首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
目的观察Wnt/β-catenin信号通路是否在体外以外源性Wnt3a持续作用小鼠胚胎干细胞后被激活,并进一步调控该通路下游基因的表达。方法应用外源性Wnt3a持续作用ES-E14TG2a小鼠胚胎干细胞21d,通过细胞免疫荧光及Western Blotting检测细胞内β-catenin蛋白,以观察该蛋白的胞内积聚情况;同时QRT-PCR检测WNT下游靶标基因的表达量,采用完全随机F检验并用LSD法进行两两比较,来确定经典WNT/β-catenin信号通路是否被激活。结果ES-E14TG2a小鼠胚胎干细胞经Wnt3a连续培养21d后,β-catenin蛋白的细胞荧光明显较强,而对照组中的荧光强度较弱,说明细胞内β-catenin蛋白没有被降解而是在胞内大量积累;Western Blotting检测结果显示Wnt3a连续培养21d后ES-E14TG2a细胞内β-catenin蛋白条带明显比空白对照的蛋白条带粗;ES—E14TG2a细胞经wnt3a培养后Pitx2、Frizzled、Sox17的表达量均持续上升,Pitx2在培养7d、14d、21d分别为4.17±0.20、7.27±0.35、8.59±0.21(F=222.757,P=0.000);Frizzled在培养7d、14d、21d分别为1.01±0.06、2.93±0.22、5.44±0.30(F=302.703,P=0.000);Sox17在培养7d、14d、21d分别为8.45±0.41、18.35±0.17、34.93±0.16(F=7217.083,P=0.000);Oct4培养到7d、14d的表达量持续增加分别为1.22±0.21、1.56±0.04,而连续培养21d后Oct4基因的表达量下降为1.15±0.07(F=8.827,P=0.016)。结论Wnt3a持续作用可激活Wnt/β-catenin信号通路,并调控下游基因的表达。  相似文献   

2.
3.
4.
5.
Sulforaphane (SFN) is a natural organosulfur compound with anti‐oxidant and anti‐inflammation properties. The objective of this study is to investigate the effect of SFN on the proliferation and differentiation of neural stem cells (NSC). NSCs were exposed to SFN at the concentrations ranging from 0.25 to 10 µM. Cell viability was evaluated with MTT assay and lactate dehydogenase (LDH) release assay. The proliferation of NSCs was evaluated with neurosphere formation assay and Ki‐67 staining. The level of Tuj‐1 was evaluated with immunostaining and Western blot to assess NSC neuronal differentiation. The expression of key proteins in the Wnt signaling pathway, including β‐catenin and cyclin D1, in response to SFN treatment or the Wnt inhibitor, DKK‐1, was determined by Western blotting. No significant cytotoxicity was seen for SFN on NSCs with SFN at concentrations of less than 10 µM. On the contrary, SFN of low concentrations stimulated cell proliferation and prominently increased neurosphere formation and NSC differentiation to neurons. SFN treatment upregulated Wnt signaling in the NSCs, whereas DKK‐1 attenuated the effects of SFN. SFN is a drug to promote NSC proliferation and neuronal differentiation when used at low concentrations. These protective effects are mediated by Wnt signaling pathway.  相似文献   

6.
BMP signaling and stem cell regulation   总被引:7,自引:0,他引:7  
Stem cells play an essential role in cellular specialization and pattern formation during embryogenesis and in tissue regeneration in adults. This is mainly due to a stem cell's ability to replenish itself (self-renewal) and, at the same time, produce differentiated progeny. Realization of these special stem cell features has changed the prospective of the field. However, regulation of stem cell self-renewal and maintenance of its potentiality require a complicated regulatory network of both extracellular cues and intrinsic programs. Understanding how signaling regulates stem cell behavior will shed light on the molecular mechanisms underlying stem cell self-renewal. In this review, we focus on comparing the progress of recent research regarding the roles of the BMP signaling pathway in different stem cell systems, including embryonic stem cells, germline stem cells, hematopoietic stem cells, and intestinal stem cells. We hope this comparison, together with a brief look at other signaling pathways, will bring a more balanced view of BMP signaling in regulation of stem cell properties, and further point to a general principle that self-renewal of stem cells may require a combination of maintenance of proliferation potential, inhibition of apoptosis, and blocking of differentiation.  相似文献   

7.
Pluripotent stem cells have the capacity to divide indefinitely and to differentiate into all somatic cells and tissue lines. They can be genetically manipulated in vitro by knocking genes in or out, and therefore serve as an excellent tool for gene function studies and for the generation of models for some human diseases. Since 1981, when the first mouse embryonic stem cell (ESC) line was generated, many attempts have been made to generate pluripotent stem cell lines from other species. Comparative characterization of ESCs from different species would help us to understand differences and similarities in the signaling pathways involved in the maintenance of pluripotency and the initiation of differentiation, and would reveal whether the fundamental mechanism controlling self-renewal of pluripotent cells is conserved across different species. This report gives an overview of research into embryonic and induced pluripotent stem cells in the rabbit, an important nonrodent species with considerable merits as an animal model for specific diseases. A number of putative rabbit ESC and induced pluripotent stem cell lines have been described. All of them expressed stem cell-associated markers and maintained apparent pluripotency during multiple passages in vitro, but none have been convincingly proven to be fully pluripotent in vivo. Moreover, as in other domestic species, the markers currently used to characterize the putative rabbit ESCs are suboptimal because recent studies have revealed that they are not always specific to the pluripotent inner cell mass. Future validation of rabbit pluripotent stem cells would benefit greatly from a validated panel of molecular markers specific to pluripotent cells of the developing rabbit embryos. Using rabbit-specific pluripotency genes may improve the efficiency of somatic cell reprogramming for generating induced pluripotent stem cells and thereby overcome some of the challenges limiting the potential of this technology.  相似文献   

8.
户小伟  劳山 《蛇志》2012,24(2):108-110
目的研究Wnt/β-catenin通路激活剂氯化锂(LiCl)对兔骨髓间充质干细胞(bone marrowmesen-chymal stem cells,BMSCs)增殖的影响。方法体外纯化培养兔BMSCs,流式细胞仪检测细胞表面抗体,以不同浓度的LiCl作用兔骨髓间充质干细胞24h后,采用Cell Counting Kit-8(CCK-8)检测各组细胞的增殖活性。结果低浓度LiCl促进兔BMSCs增殖,高浓度LiCl抑制兔BMSCs增殖。结论低浓度LiCl抑制GSK3β,模拟激活Wnt/β-catenin信号途径,从而促进细胞增殖,而高浓度LiCl增加了对细胞的毒性而抑制其增殖。  相似文献   

9.
The co-occupancy of Tcf3 with Oct4, Sox2 and Nanog on embryonic stem cell (ESC) chromatin indicated that Tcf3 has been suggested to play an integral role in a poorly understood mechanism underlying Wnt-dependent stimulation of mouse ESC self-renewal of mouse ESCs. Although the conventional view of Tcf proteins as the β-catenin-binding effectors of Wnt signalling suggested Tcf3-β-catenin activation of target genes would stimulate self-renewal, here we show that an antagonistic relationship between Wnt3a and Tcf3 on gene expression regulates ESC self-renewal. Genetic ablation of Tcf3 replaced the requirement for exogenous Wnt3a or GSK3 inhibition for ESC self-renewal, demonstrating that inhibition of Tcf3 repressor is the necessary downstream effect of Wnt signalling. Interestingly, both Tcf3-β-catenin and Tcf1-β-catenin interactions contributed to Wnt stimulation of self-renewal and gene expression, and the combination of Tcf3 and Tcf1 recruited Wnt-stabilized β-catenin to Oct4 binding sites on ESC chromatin. This work elucidates the molecular link between the effects of Wnt and the regulation of the Oct4/Sox2/Nanog network.  相似文献   

10.
选用人类胚胎干细胞系和由人类胚胎干细胞系分化来的神经干细胞系为研究对象,分析组蛋白修饰对胚胎干细胞分化过程的调控作用。得到了两种细胞系差异表达基因转录起始位点侧翼区域内八种组蛋白修饰的分布模式,以及组蛋白修饰功能簇。研究表明在两类细胞系中,八种组蛋白修饰谱分布模式一致,且呈现两种分布类型; H3K27ac,H3K4me3和H3K9ac组成的功能簇是保守的;H3K27me3,H3K36me3和H3K79me1组成的功能簇以及H3K9me3和H3K27me3组成的功能簇在胚胎干细胞向神经干细胞分化的过程中消失。结果揭示了组蛋白修饰对胚胎干细胞系向神经干细胞系分化过程的部分调控机制,为该分化过程分子调控机制的研究提供部分重要的理论基础。  相似文献   

11.
Multipotential adult mesenchymal stem cells (MSCs) are able to differentiate along several known lineages, and lineage commitment is tightly regulated through specific cellular mediators and interactions. Recent observations of a low/high bone-mass phenotype in patients expressing a loss-/gain-of-function mutation in LRP5, a coreceptor of the Wnt family of signaling molecules, suggest the importance of Wnt signaling in bone formation, possibly involving MSCs. To analyze the role of Wnt signaling in mesenchymal osteogenesis, we have profiled the expression of WNTs and their receptors, FRIZZLEDs (FZDs), and several secreted Wnt inhibitors, such as SFRPs, and examined the effect of Wnt 3a, as a representative canonical Wnt member, during MSC osteogenesis in vitro. WNT11, FZD6, SFRP2, and SFRP3 are upregulated during MSC osteogenesis, while WNT9A and FZD7 are downregulated. MSCs also respond to exogenous Wnt 3a, based on increased beta-catenin nuclearization and activation of a Wnt-responsive promoter, and the magnitude of this response depends on the MSC differentiation state. Wnt 3a exposure inhibits MSC osteogenic differentiation, with decreased matrix mineralization and reduced alkaline phosphatase mRNA and activity. Wnt 3a treatment of fully osteogenically differentiated MSCs also suppresses osteoblastic marker gene expression. The Wnt 3a effect is accompanied by increased cell number, resulting from both increased proliferation and decreased apoptosis, particularly during expansion of undifferentiated MSCs. The osteo-suppressive effects of Wnt 3a are fully reversible, i.e., treatment prior to osteogenic induction does not compromise subsequent MSC osteogenesis. The results also showed that sFRP3 treatment attenuates some of the observed Wnt 3a effects on MSCs, and that inhibition of canonical Wnt signaling using a dominant negative TCF1 enhances MSC osteogenesis. Interestingly, expression of Wnt 5a, a non-canonical Wnt member, appeared to promote osteogenesis. Taken together, these findings suggest that canonical Wnt signaling functions in maintaining an undifferentiated, proliferating progenitor MSC population, whereas non-canonical Wnts facilitate osteogenic differentiation. Release from canonical Wnt regulation is a prerequisite for MSC differentiation. Thus, loss-/gain-of-function mutations of LRP5 would perturb Wnt signaling and depress/promote bone formation by affecting the progenitor cell pool. Elucidating Wnt regulation of MSC differentiation is important for their potential application in tissue regeneration.  相似文献   

12.
Epidermal stem cells maintain development and homeostasis of mammalian epidermis throughout life. However, the molecular mechanisms involved in the proliferation and differentiation of epidermal stem cells are far from clear. In this study, we investigated the effects of Wnt3a and Wnt/β-catenin signaling on proliferation and differentiation of human fetal epidermal stem cells. We found both Wnt3a and active β-catenin, two key members of the Wnt/β-catenin signaling, were expressed in human fetal epidermis and epidermal stem cells. In addition, Wnt3a protein can promote proliferation and inhibit differentiation of epidermal stem cells in vitro culture. Our results suggest that Wnt/β-catenin signaling plays important roles in human fetal skin development and homeostasis, which also provide new insights on the molecular mechanisms of oncogenesis in human epidermis.  相似文献   

13.
高胜利  高淑红  刘丽霞 《生物磁学》2009,(20):3852-3854,F0003
目的:研究Wnt3a在诱导小鼠胚胎干细胞心肌细胞分化中的作用和原理。方法:设计不同浓度,不同成分的Wnt3a条件培养基对小鼠胚胎干细胞诱导分化,对分化细胞进行形态学鉴定,通过免疫细胞化学检测心肌肌钙蛋白-T(cTnT)的表达,通过RT.PCR检测肌球蛋白重链(ot.MHC)和肌球蛋白轻链(MLC.2v)的表达。结果:Wnt3a诱导小鼠胚胎干细胞分化为心肌样细胞,分化细胞具有自动收缩性,免疫细胞化学检测心肌肌钙蛋白.T(cTllT)表达阳性,RT.PCR检测肌球蛋白重链(d—MHC)和肌球蛋白轻链(MLC-2v)表达阳性。经典Wnt信号途径的抑制剂Frizzled一8/Fc,能够抑制Wnt3a的诱导分化作用。结论:Wnt3a通过经典Wnt信号途径诱导小鼠胚胎干细胞向心肌细胞分化。  相似文献   

14.
Embryonic stem (ES) cell is well known as a totipotent cell, which is derived from a blastcyst and has potential to differentiate into every kind of somatic cell. ES cell bears self-renewal characteristic as well as differentiation potential. ES cell bears telomerase activity to avoid telomere shortening, which is a characteristic of differentiated somatic cells. As the differentiation of ES cells proceeds, their telomerase activity is losing. However, it has not been convinced whether suppression of the telomerase activity promotes progression of ES cell differentiation. The effect of telomerase inhibitor on the differentiation potential of marmoset ES cell was assessed, counting cells expressing embryonic markers (alkaline phosphatase and TPA-1-60) under existence of a telomerase inhibitor. Telomerase inhibitor showed a promotional effect for the marmoset ES cell differentiation. This result suggests that exogenous inhibition of telomerase activity leads to induction of an early differentiation of primate ES cell.  相似文献   

15.
Stem cells possess the ability to self-renew and differentiate into other cell types. In vivo, stem cells reside in their own anatomic niches in a defined physiological environment, from which they are released to differentiate into a required cell type when deemed appropriate. While a resident within the niche, the stem cell receives signals that in turn maintain the cell in a pluripotent state. In addition, the niche also provides nourishment to the cell. Physically, the niche also serves to anchor the cell via various ECM components and cell-adhesion molecules. Therefore, in vitro models that replicate the in vivo niche will lead to a better understanding of stem cell fate and turnover. In turn, this will help inform attempts to culture stem cells in vitro on artificial niche-like substrates. In this review, we have highlighted recent studies describing artificial niche-like substrates used to culture embryonic and induced pluripotent stem cells in vitro.  相似文献   

16.
17.
Diabetic cardiomyopathy can cause cardiac dysfunction and eventually lead to heart failure and sudden death. Long noncoding RNA (lncRNA) Gas5 has been reported to play a function in cardiomyocyte. Here we studied the function of Gas5 on newborn mouse cardiomyocyte (NMC) apoptosis to detect its molecular mechanism. High-glucose treatment was implemented to induce the apoptosis of NMC in this study. And terminal deoxynucleotidyl transferase dUTP nick-end labeling assay, JC-1 assay, and flow cytometry analysis were conducted to know about the apoptosis of NMC when Gas5 and Tcf3 were silenced. Meanwhile, RNA pull-down assay and luciferase reporter assay were conducted to verify the binding of RNAs. Finally, rescue assay was implemented to evaluate the influence on apoptosis situation affected by competing endogenous RNA pathways. Tcf3 was found to bind to the Gas5 promoter to activate the expression of Gas5. Meanwhile, Gas5 and Tcf3 were both found to promote the apoptosis of NMC. Also, mmu-miR-320-3p could bind to Gas5 and Tcf3. Moreover, the Gas5/miR-320-3p/Tcf3 pathway was found to modulate the apoptosis of NMC. In conclusion, Tcf3-activated lncRNA Gas5 regulates NMC apoptosis in diabetic cardiomyopathy.  相似文献   

18.
Mesenchymal stem cells (MSC) are adult multipotential progenitors which have a high potential in regenerative medicine. They can be isolated from different tissues throughout the body and their homogeneity in terms of phenotype and differentiation capacities is a real concern. To address this issue, we conducted a 2‐DE gel analysis of mesenchymal stem cells isolated from bone marrow (BM), adipose tissue, synovial membrane and umbilical vein wall. We confirmed that BM and adipose tissue derived cells were very similar, which argue for their interchangeable use for cell therapy. We also compared human mesenchymal to embryonic stem cells and showed that umbilical vein wall stem cells, a neo‐natal cell type, were closer to BM cells than to embryonic stem cells. Based on these proteomic data, we could propose a panel of proteins which were the basis for the definition of a mesenchymal stem cell proteomic signature.  相似文献   

19.
20.
BackgroundCell fusion is a phenomenon that is observed in various tissues in vivo, resulting in acquisition of physiological functions such as liver regeneration. Fused cells such as hybridomas have also been produced artificially in vitro. Furthermore, it has been reported that cellular reprogramming can be induced by cell fusion with stem cells.MethodsFused cells between mammalian fibroblasts and mouse embryonic stem cells were produced by electrofusion methods. The phenotypes of each cell lines were analyzed after purifying the fused cells.ResultsColonies which are morphologically similar to mouse embryonic stem cells were observed in fused cells of rabbit, bovine, and zebra fibroblasts. RT-PCR analysis revealed that specific pluripotent marker genes that were never expressed in each mammalian fibroblast were strongly induced in the fused cells, which indicated that fusion with mouse embryonic stem cells can trigger reprogramming and acquisition of pluripotency in various mammalian somatic cells.ConclusionsOur results can help elucidate the mechanism of pluripotency maintenance and the establishment of highly reprogrammed pluripotent stem cells in various mammalian species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号