首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fothergill, D. M., and N. A. Carlson. Effects ofN2O narcosis on breathing andeffort sensations during exercise and inspiratory resistive loading.J. Appl. Physiol. 81(4):1562-1571, 1996.The influence of nitrous oxide(N2O) narcosis on the responses toexercise and inspiratory resistive loading was studied in thirteen maleUS Navy divers. Each diver performed an incremental bicycle exercisetest at 1 ATA to volitional exhaustion while breathing a 23%N2O gas mixture and a nonnarcoticgas of the same PO2, density, andviscosity. The same gas mixtures were used during four subsequent30-min steady-state submaximal exercise trials in which the subjectsbreathed the mixtures both with and without an inspiratory resistance(5.5 vs. 1.1 cmH2O · s · l1at 1 l/s). Throughout each test, subjective ratings of respiratory effort (RE), leg exertion, and narcosis were obtained with acategory-ratio scale. The level of narcosis was rated between slightand moderate for the N2O mixturebut showed great individual variation. Perceived leg exertion and thetime to exhaustion were not significantly different with the twobreathing mixtures. Heart rate was unaffected by the gas mixture andinspiratory resistance at rest and during steady-state exercise but wassignificantly lower with the N2O mixture during incremental exercise (P < 0.05). Despite significant increases in inspiratory occlusionpressure (13%; P < 0.05),esophageal pressure (12%; P < 0.001), expired minute ventilation (4%;P < 0.01), and the work rate ofbreathing (15%; P < 0.001) when the subjects breathed the N2O mixture,RE during both steady-state and incremental exercise was 25% lowerwith the narcotic gas than with the nonnarcotic mixture(P < 0.05). We conclude that the narcotic-mediated changes in ventilation, heart rate, and RE induced by23% N2O are not of sufficientmagnitude to influence exercise tolerance at surface pressure.Furthermore, the load-compensating respiratory reflexes responsible formaintaining ventilation during resistive breathing are not depressed byN2O narcosis.

  相似文献   

2.
The female sexhormone 17-estradiol (E2) has been shown to increaselipid and decrease carbohydrate utilization in animals. Weadministrated oral E2 and placebo (randomized, doubleblind, crossover) to eight human male subjects for 8 days (~3 mg/day) and measured respiratory variables, plasma substrates, hormones (E2, testosterone, leptin, cortisol, insulin, andcatecholamines), and substrate utilization during 90 min of enduranceexercise. [6,6-2H]glucose and[1,1,2,3,3-2H]glycerol tracers were used to calculatesubstrate flux. E2 administration increased serumE2 (0.22 to 2.44 nmol/l, P < 0.05) anddecreased serum testosterone (19.4 to 11.5 nmol/l, P < 0.05) concentrations, yet there were no treatment effects on any of theother hormones. Glucose rates of appearance (Ra) anddisappearance (Rd) were lower, and glycerolRa-to-Rd ratio was not affected byE2 administration. O2 uptake, CO2production, and respiratory exchange ratio were not affected byE2; however, there was a decrease in heart rate (P < 0.05). Plasma lactate and glycerol wereunaffected by E2; however, glucose was significantly higher(P < 0.05) during exercise after E2administration. We concluded that short-term oral E2 administration decreased glucose Ra and Rd,maintained plasma glucose homeostasis, but had no effect on substrateoxidation during exercise in men.

  相似文献   

3.
Myosin molecular motor dysfunction in dystrophic mouse diaphragm   总被引:3,自引:0,他引:3  
Cross-bridge properties and myosin heavy chain (MHC) compositionwere investigated in isolated diaphragm from 6-mo-old control (n = 12) andmdx(n = 12) mice. Compared with control,peak tetanic tension fell by 50% inmdx mice(P < 0.001). The total number ofcross bridges per square millimeter(×109), the elementaryforce per cross bridge, and the peak mechanical efficiency were lowerin mdx than in control mice (eachP < 0.001). The duration of thecycle and the rate constant for cross-bridge detachment weresignificantly lower in mdx than incontrol mice. In the overall population, there was a linearrelationship between peak tetanic tension and either total number ofcross bridges per square millimeter or elementary force per crossbridge (r = 0.996 andr = 0.667, respectively, eachP < 0.001). Themdx mice presented a higher proportionof type IIA MHC (P < 0.001) thancontrol mice and a reduction in type IIX MHC(P < 0.001) and slowmyosin isoforms (P < 0.01) comparedwith control mice. We concluded that, inmdx mice, impaired diaphragm strengthwas associated with qualitative and quantitative changes in myosin molecular motors. It is proposed that reduced force generated per crossbridge contributed to diaphragm weakness inmdx mice.

  相似文献   

4.
The length of the silent lag time beforeelevation of the cytosolic free Ca2+ concentration([Ca2+]i) differs between individualpancreatic -cells. One important question is whether thesedifferences reflect a random phenomenon or whether the length of lagtime is inherent in the individual -cell. We compared the lag times,initial dips, and initial peak heights for[Ca2+]i from two consecutive glucosestimulations (with either 10 or 20 mM glucose) in individualob/ob mouse -cells with the fura 2 technique in amicrofluorimetric system. There was a strong correlation between thelengths of the lag times in each -cell (10 mM glucose:r = 0.94, P < 0.001; 20 mM glucose:r = 0.96, P < 0.001) as well as between theinitial dips in [Ca2+]i (10 mM glucose:r = 0.93, P < 0.001; 20 mM glucose:r = 0.79, P < 0.001) and between theinitial peak heights (10 mM glucose: r = 0.51, P < 0.01; 20 mM glucose: r = 0.77, P < 0.001). These data provide evidence that theresponse pattern, including both the length of the lag time and thedynamics of the subsequent [Ca2+]i, isspecific for the individual -cell.

  相似文献   

5.
Developmental changes in electrocardiogram (ECG) andresponse to selective K+ channelblockers were assessed in conscious, unsedated neonatal (days 1, 7, 14) and adult male mice(>60 days of age). Mean sinus R-R interval decreased from 120 ± 3 ms in day 1 to 110 ± 3 ms inday 7, 97 ± 3 ms inday 14, and 81 ± 1 ms in adultmice (P < 0.001 by ANOVA; all 3 groups different from day 1). Inparallel, the mean P-R interval progressively decreased duringdevelopment. Similarly, the mean Q-T interval decreased from 62 ± 2 ms in day 1 to 50 ± 2 ms inday 7, 47 ± 8 ms inday 14 neonatal mice, and 46 ± 2 ms in adult mice (P < 0.001 byANOVA; all 3 groups are significantly different fromday 1).Q-Tc was calculated asQ- interval.Q-Tc significantly shortened from179 ± 4 ms in day 1 to 149 ± 5 ms in day 7 mice(P < 0.001). In addition, the J junction-S-T segment elevation observed in day1 neonatal mice resolved by day14. Dofetilide (0.5 mg/kg), the selective blocker ofthe rapid component of the delayed rectifier(IKr) abolished S-T segment elevation and prolonged Q-T andQ-Tc intervals in day 1 neonates but not in adult mice.In contrast, 4-aminopyridine (4-AP, 2.5 mg/kg) had no effect onday 1 neonates but in adults prolongedQ-T and Q-Tc intervals andspecifically decreased the amplitude of a transiently repolarizingwave, which appears as an r' wave at the end of the apparent QRSin adult mice. In conclusion, ECG intervals and configuration changeduring normal postnatal development in the mouse.K+ channel blockers affect themouse ECG differently depending on age. These data are consistent withthe previous findings that the dofetilide-sensitiveIKr is dominantin day 1 mice, whereas 4-AP-sensitivecurrents, the transiently repolarizingK+ current, and the rapidlyactivating, slowly inactivating K+current are the dominant K+currents in adult mice. This study provides background information useful for assessing abnormal development in transgenic mice.

  相似文献   

6.
The myosin heavy chain (MHC) andmyosin light chain (MLC) isoforms in skeletal muscle of Ranapipiens have been well characterized. We measured theforce-velocity (F-V) properties of single intact fast-twitchfibers from R. pipiens that contained MHC types 1 or 2 (MHC1or MHC2) or coexpressed MHC1 and MHC2 isoforms. Velocities weremeasured between two surface markers that spanned most of the fiberlength. MHC and MLC isoform content was quantified after mechanicsanalysis by SDS-PAGE. Maximal shortening velocity(Vmax) and velocity at half-maximal tension(VP 50) increased with percentage of MHC1(%MHC1). Maximal specific tension (Po/CSA, wherePo is isometric tension and CSA is fiber cross-sectional area) and maximal mechanical power (Wmax) alsoincreased with %MHC1. MHC concentration was not significantlycorrelated with %MHC1, indicating that the influence of %MHC1 onPo/CSA and Wmax was due to intrinsicdifferences between MHC isoforms and not to concentration. TheMLC3-to-MLC1 ratio was not significantly correlated withVmax, VP 50,Po/CSA, or Wmax. These data demonstrate the powerful relationship between MHC isoforms and F-V properties of the two most common R. pipiensfiber types.

  相似文献   

7.
Babb, T. G. Ventilatory response to exercise insubjects breathing CO2 orHeO2.J. Appl. Physiol. 82(3): 746-754, 1997.To investigate the effects of mechanical ventilatory limitationon the ventilatory response to exercise, eight older subjects with normal lung function were studied. Each subject performed graded cycleergometry to exhaustion once while breathing room air; once whilebreathing 3% CO2-21%O2-balanceN2; and once while breathing HeO2 (79% He and 21%O2). Minute ventilation(E) and respiratory mechanics weremeasured continuously during each 1-min increment in work rate (10 or20 W). Data were analyzed at rest, at ventilatory threshold (VTh),and at maximal exercise. When the subjects were breathing 3%CO2, there was an increase(P < 0.001) inE at rest and at VTh but not duringmaximal exercise. When the subjects were breathingHeO2,E was increased(P < 0.05) only during maximalexercise (24 ± 11%). The ventilatory response to exercise belowVTh was greater only when the subjects were breathing 3% CO2(P < 0.05). Above VTh, theventilatory response when the subjects were breathingHeO2 was greater than whenbreathing 3% CO2(P < 0.01). Flow limitation, aspercent of tidal volume, during maximal exercise was greater(P < 0.01) when the subjects werebreathing CO2 (22 ± 12%) thanwhen breathing room air (12 ± 9%) or when breathingHeO2 (10 ± 7%)(n = 7). End-expiratory lung volumeduring maximal exercise was lower when the subjects were breathingHeO2 than when breathing room airor when breathing CO2(P < 0.01). These data indicate thatolder subjects have little reserve for accommodating an increase inventilatory demand and suggest that mechanical ventilatory constraintsinfluence both the magnitude of Eduring maximal exercise and the regulation ofE and respiratory mechanics duringheavy-to-maximal exercise.

  相似文献   

8.
Chemically skinned muscle fibers,prepared from the rat medial gastrocnemius and soleus, were subjectedto four sequential slack tests in Ca2+-activating solutionscontaining 0, 15, 30, and 0 mM added Pi. Pi (15 and 30 mM) had no effect on the unloaded shortening velocity (Vo) of fibers expressing type IIb myosin heavychain (MHC). For fibers expressing type I MHC, 15 mM Pi didnot alter Vo, whereas 30 mM Pireduced Vo to 81 ± 1% of the original 0 mM Pi value. This effect was readily reversible whenPi was lowered back to 0 mM. These results are notcompatible with current cross-bridge models, developed exclusively fromdata obtained from fast fibers, in which Vo isindependent of Pi. The response of the type I fibers at 30 mM Pi is most likely the result of increased internal drag opposing fiber shortening resulting from fiber type-specific effects ofPi on cross bridges, the thin filament, or therate-limiting step of the cross-bridge cycle.

  相似文献   

9.
To study the effect of chronically elevated CO2 on the excitability and function of neurons, we exposed mice to 7.5–8% CO2 for 2 wk (starting at 2 days of age) and examined the properties of freshly dissociated hippocampal neurons. Neurons from control mice (CON) and from mice exposed to chronically elevated CO2 had similar resting membrane potentials and input resistances. CO2-exposed neurons, however, had a lower rheobase and a higher Na+ current density (580 ± 73 pA/pF; n = 27 neurons studied) than did CON neurons (280 ± 51 pA/pF, n = 34; P < 0.01). In addition, the conductance-voltage curve was shifted in a more negative direction in CO2-exposed than in CON neurons (midpoint of the curve was –46 ± 3 mV for CO2 exposed and –34 ± 3 mV for CON, P < 0.01), while the steady-state inactivation curve was shifted in a more positive direction in CO2-exposed than in CON neurons (midpoint of the curve was –59 ± 2 mV for CO2 exposed and –68 ± 3 mV for CON, P < 0.01). The time constant for deactivation at –100 mV was much smaller in CO2-exposed than in CON neurons (0.8 ± 0.1 ms for CO2 exposed and 1.9 ± 0.3 ms for CON, P < 0.01). Immunoblotting for Na+ channel proteins (subtypes I, II, and III) was performed on the hippocampus. Our data indicate that Na+ channel subtype I, rather than subtype II or III, was significantly increased (43%, n = 4; P < 0.05) in the hippocampi of CO2-exposed mice. We conclude that in mice exposed to elevated CO2, 1) increased neuronal excitability is due to alterations in Na+ current and Na+ channel characteristics, and 2) the upregulation of Na+ channel subtype I contributes, at least in part, to the increase in Na+ current density. sodium ion channels; oxygen deprivation  相似文献   

10.
Westudied chemosensitive signaling in locus coeruleus (LC) neurons usingboth perforated and whole cell patch techniques. Upon inhibition offast Na+ spikes by tetrodotoxin (TTX), hypercapnic acidosis[HA; 15% CO2, extracellular pH (pHo) 6.8]induced small, slow spikes. These spikes were inhibited byCo2+ or nifedipine and were attributed to activation ofL-type Ca2+ channels by HA. Upon inhibition of bothNa+ and Ca2+ spikes, HA resulted in a membranedepolarization of 3.52 ± 0.61 mV (n = 17) thatwas reduced by tetraethylammonium (TEA) (1.49 ± 0.70 mV,n = 7; P < 0.05) and absent(0.97 ± 0.73 mV, n = 7; P < 0.001) upon exposure to isohydric hypercapnia (IH; 15%CO2, 77 mM HCO, pHo 7.45).Either HA or IH, but not 50 mM Na-propionate, activatedCa2+ channels. Inhibition of L-type Ca2+channels by nifedipine reduced HA-induced increased firing rate andeliminated IH-induced increased firing rate. We conclude that chemosensitive signals (e.g., HA or IH) have multiple targets in LCneurons, including TEA-sensitive K+ channels andTWIK-related acid-sensitive K+ (TASK) channels.Furthermore, HA and IH activate L-type Ca2+ channels, andthis activation is part of chemosensitive signaling in LC neurons.

  相似文献   

11.
We hypothesized that highextracellular K+ concentration([K+]o)-mediated stimulation ofNa+-K+-Cl cotransporter isoform 1 (NKCC1) may result in a net gain of K+ and Cland thus lead to high-[K+]o-induced swellingand glutamate release. In the current study, relative cell volumechanges were determined in astrocytes. Under 75 mM[K+]o, astrocytes swelled by 20.2 ± 4.9%. This high-[K+]o-mediated swelling wasabolished by the NKCC1 inhibitor bumetanide (10 µM, 1.0 ± 3.1%; P < 0.05). Intracellular36Cl accumulation was increased from acontrol value of 0.39 ± 0.06 to 0.68 ± 0.05 µmol/mgprotein in response to 75 mM [K+]o. Thisincrease was significantly reduced by bumetanide (P < 0.05). Basal intracellular Na+ concentration([Na+]i) was reduced from 19.1 ± 0.8 to16.8 ± 1.9 mM by bumetanide (P < 0.05).[Na+]i decreased to 8.4 ± 1.0 mM under75 mM [K+]o and was further reduced to5.2 ± 1.7 mM by bumetanide. In addition, the recovery rate of[Na+]i on return to 5.8 mM[K+]o was decreased by 40% in the presenceof bumetanide (P < 0.05). Bumetanide inhibitedhigh-[K+]o-induced 14C-labeledD-aspartate release by ~50% (P < 0.05).These results suggest that NKCC1 contributes tohigh-[K+]o-induced astrocyte swelling andglutamate release.

  相似文献   

12.
Cell-attached recordings revealedK+ channel activity in basolateral membranes ofguinea pig distal colonic crypts. Inwardly rectified currents wereapparent with a pipette solution containing 140 mM K+.Single-channel conductance () was 9 pS at the resting membrane potential. Another inward rectifier with  of 19 pS was observed occasionally. At a holding potential of 80 mV,  was 21 and 41 pS,respectively. Identity as K+ channels was confirmed afterpatch excision by changing the bath ion composition. From reversalpotentials, relative permeability of Na+ overK+ (PNa/PK)was 0.02 ± 0.02, withPRb/PK = 1.1 andPCl/PK < 0.03. Spontaneous open probability (Po) of the 9-pSinward rectifier (gpKir) was voltageindependent in cell-attached patches. Both a low(Po = 0.09 ± 0.01) and a moderate(Po = 0.41 ± 0.01) activity mode wereobserved. Excision moved gpKir to the mediumactivity mode; Po ofgpKir was independent of bath Ca2+activity and bath acidification. Addition of Cl andK+ secretagogues altered Po ofgpKir. Forskolin or carbachol (10 µM)activated the small-conductance gpKir inquiescent patches and increased Po inlow-activity patches. K+ secretagogues, either epinephrine(5 µM) or prostaglandin E2 (100 nM), decreasedPo of gpKir in activepatches. This gpKir may be involved inelectrogenic secretion of Cl and K+ acrossthe colonic epithelium, which requires a large basolateral membraneK+ conductance during maximal Cl secretionand, presumably, a lower K+ conductance during primaryelectrogenic K+ secretion.

  相似文献   

13.
We examined the novel interaction ofhyperthyroidism and hindlimb suspension on the pattern of myosin heavychain (MHC) expression (mRNA and protein) in skeletal muscles. FemaleSprague-Dawley rats were assigned to four groups:1) normal control (Con);2) thyroid hormone treated[150 µg 3,5,3'-triiodothyronine(T3) · kg1 · day1](T3);3) hindlimb suspension (HS); or4)T3-treated and HS(T3 + HS). Results show for thefirst time the novel observation that the combinationT3 + HS induces a rapid andsustained, marked (80-90%) downregulation of type I MHC geneexpression that is mirrored temporally by concomitant markedupregulation of type IIb MHC gene expression, as evidenced by the denovo synthesis of type IIb MHC protein in the soleus. The fast type IIxMHC isoform showed a differential response among the experimentalgroups, generally increasing with the separate and combined treatments in both the soleus and vastus intermedius muscles while decreasing inthe plantaris muscles. The fast type IIa MHC was the least responsiveto suspension of the MHCs and reflected its greatest responsiveness toT3 treatment while also undergoingdifferential adaptations in slow vs. fast muscle (increases vs.decreases, respectively). These results confirm previous findings thatall four adult MHC genes are sensitive toT3 and suspension in amuscle-specific manner. In addition, we show thatT3 + HS can interactsynergistically to create novel adaptations in MHC expression thatcould not be observed when each factor was imposed separately.

  相似文献   

14.
Zhang, Xue-Qian, Yuk-Chow Ng, Timothy I. Musch, Russell L. Moore, R. Zelis, and Joseph Y. Cheung. Sprint training attenuates myocyte hypertrophy and improvesCa2+ homeostasis in postinfarctionmyocytes. J. Appl. Physiol. 84(2): 544-552, 1998.Myocytes isolated from rat hearts 3 wk aftermyocardial infarction (MI) had decreasedNa+/Ca2+exchange currents(INa/Ca; 3 Na+ out:1Ca2+ in) and sarcoplasmicreticulum (SR)-releasable Ca2+contents. These defects in Ca2+regulation may contribute to abnormal contractility in MI myocytes. Because exercise training elicits positive adaptations in cardiac contractile function and myocardialCa2+ regulation, thepresent study examined whether 6-8 wk ofhigh-intensity sprint training (HIST) would ameliorate some of thecellular maladaptations observed in post-MI rats with limited exerciseactivity (Sed). In MI rats, HIST did not affect citrate synthaseactivities of plantaris muscles but significantly increased thepercentage of cardiac -myosin heavy chain (MHC) isoforms (57.2 ± 1.9 vs. 49.3 ± 3.5 in MI-HIST vs. MI-Sed, respectively;P  0.05). At the single myocytelevel, HIST attenuated cellular hypertrophy observed post-MI, asevidenced by reductions in cell lengths (112 ± 4 vs. 130 ± 5 µm in MI-HIST vs. MI-Sed, respectively;P  0.005) and cell capacitances (212 ± 8 vs. 242 ± 9 pF in MI-HIST vs. MI-Sed, respectively; P  0.015). ReverseINa/Ca wassignificantly lower (P  0.0001) inmyocytes from MI-Sed rats compared with those from rats that were shamoperated and sedentary. HIST significantly increased reverseINa/Ca(P  0.05) without affecting theamount ofNa+/Ca2+exchangers (detected by immunoblotting) in MI myocytes. SR-releasable Ca2+ content, as estimated byintegrating forwardINa/Ca duringcaffeine-induced SR Ca2+ release,was also significantly increased (P  0.02) by HIST in MI myocytes. We conclude that the enhanced cardiacoutput and stroke volume in post-MI rats subjected to HIST aremediated, at least in part, by reversal of cellular maladaptationspost-MI.

  相似文献   

15.
Histamine H3 activation depresses cardiac function in experimental sepsis   总被引:1,自引:0,他引:1  
In the heart,histamine (H3) receptors mayfunction as inhibitory presynaptic receptors that decrease adrenergicnorepinephrine release in conditions of enhanced sympathetic neuralactivity. We hypothesized thatH3-receptor blockade might improvecardiovascular function in sepsis. In a canine model ofEscherichia coli sepsis, we found thatH3-receptor blockade increasedcardiac output (3.6 to 5.3 l/min, P < 0.05), systemic blood pressure (mean 76 to 96 mmHg,P < 0.05), and left ventricularcontractility compared with pretreatment values. Plasma histamineconcentrations increased modestly in theH3-blocker-sepsis groupcompared with values obtained in a nonsepsis-time-control group.In an in vitro preparation, histamineH3 activation could be identifiedunder conditions of septic plasma. We conclude that activation ofH3 receptors may contribute tocardiovascular collapse in sepsis.

  相似文献   

16.
Breathing at very low lung volumes might beaffected by decreased expiratory airflow and air trapping. Our purposewas to detect expiratory flow limitation (EFL) and, as a consequence, intrinsic positive end-expiratory pressure(PEEPi) in grossly obesesubjects (OS). Eight OS with a mean body mass index (BMI) of 44 ± 5 kg/m2 and six age-matchednormal-weight control subjects (CS) were studied in different bodypositions. Negative expiratory pressure (NEP) was used to determineEFL. In contrast to CS, EFL was found in two of eight OS in the uprightposition and in seven of eight OS in the supine position. DynamicPEEPi and mean transdiaphragmatic pressure (mean Pdi) were measured in all six CS and in six of eight OS.In OS, PEEPi increased from 0.14 ± 0.06 (SD) kPa in the upright position to 0.41 ± 0.11 kPa inthe supine position (P < 0.05) anddecreased to 0.20 ± 0.08 kPa in the right lateral position(P < 0.05, compared with supine),whereas, in CS, PEEPi wassignificantly smaller (<0.05 kPa) in each position. In OS, mean Pdiin each position was significantly larger compared with CS. Mean Pdiincreased from 1.02 ± 0.32 kPa in the upright position to 1.26 ± 0.17 kPa in the supine position (not significant) and decreasedto 1.06 ± 0.26 kPa in the right lateral position(P < 0.05, compared with supine),whereas there were no significant changes in CS. We conclude that in OS1) tidal breathing can be affectedby EFL and PEEPi;2) EFL andPEEPi are promoted by the supineposture; and 3) the increaseddiaphragmatic load in the supine position is, in part, related toPEEPi.

  相似文献   

17.
To study whether a sepsis-induced increase indes-Arg9-bradykinin(des-Arg9-BK) and bradykinin (BK)B1-receptor activity participatesin the observed increase in pulmonary vascular resistance in neonatal group B streptococcal sepsis (GBS), isometric force bioassays ofpulmonary artery (PA) rings were studied, after 4-h exposure to eitherKrebs or GBS, by using the following protocols:1) BK dose-response curve,2) vascular response to BK withNG-nitro-L-arginine methyl ester(L-NAME), and3) response todes-Arg9-BK (BK metabolite andB1 agonist). PA rings exposed toBK resulted in contraction in the GBS group and a decrease in restingtension in the Control group (P = 0.034) at a concentration of105 M. GBS-treated PA ringscontracted more to des-Arg9-BKthan did Controls (P < 0.001). BK(106 M) relaxedpreconstricted PA rings incubated in GBS less than BK relaxed Controls(P < 0.001), and preincubation withL-NAME decreased relaxation inboth. These results suggest that GBS decreased endothelium-dependent BKrelaxation and increased contractile response todes-Arg9-BK. We speculate thatthis occurs secondary to upregulation of B1 receptors reflected byB1-agonist-mediated PA contraction.

  相似文献   

18.
In this study, we test the hypothesisthat in newborn hearts (as in adults) hypoxia and acidificationstimulate increased Na+ uptake, in part via pH-regulatoryNa+/H+ exchange. Resulting increases inintracellular Na+ (Nai) alter the force drivingthe Na+/Ca2+ exchanger and lead to increasedintracellular Ca2+. NMR spectroscopy measuredNai and cytosolic Ca2+ concentration([Ca2+]i) and pH (pHi) inisolated, Langendorff-perfused 4- to 7-day-old rabbit hearts. AfterNa+/K+ ATPase inhibition, hypoxic hearts gainedNa+, whereas normoxic controls did not [19 ± 3.4 to139 ± 14.6 vs. 22 ± 1.9 to 22 ± 2.5 (SE) meq/kg drywt, respectively]. In normoxic hearts acidified using theNH4Cl prepulse, pHi fell rapidly and recovered,whereas Nai rose from 31 ± 18.2 to 117.7 ± 20.5 meq/kg dry wt. Both protocols caused increases in [Ca]i;however, [Ca]i increased less in newborn hearts than inadults (P < 0.05). Increases in Nai and[Ca]i were inhibited by theNa+/H+ exchange inhibitormethylisobutylamiloride (MIA, 40 µM; P < 0.05), aswell as by increasing perfusate osmolarity (+30 mosM) immediately before and during hypoxia (P < 0.05). The data supportthe hypothesis that in newborn hearts, like adults, increases inNai and [Ca]i during hypoxia and afternormoxic acidification are in large part the result of increased uptakevia Na+/H+ and Na+/Ca2+exchange, respectively. However, for similar hypoxia and acidification protocols, this increase in [Ca]i is less in newborn thanadult hearts.

  相似文献   

19.
The present study compared the microdialysis ethanoloutflow-inflow technique for estimating blood flow (BF) in skeletalmuscle of humans with measurements by Doppler ultrasound of femoralartery inflow to the limb(BFFA). The microdialysis probeswere inserted in the vastus lateralis muscle and perfused with a Ringeracetate solution containing ethanol,[2-3H]adenosine (Ado),andD-[14C(U)]glucose.BFFA at rest increased from0.16 ± 0.02 to 1.80 ± 0.26 and 4.86 ± 0.53 l/minwith femoral artery infusion of Ado (AdoFA,i) at 125 and 1,000 µg · min1 · l1thigh volume (low dose and high dose, respectively;P < 0.05) and to 3.79 ± 0.37 and6.13 ± 0.65 l/min during one-legged, dynamic, thigh muscle exercisewithout and with high AdoFA,i,respectively (P < 0.05). The ethanoloutflow-to-inflow ratio (38.3 ± 2.3%) and the probe recoveries(PR) for [2-3H]Ado(35.4 ± 1.6%) and forD-[14C(U)]glucose(15.9 ± 1.1%) did not change withAdoFA,i at rest (P = not significant). During exercisewithout and with AdoFA,i, theethanol outflow-to-inflow ratio decreased(P < 0.05) to a similar level of17.5 ± 3.4 and 20.6 ± 3.2%, respectively(P = not significant), respectively,while the PR increased (P < 0.05) toa similar level (P = not significant)of 55.8 ± 2.8 and 61.2 ± 2.5% for[2-3H]Ado and to 42.8 ± 3.9 and 45.2 ± 5.1% forD-[14C(U)]glucose.Whereas the ethanol outflow-to-inflow ratio and PR correlated inverselyand positively, respectively, to the changes in BF during muscularcontractions, neither of the ratio nor PR correlated tothe AdoFA,i-induced BF increase.Thus the ethanol outflow-to-inflow ratio does not represent skeletalmuscle BF but rather contraction-induced changes in molecular transport in the interstitium or over the microdialysis membrane.

  相似文献   

20.
The ventilatorysensitivity to CO2, in hyperoxia, is increased after an 8-hexposure to hypoxia. The purpose of the present study was to determinewhether this increase arises through an increase in peripheral orcentral chemosensitivity. Ten healthy volunteers each underwent 8-hexposures to 1) isocapnic hypoxia, with end-tidalPO2 (PETO2) = 55 Torr and end-tidal PCO2(PETCO2) = eucapnia; 2)poikilocapnic hypoxia, with PETO2 = 55 Torr and PETCO2 = uncontrolled;and 3) air-breathing control. The ventilatory response toCO2 was measured before and after each exposure with theuse of a multifrequency binary sequence with two levels of PETCO2: 1.5 and 10 Torr above the normalresting value. PETO2 was held at 250 Torr.The peripheral (Gp) and the central (Gc) sensitivities were calculatedby fitting the ventilatory data to a two-compartment model. There wereincreases in combined Gp + Gc (26%, P < 0.05),Gp (33%, P < 0.01), and Gc (23%, P = not significant) after exposure to hypoxia. There were no significant differences between isocapnic and poikilocapnic hypoxia. We conclude that sustained hypoxia induces a significant increase inchemosensitivity to CO2 within the peripheral chemoreflex.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号