首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 991 毫秒
1.
4-Methylumbelliferone (4-MU) is described as a selective inhibitor of hyaluronan (HA) production. It is thought that 4-MU depletes UDP-glucuronic acid (UDP-GlcUA) substrate for HA synthesis and also suppresses HA-synthase expression. The possibility that 4-MU exerts at least some of its actions via regulation of UDP-glucose dehydrogenase (UGDH), a key enzyme required for both HA and sulphated-glycosaminoglycan (sGAG) production, remains unexplored. We therefore examined the effects of 4-MU on basal and retroviral UGDH-driven HA and sGAG release in cells derived from chick articular cartilage and its influence upon UGDH protein and mRNA expression and HA and sGAG production. We found that 4-MU: i) suppressed UGDH mRNA and protein expression and chondrogenic matrix accumulation in chick limb bud micromass culture, ii) significantly reduced both HA and sGAG production and iii) more selectively reversed the potentiating effects of UGDH overexpression on the production of HA than sGAG. Understanding how GAG synthesis is controlled and the mechanism of 4-MU action may inform its future clinical success.  相似文献   

2.
UDP-glucose dehydrogenase (UGDH) catalyzes two oxidations of UDP-glucose to yield UDP-glucuronic acid. Pathological over-production of extracellular matrix components may be linked to the availability of UDP-glucuronic acid, therefore UGDH is a potential therapeutic target. RNA interference (RNAi) has been adapted to knock down the expression of human UGDH. A UGDH siRNA plasmid was constructed using a pRNA-U6.1/Neo vector and transfected into breast cancer cells, ZR-75-1, with an efficiency of up to 50%. Western blot analysis showed that the UGDH expression was efficiently knocked down at protein levels by RNAi in ZR-75-1 cells.  相似文献   

3.
Glycosaminoglycans (GAGs) are critical for extracellular matrix (ECM) integrity in cartilage but mechanisms regulating their synthesis are not defined. UDP‐glucose dehydrogenase (UGDH) catalyses UDP‐glucose oxidation to UDP‐glucuronic acid, an essential monosaccharide in many GAGs. Our previous studies in articular surface (AS) cells from embryonic joints have established pivotal roles for mitogen‐activated protein kinases (MAPK) in synthesis of the unsulfated GAG, hyaluronan (HA). We investigated the functional significance of UGDH in GAG production and chondrogenesis, and determined roles for MEK–ERK and p38MAPK pathways in regulating UGDH expression and function. Inhibitors of MEK and p38MAPK reduced UGDH protein in AS cells. Treatment with TGF‐β (archetypal growth factor) increased UGDH expression, sulfated (s)‐GAG/HA release and pericellular matrix formation in a p38MAPK‐dependent manner. Retroviral overexpression of UGDH augmented HA/sGAG release and pericellular matrix elaboration, which were blocked by inhibiting MEK but not p38MAPK. UGDH overexpression increased cartilage nodule size in bone marrow culture, promoted chondrogenesis in limb bud micromass culture and selectively suppressed medium HA levels and modified GAG sulfation, as assessed by FACE analysis. Our data provide evidence that: (i) TGF‐β regulates UGDH expression via p38MAPK to modulate sGAG/HA secretion, (ii) MEK–ERK, but not p38MAPK facilitates UGDH‐induced HA and sGAG release, and (iii) increased UGDH expression promotes chondrogenesis directly and differential modifies GAG levels and sulfation. These results indicate a more diverse role for UGDH in the support of selective GAG production than previously described. Factors regulating UGDH may provide novel candidates for restoring ECM integrity in degenerative cartilage diseases, such as osteoarthritis.Arthritis Research Campaign. J. Cell. Physiol. 226: 749–761, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
UDP-glucose dehydrogenase (UGDH) catalyzes two oxidations of UDP-glucose to yield UDP-glucuronic acid. Pathological overproduction of extracellular matrix components may be linked to the availability of UDP-glucuronic acid; therefore UGDH is an intriguing therapeutic target. Specific inhibition of human UGDH requires detailed knowledge of its catalytic mechanism, which has not been characterized. In this report, we have cloned, expressed, and affinity-purified the human enzyme and determined its steady state kinetic parameters. The human enzyme is active as a hexamer with values for Km and Vmax that agree well with those reported for a bovine homolog. We used crystal coordinates for Streptococcus pyogenes UGDH in complex with NAD+ cofactor and UDP-glucose substrate to generate a model of the enzyme active site. Based on this model, we selected Cys-276 and Lys-279 as likely catalytic residues and converted them to serine and alanine, respectively. Enzymatic activity of C276S and K279A point mutants was not measurable under normal assay conditions. Rate constants measured over several hours demonstrated that K279A continued to turn over, although 250-fold more slowly than wild type enzyme. C276S, however, performed only a single round of oxidation, indicating that it is essential for the second oxidation. This result is consistent with the postulated role of Cys-276 as a catalytic residue and supports its position in the reaction mechanism for the human enzyme. Lys-279 is likely to have a role in positioning active site residues and in maintaining the hexameric quaternary structure.  相似文献   

5.
UDP-glucose dehydrogenase (UGDH) supplies the cell with UDP-glucuronic acid (UDP-GlcUA), a precursor of glycosaminoglycan and proteoglycan synthesis. Here we reported the cloning and the characterization of the UGDH from the amphibian Xenopus laevis that is one of the model organisms for developmental biology. We found that X. laevis UGDH (xUGDH) maintained a very high degree of similarity with other known UGDH sequences both at the genomic and the protein levels. Also its kinetic parameters are similar to those of UGDH from other species. During X. laevis development, UDGH is always expressed but clearly increases its mRNA levels at the tail bud stage (i.e. 30 h post-fertilization). This result fits well with our previous observation that hyaluronan, a glycosaminoglycan that is synthesized using UDP-GlcUA and UDP-N-acetylglucosamine, is abundantly detected at this developmental stage. The expression of UGDH was found to be related to hyaluronan synthesis. In human smooth muscle cells the overexpression of xUGDH or endogenous abrogation of UGDH modulated hyaluronan synthesis specifically. Our findings were confirmed by in vivo experiments where the silencing of xUGDH in X. laevis embryos decreased glycosaminoglycan synthesis causing severe embryonic malformations because of a defective gastrulation process.  相似文献   

6.
UDP-glucose dehydrogenase (UGDH) catalyzes the synthesis of UDP-glucuronic acid from UDP-glucose resulting in the formation of proteoglycans that are involved in promoting normal cellular growth and migration. Overproduction of proteoglycans has been implicated in the progression of certain epithelial cancers. Here, human UGDH (hUGDH) was purified and crystallized from a solution of 0.2 M ammonium sulfate, 0.1 M Na cacodylate, pH 6.5, and 21% PEG 8000. Diffraction data were collected to a resolution of 2.8 A. The crystal belongs to the orthorhombic space group P2(1)2(1)2(1) with unit-cell parameters a = 173.25, b = 191.16, c = 225.94 A, and alpha = beta = gamma = 90.0 degrees. Based on preliminary analysis of the diffraction data, we propose that the biological unit of hUGDH is a tetramer.  相似文献   

7.
8.

Objectives

To use permeabilized cells of the fission yeast, Schizosaccharomyces pombe, that expresses human UDP-glucose 6-dehydrogenase (UGDH, EC 1.1.1.22), for the production of UDP-glucuronic acid from UDP-glucose.

Results

In cell extracts no activity was detected. Therefore, cells were permeabilized with 0.3 % (v/v) Triton X-100. After washing away all low molecular weight metabolites, the permeabilized cells were directly used as whole cell biocatalyst. Substrates were 5 mM UDP-glucose and 10 mM NAD+. Divalent cations were not added to the reaction medium as they promoted UDP-glucose hydrolysis. With this reaction system 5 mM UDP-glucose were converted into 5 mM UDP-glucuronic acid within 3 h.

Conclusions

Recombinant permeabilized cells of S. pombe can be used to synthesize UDP-glucuronic acid with 100 % yield and selectivity.
  相似文献   

9.

Background

Hyaluronan (HA) a glycosaminoglycan, is capable of transmitting extracellular matrix derived signals to regulate cellular functions. In this study, we investigated whether the changes in HT1080 and B6FS fibrosarcoma cell lines HA metabolism induced by basic fibroblast growth factor (bFGF) are correlated to their migration.

Methods

Real-time PCR, in vitro wound healing assay, siRNA transfection, enzyme digestions, western blotting and immunofluorescence were utilized.

Results

bFGF inhibited the degradation of HA by decreasing hyaluronidase-2 expression in HT1080 cells (p = 0.0028), increased HA-synthase-1 and -2 expression as we previously found and enhanced high molecular weight HA deposition in the pericellular matrix. Increased endogenous HA production (p = 0.0022) and treatment with exogenous high molecular weight HA (p = 0.0268) correlated with a significant decrease of HT1080 cell migration capacity. Transfection with siHAS2 and siHAS1 showed that mainly HAS1 synthesized high molecular weight HA regulates HT1080 cell motility. Induced degradation of the HA content by hyaluronidase treatment and addition of low molecular weight HA, resulted in a significant stimulation of HT1080 cells' motility (p < 0.01). In contrast, no effects on B6FS fibrosarcoma cell motility were observed.

Conclusions

bFGF regulates, in a cell-specific manner the migration capability of fibrosarcoma cells by modulating their HA metabolism.HA metabolism is suggested to be a potential therapeutic target in fibrosarcoma.  相似文献   

10.
UDP-glucose dehydrogenase (UGDH) catalyzes a two-step NAD(+)-dependent oxidation of UDP-glucose to produce UDP-glucuronic acid, which is a common substrate for the biosynthesis of exopolysaccharide. Searching the Pseudomonas aeruginosa PAO1 genome data base for a UGDH has helped identify two open reading frames, PA2022 and PA3559, which may encode a UGDH. To elucidate their enzymatic identity, the two genes were cloned and overexpressed in Escherichia coli, and the recombinant proteins were purified. Both the gene products are active as dimers and are capable of utilizing UDP-glucose as a substrate to generate UDP-glucuronic acid. The K(m) values of PA2022 and PA3559 for UDP-glucose are approximately 0.1 and 0.4 mM, whereas the K(m) values for NAD(+) are 0.5 and 2.0 mM, respectively. Compared with PA3559, PA2022 exhibits broader substrate specificity, utilizing TDP-glucose and UDP-N-acetylglucosamine with one-third the velocity of that with UDP-glucose. The PA2022 mutant and PA2022-PA3559 double mutant, but not the PA3559 mutant, are more susceptible to chloramphenicol, cefotaxime, and ampicillin. The PA3559 mutant, however, shows a reduced resistance to polymyxin B compared with wild type PAO1. Finally, real time PCR analysis indicates that PA3559 is expressed primarily in low concentrations of Mg(2+), which contrasts with the constitutive expression of PA2022. Although both the enzymes catalyze the same reaction, their enzymatic properties and gene expression profiles indicate that they play distinct physiological roles in P. aeruginosa, as reflected by different phenotypes displayed by the mutants.  相似文献   

11.
Hyaluronan (HA) is a glycosaminoglycan present in most tissue microenvironments that can modulate many cell behaviors, including proliferation, migration, and adhesive proprieties. In contrast with other glycosaminoglycans, which are synthesized in the Golgi, HA is synthesized at the plasma membrane by one or more of the three HA synthases (HAS1–3), which use cytoplasmic UDP-glucuronic acid and UDP-N-acetylglucosamine as substrates. Previous studies revealed the importance of UDP-sugars for regulating HA synthesis. Therefore, we analyzed the effect of UDP-GlcNAc availability and protein glycosylation with O-linked N-acetylglucosamine (O-GlcNAcylation) on HA and chondroitin sulfate synthesis in primary human aortic smooth muscle cells. Glucosamine treatment, which increases UDP-GlcNAc availability and protein O-GlcNAcylation, increased synthesis of both HA and chondroitin sulfate. However, increasing O-GlcNAcylation by stimulation with O-(2-acetamido-2-deoxy-d-glucopyranosylidene)amino-N-phenylcarbamate without a concomitant increase of UDP-GlcNAc increased only HA synthesis. We found that HAS2, the main synthase in aortic smooth muscle cells, can be O-GlcNAcylated on serine 221, which strongly increased its activity and its stability (t½ >5 h versus ∼17 min without O-GlcNAcylation). S221A mutation prevented HAS2 O-GlcNAcylation, which maintained the rapid turnover rate even in the presence of GlcN and increased UDP-GlcNAc. These findings could explain the elevated matrix HA observed in diabetic vessels that, in turn, could mediate cell dedifferentiation processes critical in vascular pathologies.  相似文献   

12.
Analysis of the nucleotide sequence of a 1592 bp region of Acetobacter xylinum genomic DNA involved in acetan biosynthesis revealed the presence of an open-reading frame (aceM) encoding a protein of 449 amino acids with a molecular weight of 48.5 kDa. The deduced amino acid sequence of aceM displayed high homology to the protein sequences of genes encoding UDP-glucose dehydrogenase (UGDH) activities from other organisms. AceM is likely to encode the UGDH involved in the biosynthesis of UDP-glucuronic acid required for acetanbiosynthesis. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

13.
14.
Hwang EY  Huh JW  Choi MM  Choi SY  Hong HN  Cho SW 《FEBS letters》2008,582(27):3793-3797
We have examined polyphenols as potential inhibitors of UDP-glucose dehydrogenase (UGDH) activity. Gallic acid and quercetin decreased specific activities of UGDH and inhibited the proliferation of MCF-7 human breast cancer cells. Western blot analysis showed that gallic acid and quercetin did not affect UGDH protein expression, suggesting that UGDH activity is inhibited by polyphenols at the post-translational level. Kinetics studies using human UGDH revealed that gallic acid was a non-competitive inhibitor with respect to UDP-glucose and NAD+. In contrast, quercetin showed a competitive inhibition and a mixed-type inhibition with respect to UDP-glucose and NAD+, respectively. These results indicate that gallic acid and quercetin are effective inhibitors of UGDH that exert strong antiproliferative activity in breast cancer cells.  相似文献   

15.
UDP-glucose dehydrogenase (UGDH) is an enzyme catalyzing the conversion of UDP-glucose to UDP-glucuronic acid. Site-directed mutagenesis studies have revealed that human UGDH (hUGDH) has distinct oligomeric states that vary with different point mutations. In this study we have investigated how the changes in the oligomer-forming propensity may be involved in the thermal motion of wild-type hUGDH and its mutants, using normal mode analysis (NMA). Our results show that the perturbation caused by the mutation of a residue at a considerably distant location from the oligomeric interfaces is preferentially distributed throughout specific sites, especially the large flexible regions in the hUGDH structure, thereby changing the motional fluctuation pattern at the oligomeric interfaces. A large-magnitude cooperative motion at the oligomeric interfaces is a critical factor in interfering with the hexamer formation of the enzyme. In particular, structural stability at the dimeric interface is necessary to retain the hexameric structure of hUGDH.  相似文献   

16.
Cell migration is a key event in the invertebrate immuno-defense system. Microbial products like lipopolysacharide (LPS) and formyl-methyl-leucyl-phenylalanine (fMLP) promote cell recruitment to sites of infection. In mammals, complement activation by factors such as zymosan induces C5a production, which influences leukocyte migration. The endogenous factor hyaluronic acid (HA), an extracellular matrix component, also promotes cell migration through its receptor CD44. We evaluated whether coelomocytes from the sipunculan worm T. petricola migrated towards LPS, fMLP, or zymosan treated plasma (ZTP) and if HA was involved in coelomocyte migration and adhesion. We also evaluated if antibodies specific for mouse HA receptor CD44 inhibited any of the effects induced by HA. Using microchemotaxis chambers we found that coelomocytes migrated towards exogenously and endogenously derived chemoattractants. We also observed that HA was a potent chemotactic signal and that coelomocytes adhered strongly to plates coated with LMW-HA but not with HMW-HA. In addition we found that these HA mediated effects were blocked by the monoclonal antibody IM7 directed to mouse CD44, suggesting that a CD44-like cross-reactive antigen might play a role in HA mediated coelomocyte locomotion.  相似文献   

17.

Background

UDP-glucose dehydrogenase (UGDH) is the sole enzyme that catalyzes the conversion of UDP-glucose to UDP-glucuronic acid. The product is used in xenobiotic glucuronidation in hepatocytes and in the production of proteoglycans that are involved in promoting normal cellular growth and migration. Overproduction of proteoglycans has been implicated in the progression of certain epithelial cancers, while inhibition of UGDH diminished tumor angiogenesis in vivo. A better understanding of the conformational changes occurring during the UGDH reaction cycle will pave the way for inhibitor design and potential cancer therapeutics.

Methodology

Previously, the substrate-bound of UGDH was determined to be a symmetrical hexamer and this regular symmetry is disrupted on binding the inhibitor, UDP-α-D-xylose. Here, we have solved an alternate crystal structure of human UGDH (hUGDH) in complex with UDP-glucose at 2.8 Å resolution. Surprisingly, the quaternary structure of this substrate-bound protein complex consists of the open homohexamer that was previously observed for inhibitor-bound hUGDH, indicating that this conformation is relevant for deciphering elements of the normal reaction cycle.

Conclusion

In all subunits of the present open structure, Thr131 has translocated into the active site occupying the volume vacated by the absent active water and partially disordered NAD+ molecule. This conformation suggests a mechanism by which the enzyme may exchange NADH for NAD+ and repolarize the catalytic water bound to Asp280 while protecting the reaction intermediates. The structure also indicates how the subunits may communicate with each other through two reaction state sensors in this highly cooperative enzyme.  相似文献   

18.
19.
Human UDP-glucose dehydrogenase (UGDH) is a homohexameric enzyme that catalyzes two successive oxidations of UDP-glucose to yield UDP-glucuronic acid, an essential precursor for matrix polysaccharide and proteoglycan synthesis. We previously used crystal coordinates for Streptococcus pyogenes UGDH to generate a model of the human enzyme active site. In the studies reported here, we have used this model to identify three putative active site residues: lysine 220, aspartate 280, and lysine 339. Each residue was site-specifically mutagenized to evaluate its importance for catalytic activity and maintenance of hexameric quaternary structure. Alteration of lysine 220 to alanine, histidine, or arginine significantly impaired enzyme function. Assaying activity over longer time courses revealed a plateau after reduction of a single equivalent of NAD+ in the alanine and histidine mutants, whereas turnover continued in the arginine mutant. Thus, one role of this lysine may be to stabilize anionic transition states during substrate conversion. Mutation of aspartate 280 to asparagine was also severely detrimental to catalysis. The relative position of this residue within the active site and dependence of function on acidic character point toward a critical role for aspartate 280 in activation of the substrate and the catalytic cysteine. Finally, changing lysine 339 to alanine yielded the wild-type Vmax, but a 165-fold decrease in affinity for UDP-glucose. Interestingly, gel filtration of this substrate-binding mutant also determined it was a dimer, indicating that hexameric quaternary structure is not critical for catalysis. Collectively, this analysis has provided novel insights into the complex catalytic mechanism of UGDH.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号