首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pore-forming alpha-subunits of large conductance calcium- and voltage-activated potassium (BK) channels are encoded by a single gene that undergoes extensive alternative pre-mRNA splicing. However, the extent to which differential exon usage at a single site of splicing may confer functionally distinct properties on BK channels is largely unknown. Here we demonstrated that alternative splicing at site of splicing C2 in the mouse BK channel C terminus generates five distinct splice variants: ZERO, e20, e21(STREX), e22, and a novel variant deltae23. Splice variants display distinct patterns of tissue distribution with e21(STREX) expressed at the highest levels in adult endocrine tissues and e22 at embryonic stages of mouse development. deltae23 is not functionally expressed at the cell surface and acts as a dominant negative of cell surface expression by trapping other BK channel splice variant alpha-subunits in the endoplasmic reticulum and perinuclear compartments. Splice variants display a range of biophysical properties. e21(STREX) and e22 variants display a significant left shift (>20 mV at 1 microM [Ca2+]i) in half-maximal voltage of activation compared with ZERO and e20 as well as considerably slower rates of deactivation. Splice variants are differentially sensitive to phosphorylation by endogenous cAMP-dependent protein kinase; ZERO, e20, and e22 variants are all activated, whereas e21 (STREX) is the only variant that is inhibited. Thus alternative pre-mRNA splicing from a single site of splicing provides a mechanism to generate a physiologically diverse complement of BK channel alpha-subunits that differ dramatically in their tissue distribution, trafficking, and regulation.  相似文献   

2.

Background  

Polymorphic variants and mutations disrupting canonical splicing isoforms are among the leading causes of human hereditary disorders. While there is a substantial evidence of aberrant splicing causing Mendelian diseases, the implication of such events in multi-genic disorders is yet to be well understood. We have developed a new tool (SpliceScan II) for predicting the effects of genetic variants on splicing and cis-regulatory elements. The novel Bayesian non-canonical 5'GC splice site (SS) sensor used in our tool allows inference on non-canonical exons.  相似文献   

3.
4.

Background  

The homologous recombination (HR) pathway is vital for maintaining genomic integrity through the restoration of double-stranded breaks and interstrand crosslinks. The RAD51 paralogs (RAD51B, RAD51C, RAD51D, XRCC2, XRCC3) are essential for this process in vertebrates, and the RAD51D paralog is unique in that it participates in both HR repair and telomere maintenance. RAD51D is also known to directly interact with the RAD51C and XRCC2 proteins. Rad51d splice variants have been reported in mouse and human tissues, supportive of a role for alternative splicing in HR regulation. The present study evaluated the interaction of the Rad51d splice isoform products with RAD51C and XRCC2 and their expression patterns.  相似文献   

5.

Background  

Large-conductance, calcium-activated potassium (Maxi-K) channels are implicated in the modulation of human uterine contractions and myometrial Ca2 + homeostasis. However, the regulatory mechanism(s) governing the expression of Maxi-K channels with decreased calcium sensitivity at parturition are unclear. The objectives of this study were to investigate mRNA expression of the Maxi-K alpha subunit, and that of its splice variants, in human non-pregnant and pregnant myometrium, prior to and after labour onset, to determine whether altered expression of these splice variants is associated with decreased calcium sensitivity observed at labour onset.  相似文献   

6.
7.

Background  

Accurate selection of splice sites during the splicing of precursors to messenger RNA requires both relatively well-characterized signals at the splice sites and auxiliary signals in the adjacent exons and introns. We previously described a feature generation algorithm (FGA) that is capable of achieving high classification accuracy on human 3' splice sites. In this paper, we extend the splice-site prediction to 5' splice sites and explore the generated features for biologically meaningful splicing signals.  相似文献   

8.

Introduction  

Despite the advent of biological therapies for the treatment of rheumatoid arthritis, there is a compelling need to develop alternative therapeutic targets for nonresponders to existing treatments. Soluble receptors occur naturally in vivo, such as the splice variant of the cell surface receptor for vascular endothelial growth factor (VEGF) – a key regulator of angiogenesis in rheumatoid arthritis. Bioinformatics analyses predict that the majority of human genes undergo alternative splicing, generating proteins – many of which may have regulatory functions. The objective of the present study was to identify alternative splice variants (ASV) from cell surface receptor genes, and to determine whether the novel proteins encoded exert therapeutic activity in an in vivo model of arthritis.  相似文献   

9.
10.
11.
Molecular diversity in T-type Ca(2+) channels is produced by expression of three genes, and alternative splicing of those genes. Prompted by differences noted between rat and human Ca(v)3.3 sequences, we searched for splice variants. We cloned six variants, which are produced by splicing at exon 33 and exon 34. Expression of the variants differed between brain regions. The electrophysiological properties of the variants displayed similar voltage-dependent gating, but differed in their kinetic properties. The functional impact of splicing was inter-related, suggesting an interaction. We conclude that alternative splicing of the Ca(v)3.3 gene produces channels with distinct properties.  相似文献   

12.
Low voltage-activated T-type calcium (Ca) channels contribute to the normal development of the heart and are also implicated in pathophysiological states such as cardiac hypertrophy. Functionally distinct T-type Ca channel isoforms can be generated by alternative splicing from each of three different T-type genes (CaV3.1, CaV3.2, CaV3.3), although it remains to be described whether specific splice variants are associated with developmental states and pathological conditions. We aimed to identify and functionally characterize CaV3.2 T-type Ca channel alternatively spliced variants from newborn animals and to compare with adult normotensive and spontaneously hypertensive rats (SHR). DNA sequence analysis of full-length CaV3.2 cDNA generated from newborn heart tissue identified ten major regions of alternative splicing, the more common variants of which were analyzed by quantitative real-time PCR (qRT-PCR) and also subject to functional examination by whole-cell patch clamp. The main findings are that: (1) cardiac CaV3.2 T-type Ca channels are subject to considerable alternative splicing, (2) there is preferential expression of CaV3.2(−25) splice variant channels in newborn rat heart with a developmental shift in adult heart that results in approximately equal levels of expression of both (+25) and (−25) exon variants, (3) in the adult stage of hypertensive rats there is both an increase in overall CaV3.2 expression and a shift towards expression of CaV3.2(+25) containing channels as the predominant form and (4) alternative splicing confers a variant-specific voltage-dependent facilitation of CaV3.2 channels. We conclude that CaV3.2 alternative splicing generates significant T-type Ca channel structural and functional diversity with potential implications relevant to cardiac developmental and pathophysiological states.Key words: voltage-dependent facilitation, alternative splicing, T-type calcium channel, hypertension, cardiac hypertrophy  相似文献   

13.

Backgrond  

In the mosquito Aedes aegypti the insulin/insulin growth factor I signaling (IIS) cascade is a key regulator of many physiological processes, including reproduction. Two important reproductive events, steroidogenesis in the ovary and yolk synthesis in the fat body, are regulated by the IIS cascade in mosquitoes. The signaling molecule phosphatase and tensin homolog (PTEN) is a key inhibitor of the IIS cascade that helps modulate the activity of the IIS cascade. In Ae. aegypti, six unique splice variants of AaegPTEN were previously identified, but the role of these splice variants, particularly AaegPTEN3 and 6, were unknown.  相似文献   

14.
Low voltage-activated T-type calcium (Ca) channels contribute to the normal development of the heart and are also implicated in pathophysiological states such as cardiac hypertrophy. Functionally distinct T-type Ca channel isoforms can be generated by alternative splicing from each of three different T-type genes (CaV3.1, CaV3.2,CaV3 .3), although it remains to be described whether specific splice variants are associated with developmental states and pathological conditions. We aimed to identify and functionally characterize CaV3.2 T-type Ca channel alternatively spliced variants from newborn animals and to compare with adult normotensive and spontaneously hypertensive rats (SHR). DNA sequence analysis of full-length CaV3.2 cDNA generated from newborn heart tissue identified ten major regions of alternative splicing, the more common variants of which were analyzed by quantitative real-time PCR (qRT-PCR) and also subject to functional examination by whole-cell patch clamp. The main findings are that: (1) cardiac CaV3.2 T-type Ca channels are subject to considerable alternative splicing, (2) there is preferential expression ofCaV3 .2(-25) splice variant channels in newborn rat heart with a developmental shift in adult heart that results in approximately equal levels of expression of both (+25) and (-25) exon variants, (3) in the adult stage of hypertensive rats there is a both an increase in overallCaV3 .2 expression and a shift towards expression of CaV3.2(+25) containing channels as the predominant form, and (4) alternative splicing confers a variant-specific voltage-dependent facilitation ofCaV3 .2 channels. We conclude that CaV3.2 alternative splicing generates significant T-type Ca channel structural and functional diversity with potential implications relevant to cardiac developmental and pathophysiological states.  相似文献   

15.
BK Ca2+-activated K+ currents exhibit diverse properties across tissues. The functional variation in voltage- and Ca2+-dependent gating underlying this diversity arises from multiple mechanisms, including alternate splicing of Kcnma1, the gene encoding the pore-forming (α) subunit of the BK channel, phosphorylation of α subunits, and inclusion of β subunits in channel complexes. To address the interplay of these mechanisms in the regulation of BK currents, two native splice variants, BK0 and BKSRKR, were cloned from a tissue that exhibits dynamic daily expression of BK channel, the central circadian pacemaker in the suprachiasmatic nucleus (SCN) of mouse hypothalamus. The BK0 and BKSRKR variants differed by the inclusion of a four–amino acid alternate exon at splice site 1 (SRKR), which showed increased expression during the day. The functional properties of the variants were investigated in HEK293 cells using standard voltage-clamp protocols. Compared with BK0, BKSRKR currents had a significantly right-shifted conductance–voltage (G-V) relationship across a range of Ca2+ concentrations, slower activation, and faster deactivation. These effects were dependent on the phosphorylation state of S642, a serine residue within the constitutive exon immediately preceding the SRKR insert. Coexpression of the neuronal β4 subunit slowed gating kinetics and shifted the G-V relationship in a Ca2+-dependent manner, enhancing the functional differences between the variants. Next, using native action potential (AP) command waveforms recorded from SCN to elicit BK currents, we found that these splice variant differences persist under dynamic activation conditions in physiological ionic concentrations. AP-induced currents from BKSRKR channels were significantly reduced compared with BK0, an effect that was maintained with coexpression of the β4 subunit but abolished by the mutation of S642. These results demonstrate a novel mechanism for reducing BK current activation under reconstituted physiological conditions, and further suggest that S642 is selectively phosphorylated in the presence of SRKR.  相似文献   

16.
17.
Molecular diversity of ion channel structure and function underlies variability in electrical signaling in nerve, muscle, and non-excitable cells. Protein phosphorylation and alternative splicing of pre-mRNA are two important mechanisms to generate structural and functional diversity of ion channels. However, systematic mass spectrometric analyses of in vivo phosphorylation and splice variants of ion channels in native tissues are largely lacking. Mammalian large-conductance calcium-activated potassium (BK(Ca)) channels are tetramers of alpha subunits (BKalpha) either alone or together with beta subunits, exhibit exceptionally large single channel conductance, and are dually activated by membrane depolarization and intracellular Ca(2+). The cytoplasmic C terminus of BKalpha is subjected to extensive pre-mRNA splicing and, as predicted by several algorithms, offers numerous phospho-acceptor amino acids. Here we use nanoflow liquid chromatography tandem mass spectrometry on BK(Ca) channels affinity-purified from rat brain to analyze in vivo BKalpha phosphorylation and splicing. We found 7 splice variations and identified as many as 30 Ser/Thr in vivo phosphorylation sites; most of which were not predicted by commonly used algorithms. Of the identified phosphosites 23 are located in the C terminus, four were found on splice insertions. Electrophysiological analyses of phospho- and dephosphomimetic mutants transiently expressed in HEK-293 cells suggest that phosphorylation of BKalpha differentially modulates the voltage- and Ca(2+)-dependence of channel activation. These results demonstrate that the pore-forming subunit of BK(Ca) channels is extensively phosphorylated in the mammalian brain providing a molecular basis for the regulation of firing pattern and excitability through dynamic modification of BKalpha structure and function.  相似文献   

18.
Alternative exon splicing and reversible protein phosphorylation of large conductance calcium-activated potassium (BK) channels represent fundamental control mechanisms for the regulation of cellular excitability. BK channels are encoded by a single gene that undergoes extensive, hormonally regulated exon splicing. In native tissues BK channels display considerable diversity and plasticity in their regulation by cAMP-dependent protein kinase (PKA). Differential regulation of alternatively spliced BK channels by PKA may provide a molecular basis for the diversity and plasticity of BK channel sensitivities to PKA. Here we demonstrate that PKA activates BK channels lacking splice inserts (ZERO) but inhibits channels expressing a 59-amino acid exon at splice site 2 (STREX-1). Channel activation is dependent upon a conserved C-terminal PKA consensus motif (S869), whereas inhibition is mediated via a STREX-1 exon-specific PKA consensus site. Thus, alternative splicing acts as a molecular switch to determine the sensitivity of potassium channels to protein phosphorylation.  相似文献   

19.
The Drosophila melanogaster TipE protein is thought to be an insect sodium channel auxiliary subunit functionally analogous to the β subunits of mammalian sodium channels. Besides TipE, four TipE-homologous proteins (TEH1–4) have been identified. It has been reported that TipE and TEH1 have both common and distinct effects on the gating properties of splice variants of the Drosophila sodium channel, DmNav. However, limited information is available on the effects of TEH2, TEH3 and TEH4 on the function of DmNav channel variants. In this study, we found that TEH2 increased the amplitude of peak current, but did not alter the gating properties of three examined DmNav splice variants expressed in Xenopus oocytes. In contrast, TEH4 had no effect on peak current, yet altered the gating properties of all three channel variants. Furthermore, TEH4 enhanced persistent current and slowed sodium current decay. The effects of TEH3 on DmNav variants are similar to those of TEH4, but the data were collected from a small portion of oocytes because co-expression of TEH3 with DmNav variants generated a large leak current in the majority of oocytes examined. In addition, TEH3 and TEH4 enhanced the expression of endogenous currents in oocytes. Taken together, our results reveal distinct roles of TEH proteins in modulating the function of sodium channels and suggest that TEH proteins might provide an important layer of regulation of membrane excitability in vivo. Our results also raise an intriguing possibility of TEH3/TEH4 as auxiliary subunits of other voltage-gated ion channels besides sodium channels.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号