首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prompt deposition of fibronectin-rich extracellular matrix is a critical feature of normal development and the host-response to injury. Fibronectin isoforms that include the EDA and EDB domains are prominent in these fibronectin matrices. We now report using human dermal fibroblast cultures that the EDA domain of fibronectin or EDA-derived peptides modeled after the C–C′ loop promote stress fiber formation and myosin-light chain phosphorylation. These changes are accompanied by an increase in fibronectin synthesis and fibrillogenesis. These effects are blocked by pretreating cells with either siRNA or blocking antibody to the α4 integrin. Our data indicate that the interaction between the α4β1 integrin and the EDA domain of fibronectin helps to drive tissue fibrosis by promoting a contractile phenotype and an increase in fibronectin synthesis and deposition.  相似文献   

2.
NELL1 is a secretory osteogenic protein containing several structural motifs that suggest that it functions as an extracellular matrix component. To determine the mechanisms underlying NELL1-induced osteoblast differentiation, we examined the cell-adhesive activity of NELL1 using a series of recombinant NELL1 proteins. We demonstrated that NELL1 promoted osteoblastic cell adhesion through at least three cell-binding domains located in the C-terminal region of NELL1. Adhesion of cells to NELL1 was strongly inhibited by function-blocking antibodies against integrin α3 and β1 subunits, suggesting that osteoblastic cells adhered to NELL1 through integrin α3β1. Further, focal adhesion kinase activation is involved in NELL1 signaling.  相似文献   

3.
4.
Both the transforming growth factor β (TGF-β) and integrin signalling pathways have well-established roles in angiogenesis. However, how these pathways integrate to regulate angiogenesis is unknown. Here, we show that the extracellular matrix component, fibronectin, and its cellular receptor, α5β1 integrin, specifically increase TGF-β1- and BMP-9-induced Smad1/5/8 phosphorylation via the TGF-β superfamily receptors endoglin and activin-like kinase-1 (ALK1). Fibronectin and α5β1 integrin increase Smad1/5/8 signalling by promoting endoglin/ALK1 cell surface complex formation. In a reciprocal manner, TGF-β1 activates α5β1 integrin and downstream signalling to focal adhesion kinase (FAK) in an endoglin-dependent manner. α5β1 integrin and endoglin form a complex on the cell surface and co-internalize, with their internalization regulating α5β1 integrin activation and signalling. Functionally, endoglin-mediated fibronectin/α5β1 integrin and TGF-β pathway crosstalk alter the responses of endothelial cells to TGF-β1, switching TGF-β1 from a promoter to a suppressor of migration, inhibiting TGF-β1-mediated apoptosis to promote capillary stability, and partially mediating developmental angiogenesis in vivo. These studies provide a novel mechanism for the regulation of TGF-β superfamily signalling and endothelial function through crosstalk with integrin signalling pathways.  相似文献   

5.
The lymphocyte homing receptor integrin α(4)β(7) is unusual for its ability to mediate both rolling and firm adhesion. α(4)β(1) and α(4)β(7) are targeted by therapeutics approved for multiple sclerosis and Crohn's disease. Here, we show by electron microscopy and crystallography how two therapeutic Fabs, a small molecule (RO0505376), and mucosal adhesion molecule-1 (MAdCAM-1) bind α(4)β(7). A long binding groove at the α(4)-β(7) interface for immunoglobulin superfamily domains differs in shape from integrin pockets that bind Arg-Gly-Asp motifs. RO0505376 mimics an Ile/Leu-Asp motif in α(4) ligands, and orients differently from Arg-Gly-Asp mimics. A novel auxiliary residue at the metal ion-dependent adhesion site in α(4)β(7) is essential for binding to MAdCAM-1 in Mg(2+) yet swings away when RO0505376 binds. A novel intermediate conformation of the α(4)β(7) headpiece binds MAdCAM-1 and supports rolling adhesion. Lack of induction of the open headpiece conformation by ligand binding enables rolling adhesion to persist until integrin activation is signaled.  相似文献   

6.
7.
With progressive and rapid growth of malignant tumors, cancer cells in an ischemic condition are expected to develop an increased potential for local invasive growth. To address this hypothesis, we first examined the effect of hypoxia on the invasiveness of oral squamous cell carcinoma (OSCC) cells using the Matrigel invasion assay. We then investigated the effect of hypoxia on the protein and mRNA expression of α5 integrin and fibronectin, which are major factors involved in tumor cell invasion. We showed that (i) hypoxia increased the invasiveness of OSCC cells, (ii) α5 integrin and fibronectin protein and mRNA expression levels were increased in OSCC cells under hypoxic conditions, (iii) hypoxia stimulated autocrine secretion of fibronectin in OSCC cells, (iv) administration of siRNAHIF-1α caused a significant decrease in α5 integrin and fibronectin protein, confirming that HIF-1α plays a role in their induction, and (v) siRNAHIF-1α abrogated hypoxia-induced cell invasion. Collectively, these data suggest that hypoxia promotes OSCC cell invasion that is elicited by HIF-1α-dependent α5 integrin and fibronectin induction.  相似文献   

8.
9.
Fibroblast contraction of collagen gels is regarded as a model of wound contraction. Transforming growth factor (TGF)-beta added to such gels can augment contraction consistent with its suggested role as a mediator of fibrotic repair. Since fibroblasts isolated from fibrotic tissues have been suggested to express a "fibrotic phenotype," we hypothesized that TGF-beta exposure may lead to a persistent increase in fibroblasts' contractility. To evaluate this question, confluent human fetal lung fibroblasts were treated with serum-free Dulbecco modified Eagle medium (DMEM), with or without 100 pM [corrected] TGF-beta1, TGF-beta2, or TGF-beta3 for 48 h. Fibroblasts were then trypsinized and cast into gels composed of native type I collagen isolated from rat tail tendons. After 20 min for gelation, the gels were released and maintained in serum-free DMEM. TGF-beta-pretreated fibroblasts caused significantly more rapid gel contraction (52.5+/-0.6, 50.9+/-0.2, and 50.3+/-0.5% by TGF-beta1, -beta2, and -beta3 pretreated fibroblasts, respectively) than control fibroblasts (74.0+/-0.3%, P < 0.01). This effect is concentration dependent (50-200 nM), and all three isoforms had equal activity. The effect of TGF-beta1, however, persisted for only a short period of time following the removal of TGF-beta, and was lost with sequential passage. These observations suggest that the persistent increase in collagen-gel contractility, mediated by fibroblasts from fibrotic tissues, would not appear to be solely due to previous exposure of these cells to TGF-beta.  相似文献   

10.
Integrin α5β1 is a major cellular receptor for the extracellular matrix protein fibronectin and plays a fundamental role during mammalian development. A crystal structure of the α5β1 integrin headpiece fragment bound by an allosteric inhibitory antibody was determined at a 2.9-Å resolution both in the absence and presence of a ligand peptide containing the Arg-Gly-Asp (RGD) sequence. The antibody-bound β1 chain accommodated the RGD ligand with very limited structural changes, which may represent the initial step of cell adhesion mediated by nonactivated integrins. Furthermore, a molecular dynamics simulation pointed to an important role for Ca2+ in the conformational coupling between the ligand-binding site and the rest of the molecule. The RGD-binding pocket is situated at the center of a trenchlike exposed surface on the top face of α5β1 devoid of glycosylation sites. The structure also enabled the precise prediction of the acceptor residue for the auxiliary synergy site of fibronectin on the α5 subunit, which was experimentally confirmed by mutagenesis and kinetic binding assays.  相似文献   

11.
12.

Background

Transforming growth factor beta 1 (TGF-β1) is a classical modulator of skeletal muscle and regulates several processes, such as myogenesis, regeneration and muscle function in skeletal muscle diseases. Skeletal muscle atrophy, characterized by the loss of muscle strength and mass, is one of the pathological conditions regulated by TGF-β1, but the underlying mechanism involved in the atrophic effects of TGF-β1 is not fully understood.

Methods

Mice sciatic nerve transection model was created and gastrocnemius were analysed by western blot, immunofluorescence staining and fibre diameter quantification after 2 weeks. Exogenous TGF-β1 was administrated and high-mobility group box-1 (HMGB1), autophagy were blocked by siRNA and chloroquine (CQ) respectively to explore the mechanism of the atrophic effect of TGF-β1 in denervated muscle. Similar methods were performed in C2C12 cells.

Results

We found that TGF-β1 was induced in denervated muscle and it could promote atrophy of skeletal muscle both in vivo and in vitro, up-regulated HMGB1 and increased autophagy activity were also detected in denervated muscle and were further promoted by exogenous TGF-β1. The atrophic effect of TGF-β1 could be inhibited when HMGB1/autophagy pathway was blocked.

Conclusions

Thus, our data revealed that TGF-β1 is a vital regulatory factor in denervated skeletal muscle in which HMGB1/ autophagy pathway mediates the atrophic effect of TGF-β1. Our findings confirmed a new pathway in denervation-induced skeletal muscle atrophy and it may be a novel therapeutic target for patients with muscle atrophy after peripheral nerve injury.
  相似文献   

13.
The N-terminal domains VI plus V (62 kDa) and V alone (43 kDa) of the laminin α1 chain were obtained as recombinant products and shown to be folded into a native form by electron microscopy and immunological assays. Domain VI alone, which corresponds to an LN module, did not represent an autonomously folding unit in mammalian cells, however. Fragment α1VI/V, but not fragment α1V, bound to purified α1β1 and α2β1 integrins, to heparin, and to heparan sulfate-substituted domains I and V of perlecan. This localized the binding activities to the LN module, which contains two basic sequences suitable for heparin interactions.  相似文献   

14.
It was previously shown that integrin α6β4 contributes to translation of cancer-related mRNAs such as VEGF via initiation factor eIF4E. In this study, we found that integrin α6β4 regulates the activity of eIF4E through the Ser/Thr kinase Mnk. Although a role for Mnk in various aspects of cancer progression has been established, a link between integrin and Mnk activity has not. Here we show that Mnk1 is a downstream effector of integrin α6β4 and mediates the α6β4 signaling, important for translational control. Integrin α6β4 signals through MEK and p38 MAPK to increase phosphorylation of Mnk1 and eIF4E. Inhibition of Mnk1 activity by CGP57380 or downregulation by shRNA blocks α6β4-dependent translation of VEGF mRNA. Our studies suggest that Mnk1 could be a therapeutic target in cancers where the integrin α6β4 level is high.  相似文献   

15.
16.
Autophagy, a highly conserved process conferring cytoprotection against stress, contributes to the progression of cerebral ischemia. β-arrestins are multifunctional proteins that mediate receptor desensitization and serve as important signaling scaffolds involved in numerous physiopathological processes. Here, we show that both ARRB1 (arrestin, β 1) and ARRB2 (arrestin, β 2) were upregulated by cerebral ischemic stress. Knockout of Arrb1, but not Arrb2, aggravated the mortality, brain infarction, and neurological deficit in a mouse model of cerebral ischemia. Accordingly, Arrb1-deficient neurons exhibited enhanced cell injury upon oxygen-glucose deprivation (OGD), an in vitro model of ischemia. Deletion of Arrb1 did not affect the cerebral ischemia-induced inflammation, oxidative stress, and nicotinamide phosphoribosyltransferase upregulation, but markedly suppressed autophagy and induced neuronal apoptosis/necrosis in vivo and in vitro. Additionally, we found that ARRB1 interacted with BECN1/Beclin 1 and PIK3C3/Vps34, 2 major components of the BECN1 autophagic core complex, under the OGD condition but not normal conditions in neurons. Finally, deletion of Arrb1 impaired the interaction between BECN1 and PIK3C3, which is a critical event for autophagosome formation upon ischemic stress, and markedly reduced the kinase activity of PIK3C3. These findings reveal a neuroprotective role for ARRB1, in the context of cerebral ischemia, centered on the regulation of BECN1-dependent autophagosome formation.  相似文献   

17.
The study of α4β2 nicotinic receptors has provided new indications in the treatment of pain. Efforts have been made to explore new α4β2 nicotinic receptor agonists, including TC-2559, as antinociceptive drugs. In this study, we discovered a set of novel epibatidine analogs with strong binding affinities to the α4β2 nicotinic receptors. Among these compounds, C-159, C-163, and C-9515 attenuated formalin-induced nociceptive responses in mice; C-9515 caused the most potent analgesic effect, which was blocked by mecamylamine, a non-selective nicotinic receptor antagonist. Furthermore, C-9515 potently inhibited chronic constriction injury(CCI)-induced neuropathic pain in rats, which was sensitive to DHβE, a selective α4β2 subtype antagonist,indicating that its analgesic effect was mediated by the activation of the α4β2 nicotinic receptors. In conclusion, the epibatidine analog C-9515 was found to be a potent α4β2 nicotinic receptor agonist with potent analgesic function, which demonstrated potential for the further exploration of its druggability.  相似文献   

18.
Previous studies have revealed the elevated serum levels of High-mobility group box-1(HMGB1) and the interferon-γ (IFN-γ)-induced proliferation of renal mesangial cells in patients or experimental animals with systemic lupus erythematosus (SLE). However, it is still not elucidated whether HMGB1 involves in the pathogenesis of lupus nephritis (LN) and mediates IFN-γ-induced mesangial cell proliferation. Therefore, in the present study we demonstrated HMGB1 mRNA and protein levels were increased in the glomeruli of LN patients and BXSB mice. HMGB1 increased the proliferation index of mouse mesangial cells (MMC) that was accompanied with the up-regulation of cyclin D1, CDK4 and the down-regulation of p16, subsequently promoting the transition from the G0/G1 to S stage. Inhibition of HMGB1 by a specific short hairpin RNA vector prevented cyclin D1/CDK4/p16 up-regulation and attenuated IFN-γ-induced MMC cell proliferation and PCNA (proliferating cell nuclear antigen, PCNA) expression. These findings indicate that HMGB1 mediates IFN-γ-induced cell proliferation in MMC cells through regulation of cyclin D1/CDK4/p16 pathway and promoting the cell cycle transition from G1 to S stage.  相似文献   

19.
Expression of interleukin-1 receptor type II (IL1R2), a decoy receptor for pro-inflammatory interleukin 1 (IL-1), is enhanced by chronic exposure of the human uroepithelial cell line HUC-1 to arsenite. To explore the function of IL1R2, we ectopically expressed IL1R2 in HUC-1 cells. IL1R2 overexpression results in changes in cell morphology, actin rearrangement, and promoted cell migration. Ectopic expression of IL1R2 specifically blocked exogenous IL-1β signaling but increased expression of the precursor form of IL-1α (pIL-1α) and its downstream targets, including interleukin 6 (IL-6), interleukin 8 (IL-8), and type I collagen α1 (COL1A1). However, depleting gene expression using small RNA interference specific to either pIL-1α or COL1A1, but not IL-6 or IL-8, significantly attenuated the migration of IL1R2-overexpressing cells. Furthermore, IL1R2 overexpression was associated with enhanced expression of Smad-interacting protein 1 (SIP-1) and reduced expression of E-cadherin. Because SIP-1 is a repressor of COL1A1-induced E-cadherin expression, the present results suggest that IL1R2 overexpression is likely through activation of the pIL-1α pathway to enhance cell migration.  相似文献   

20.
Acquisition of metastatic potential is accompanied by changes in cell surface N-glycosylation. One of the best-studied changes is increased expression of N-acetylglucosaminyltransferase V enzyme (GnT-V) and its products, β1,6-branched N-linked oligosaccharides, observed in the tumorigenesis of many cancers. In this study we demonstrate that during the transition from the vertical growth phase (VGP) (WM793 cell line) to the metastatic stage (WM1205Lu line), β1,6 glycosylation of melanoma cell surface proteins increases as a consequence of elevated expression of the GnT-V-encoding Mgat-5 gene. Treatment with swainsonine led to reduced cell motility on fibronectin in both cell lines; the effect was stronger in metastatic cells, probably due to the higher content of GlcNAc β1,6-branched glycans on the main fibronectin receptors – integrins α5β1 and α3β1. Our results show that GlcNAc β1,6 N-glycosylation of cell surface receptors, which increases with the aggressiveness of melanoma cells, is an important factor influencing melanoma cell migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号