at the beta-carbon, will lead to further enhancements of our understanding of biomolecule preservation in the fossil record.  相似文献   

20.
Lipid peroxidation results in release of 4-hydroxy-2,3-trans-nonenal (HNE), which is known to conjugate to specific amino acids of proteins and may alter their function. The effect of HNE on the activities of Na(+)/K(+)-ATPase, Mg(2+)-ATPase, Ca(2+)-ATPase, and calmodulin-stimulated Ca(2+)-ATPase has been studied both in erythrocyte ghosts and in neutrophil membrane preparations. Neutrophil Ca(2+)-ATPase was strongly inhibited by micromolar concentrations of HNE (IC(50) = 12 microM), that means in the range of pathophysiologically relevant HNE levels. The IC(50) value for neutrophil Na(+)/K(+)-ATPase was about 40 microM. HNE was considerably less effective against neutrophil Mg(2+)-ATPase and the erythrocyte ghost enzymes (IC(50) values range from 91 to 240 microM). The data suggest that HNE may play a specific role in the regulation of neutrophil calcium homeostasis in response to oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号