首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Derived from any somatic cell type and possessing unlimited self-renewal and differentiation potential, induced pluripotent stem cells (iPSCs) are poised to revolutionize stem cell biology and regenerative medicine research, bringing unprecedented opportunities for treating debilitating human diseases. To overcome the limitations associated with safety, efficiency, and scalability of traditional iPSC derivation, expansion, and differentiation protocols, biomaterials have recently been considered. Beyond addressing these limitations, the integration of biomaterials with existing iPSC culture platforms could offer additional opportunities to better probe the biology and control the behavior of iPSCs or their progeny in vitro and in vivo. Herein, we discuss the impact of biomaterials on the iPSC field, from derivation to tissue regeneration and modeling. Although still exploratory, we envision the emerging combination of biomaterials and iPSCs will be critical in the successful application of iPSCs and their progeny for research and clinical translation.  相似文献   

2.
Alzheimer’s disease(AD)is a progressive neurodegenerative disease in which patients exhibit gradual loss of memory that impairs their ability to learn or carry out daily tasks.Diagnosis of AD is difficult,particularly in early stages of the disease,and largely consists of cognitive assessments,with only one in four patients being correctly diagnosed.Development of novel therapeutics for the treatment of AD has proved to be a lengthy,costly and relatively unproductive process with attrition rates of90%.As a result,there are no cures for AD and few treatment options available for patients.Therefore,there is a pressing need for drug discovery platforms that can accurately and reproducibly mimic the AD phenotype and be amenable to high content screening applications.Here,we discuss the use of induced pluripotent stem cells(iPSCs),which can be derived from adult cells,as a method of recapitulation of AD phenotype in vitro.We assess their potential use in high content screening assays and the barriers that exist to realising their full potential in predictive efficacy,toxicology and disease modelling.At present,a number of limitations need to be addressed before the use of iPSC technology can be fully realised in AD therapeutic applications.However,whilst the use of AD-derived iPSCs in drug discovery remains a fledgling field,it is one with immense potential that is likely to reach fruition within the next few years.  相似文献   

3.
Insulin resistance(IR)is associated with several metabolic disorders,including type 2 diabetes(T2D).The development of IR in insulin target tissues involves genetic and acquired factors.Persons at genetic risk for T2D tend to develop IR several years before glucose intolerance.Several rodent models for both IR and T2D are being used to study the disease pathogenesis;however,these models cannot recapitulate all the aspects of this complex disorder as seen in each individual.Human pluripotent stem cells(hPSCs)can overcome the hurdles faced with the classical mouse models for studying IR.Human induced pluripotent stem cells(hiPSCs)can be generated from the somatic cells of the patients without the need to destroy a human embryo.Therefore,patient-specific hiPSCs can generate cells genetically identical to IR individuals,which can help in distinguishing between genetic and acquired defects in insulin sensitivity.Combining the technologies of genome editing and hiPSCs may provide important information about the genetic factors underlying the development of different forms of IR.Further studies are required to fill the gaps in understanding the pathogenesis of IR and diabetes.In this review,we summarize the factors involved in the development of IR in the insulin-target tissues leading to diabetes.Also,we highlight the use of hPSCs to understand the mechanisms underlying the development of IR.  相似文献   

4.
Recent advances in the study of human hepatocytes derived from induced pluripotent stem cells (iPSC) represent new promises for liver disease study and drug discovery. Human hepatocytes or hepatocyte-like cells differentiated from iPSC recapitulate many functional properties of primary human hepatocytes and have been demonstrated as a powerful and efficient tool to model human liver metabolic diseases and facilitate drug development process. In this review, we summarize the recent progress in this field and discuss the future perspective of the application of human iPSC derived hepatocytes.  相似文献   

5.
人类诱导多能干细胞(induced pluripotent stem cells,iPS细胞)的建立被公认为目前最重要的科技进展之一。iPS细胞在动物疾病模型上的成功治疗,病患特异性iPS细胞的研究及iPS细胞的定向分化研究将有可能使人们避开治疗性克隆的伦理和技术障碍,给人类疾病的干细胞治疗带来光明的前景。本文从iPS细胞的诱导策略和方法,来源细胞及筛选、重编程机制的研究现状、应用前景以及研究中存在的问题等方面对其作一综述和讨论。  相似文献   

6.
7.
8.
Induced pluripotent stem (iPS) cells have considerable promise as a novel tool for modelling human disease and for drug discovery. While the generation of disease-specific iPS cells has become routine, realizing the potential of iPS cells in disease modelling poses challenges at multiple fronts. Such challenges include selecting a suitable disease target, directing the fate of iPS cells into symptom-relevant cell populations, identifying disease-related phenotypes and showing reversibility of such phenotypes using genetic or pharmacological approaches. Finally, the system needs to be scalable for use in modern drug discovery. Here, we will discuss these points in the context of modelling familial dysautonomia (FD, Riley-Day syndrome, hereditary sensory and autonomic neuropathy III (HSAN-III)), a rare genetic disorder in the peripheral nervous system. We have demonstrated three disease-specific phenotypes in FD-iPS-derived cells that can be partially rescued by treating cells with the plant hormone kinetin. Here, we will discuss how to use FD-iPS cells further in high throughput drug discovery assays, in modelling disease severity and in performing mechanistic studies aimed at understanding disease pathogenesis. FD is a rare disease but represents an important testing ground for exploring the potential of iPS cell technology in modelling and treating human disease.  相似文献   

9.
Mesenchymal stem cells (MSCs) have received significant attention in recent years due to their large potential for cell therapy. Indeed, they secrete a wide variety of immunomodulatory factors of interest for the treatment of immune-related disorders and inflammatory diseases. MSCs can be extracted from multiple tissues of the human body. However, several factors may restrict their use for clinical applications: the requirement of invasive procedures for their isolation, their limited numbers, and their heterogeneity according to the tissue of origin or donor. In addition, MSCs often present early signs of replicative senescence limiting their expansion in vitro, and their therapeutic capacity in vivo. Due to the clinical potential of MSCs, a considerable number of methods to differentiate induced pluripotent stem cells (iPSCs) into MSCs have emerged. iPSCs represent a new reliable, unlimited source to generate MSCs (MSCs derived from iPSC, iMSCs) from homogeneous and well-characterized cell lines, which would relieve many of the above mentioned technical and biological limitations. Additionally, the use of iPSCs prevents some of the ethical concerns surrounding the use of human embryonic stem cells. In this review, we analyze the main current protocols used to differentiate human iPSCs into MSCs, which we classify into five different categories: MSC Switch, Embryoid Body Formation, Specific Differentiation, Pathway Inhibitor, and Platelet Lysate. We also evaluate common and method-specific culture components and provide a list of positive and negative markers for MSC characterization. Further guidance on material requirements to produce iMSCs with these methods and on the phenotypic features of the iMSCs obtained is added. The information may help researchers identify protocol options to design and/or refine standardized procedures for large-scale production of iMSCs fitting clinical demands.  相似文献   

10.
Human cell types affected by retinal diseases(such as age-related macular degeneration or retinitis pimentosa) are limited in cell number and of reduced accessibility. As a consequence, their isolation for in vitro studies of disease mechanisms or for drug screening efforts is fastidious. Human pluripotent stem cells(h PSCs), either of embryonic origin or through reprogramming of adult somatic cells,represent a new promising way to generate models of human retinopathies, explore the physiopathological mechanisms and develop novel therapeutic strategies. Disease-specific human embryonic stem cells were the first source of material to be used to study certain disease states. The recent demonstration that human somatic cells, such as fibroblasts or blood cells, can be genetically converted to induce pluripotent stem cells together with the continuous improvement of methods to differentiate these cells into disease-affected cellular subtypes opens new perspectives to model and understand a large number of human pathologies, including retinopathies. This review focuses on the added value of h PSCs for the disease modeling of human retinopathies and the study of their molecular pathological mechanisms. We also discuss the recent use of these cells for establishing the validation studies for therapeutic intervention and for the screening of large compound libraries to identify candidate drugs.  相似文献   

11.
Human induced pluripotent stem (iPS) cells obtained by reprogramming technology are a source of great hope, not only in terms of applications in regenerative medicine, such as cell transplantation therapy, but also for modeling human diseases and new drug development. In particular, the production of iPS cells from the somatic cells of patients with intractable diseases and their subsequent differentiation into cells at affected sites (e.g., neurons, cardiomyocytes, hepatocytes, and myocytes) has permitted the in vitro construction of disease models that contain patient‐specific genetic information. For example, disease‐specific iPS cells have been established from patients with neuropsychiatric disorders, including schizophrenia and autism, as well as from those with neurodegenerative diseases, including Parkinson's disease and Alzheimer's disease. A multi‐omics analysis of neural cells originating from patient‐derived iPS cells may thus enable investigators to elucidate the pathogenic mechanisms of neurological diseases that have heretofore been unknown. In addition, large‐scale screening of chemical libraries with disease‐specific iPS cells is currently underway and is expected to lead to new drug discovery. Accordingly, this review outlines the progress made via the use of patient‐derived iPS cells toward the modeling of neurological disorders, the testing of existing drugs, and the discovery of new drugs.

  相似文献   


12.
Recent advances in stem cell technology have generated enthusiasm for their potential to study and treat a diverse range of human disease. Pluripotent human stem cells for therapeutic use may, in principle, be obtained from two sources: embryonic stem cells (hESCs), which are capable of extensive self-renewal and expansion and have the potential to differentiate into any somatic tissue, and induced pluripotent stem cells (iPSCs), which are derived from differentiated tissue such as adult skin fibroblasts and appear to have the same properties and potential, but their generation is not dependent upon a source of embryos. The likelihood that clinical transplantation of hESC- or iPSC-derived tissues from an unrelated (allogeneic) donor that express foreign human leucocyte antigens (HLA) may undergo immunological rejection requires the formulation of strategies to attenuate the host immune response to transplanted tissue. In clinical practice, individualized iPSC tissue derived from the intended recipient offers the possibility of personalized stem cell therapy in which graft rejection would not occur, but the logistics of achieving this on a large scale are problematic owing to relatively inefficient reprogramming techniques and high costs. The creation of stem cell banks comprising HLA-typed hESCs and iPSCs is a strategy that is proposed to overcome the immunological barrier by providing HLA-matched (histocompatible) tissue for the target population. Estimates have shown that a stem cell bank containing around 10 highly selected cell lines with conserved homozygous HLA haplotypes would provide matched tissue for the majority of the UK population. These simulations have practical, financial, political and ethical implications for the establishment and design of stem cell banks incorporating cell lines with HLA types that are compatible with different ethnic populations throughout the world.  相似文献   

13.
吴昭  成璐  肖磊 《生命科学》2009,(5):658-662
胚胎干细胞(embryonic stem cells,ESC)在人类遗传病学研究、疾病模型建立、器官再生以及动物物种改良和定向变异等方面的地位是其他类型的细胞不可取代的。但是,由于实验技术和体外培养条件的限制,除了小鼠、恒河猴和人之外,大鼠、猪、牛、羊等其他哺乳动物的ES细胞系被证明很难获得。先后有多个研究小组报道了他们利用新兴的诱导多能干细胞(induced pluripotent stem cells,iPS细胞)技术成功建立大鼠和猪的iPS细胞系的研究成果。迄今为止,这两个物种是在未成功建立ES细胞系之前利用iPS技术建立多能干细胞系的成功范例。这些研究对于那些还未建立ES细胞的物种建立多能干细胞系提供了一种新的方案,也将给这些物种的胚胎干细胞的建立、基因修饰动物的产生以及人类医疗事业的促进和发展带来新的希望。  相似文献   

14.
15.
Recent advances in bioengineering have enabled cell culture systems that more closely mimic the native cellular environment. Here, we demonstrated that human induced pluripotent stem cell (iPSC)-derived myogenic progenitors formed highly-aligned myotubes and contracted when seeded on two-dimensional micropatterned platforms. The differentiated cells showed clear nuclear alignment and formed elongated myotubes dependent on the width of the micropatterned lanes. Topographical cues from micropatterning and physiological substrate stiffness improved the formation of well-aligned and multinucleated myotubes similar to myofibers. These aligned myotubes exhibited spontaneous contractions specifically along the long axis of the pattern. Notably, the micropatterned platforms developed bundle-like myotubes using patient-derived iPSCs with a background of Pompe disease (glycogen storage disease type II) and even enhanced the disease phenotype as shown through the specific pathology of abnormal lysosome accumulations. A highly-aligned formation of matured myotubes holds great potential in further understanding the process of human muscle development, as well as advancing in vitro pharmacological studies for skeletal muscle diseases.  相似文献   

16.
康岚  陈嘉瑜  高绍荣 《遗传》2018,40(10):825-840
近几十年是干细胞领域飞速发展的重要时期。随着中国经济实力的发展壮大,科研实力也在稳步增强,干细胞研究领域达到了国际并跑甚至领跑的水平。本文从体细胞核移植、诱导多能干细胞、单倍体多能干细胞和胚胎早期发育研究4个方面,对中国细胞重编程和干细胞领域的研究进展进行了历史性回顾,总结了中国科学家在相关领域所取得的重要科研成果。随着单细胞测序技术的发展,各种发育过程将实现更为深入的解读,干细胞的临床应用在中国也会大放异彩。  相似文献   

17.
18.
诱导多能干细胞(induced pluripotent stem cells,iPS细胞)不仅具有与胚胎干细胞(embryonic stem cell,ESC)相似的各项特性,相对于ESC,iPS细胞,尤其患者特异性iPS细胞还具有来源方便、不存在免疫排斥和伦理问题以及可以保留特定个体基因型等优点,为再生医学提供了可能的细胞来源。该文主要从心血管药物的筛选、疾病模型的建立、iPS细胞应用于心脏移植研究等方面入手,探讨了iPS细胞在心血管疾病研究和治疗中的现状和未来。  相似文献   

19.
体细胞诱导为多能干细胞的最新进展   总被引:3,自引:0,他引:3  
周一叶  曾凡一 《生命科学》2008,20(3):425-430
2007年11-12月,Cell、Science和Nature发表一系列体外诱导人类体细胞转变为多能干细胞的论文。来自日本和美国的研究小组利用慢病毒载体分别将Oct-4、Sox2、C-Myc、Klf4和Oct-4、Sox2、Nanog、Lin28两套基因转入人成纤维细胞,均获得类似ES细胞的克隆。小鼠诱导性多能干细胞已初步用于镰刀细胞性贫血的基因治疗。短短一年半,诱导性多能干细胞的研究和关注度呈现了爆炸式成长;体细胞重编程、去分化、多能干细胞来源等一系列热点问题再次成为大众瞩目的中心。  相似文献   

20.
Mice have frequently been used to model human diseases involving immune dysregulation such as autoimmune and inflammatory diseases.These models help elucidatethe mechanisms underlying the disease and in the development of novel therapies.However,if mice are deficient in certain cells and/or effectors associated with human diseases,how can their functions be investigated in this species?Mucosal-associated invariant T(MAIT)cells,a novel innate-like T cell family member,are a good example.MAIT cells are abundant in humans but scarce in laboratory mice.MAIT cells harbor an invariant T cell receptor and recognize nonpeptidic antigens vitamin B2metabolites from bacteria and yeasts.Recent studies have shown that MAIT cells play a pivotal role in human diseases such as bacterial infections and autoimmune and inflammatory diseases.MAIT cells possess granulysin,a human-specific effector molecule,but granulysin and its homologue are absent in mice.Furthermore,MAIT cells show poor proliferation in vitro.To overcome these problems and further our knowledge of MAIT cells,we have established a method to expand MAIT cells via induced pluripotent stem cells(iP SCs).In this review,we describe recent advances in the field of MAIT cell research and our approach for human disease modeling with iP SCderived MAIT cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号