共查询到20条相似文献,搜索用时 0 毫秒
1.
Detection of Ornithine Decarboxylase Antizyme in Mouse Brain 总被引:1,自引:4,他引:1
Oili A. Hietala 《Journal of neurochemistry》1983,40(4):1174-1177
Ornithine decarboxylase, the rate-limiting enzyme in polyamine synthesis, is known to be regulated by a macromolecular inhibitor, termed antizyme, in a number of cellular systems. The present results show that the antizyme is also a functional component of polyamine metabolism in the brain. It could be demonstrated both in normal randomly selected mice and in animals which had been subjected either to intracerebroventricular injection of saline, which is known to cause a transient activation of ornithine decarboxylase, or to 1,3-diamino-2-propanol, an antizyme-inducing agent. When compared to tissues or cell systems studied so far, the cytosol fraction from mouse brain homogenate appeared to contain an exceptionally high amount of antizyme, that was bound to some material other than active ornithine decarboxylase. This feature was seen in all the animal groups studied, being most prominent after saline injection, when the amount of dissociable antizyme exceeded 14-fold the corresponding released ornithine decarboxylase activity. In untreated animals the excess was about eightfold and after 1,3-diamino-2-propanol about fivefold. 相似文献
2.
Ornithine decarboxylase (ODC) is the rate-limiting enzyme of polyamine synthesis. Polyamines and ODC are connected to cell proliferation and transformation. Resting cells display a low ODC activity while normal, proliferating cells display fluctuations in ODC activity that coincide with changes in the actin cytoskeleton during the cell cycle. Cancerous cells display constitutively elevated ODC activity. Overexpression of ODC in NIH 3T3 fibroblasts induces a transformed phenotype. The cytoskeletal rearrangements during cytokinesis and cell transformation are intimately coupled to the ODC activity but the molecular mechanisms have remained elusive.In this study we investigated how ODC and polyamines influence the organization of the cytoskeleton. Given that the small G-proteins of the rho family are key modulators of the actin cytoskeleton, we investigated the molecular interactions of rhoA with ODC and polyamines. Our results show that transglutaminase-catalyzed polyamination of rhoA regulates its activity. The polyamination status of rhoA crucially influences the progress of the cell cycle as well as the rate of transformation of rat fibroblasts infected with temperature-sensitive v-src. We also show that ODC influences the intracellular distribution of rhoA. These findings provide novel insights into the mechanisms by which ODC and polyamines regulate the dynamics of the cytoskeleton during cell proliferation and transformation. 相似文献
3.
Gioconda San-Blas Françoise Sorais Felipe San-Blas José Ruiz-Herrera 《Archives of microbiology》1996,165(5):311-316
Ornithine decarboxylase in Paracoccidioides brasiliensis, a dimorphic human pathogenic fungus, was more active at 37° C in the yeast phase and at 30° C in the mycelial phase. In
contrast to other fungal systems, yeast growth and mycelium-to-yeast transition in P. brasiliensis were accompanied by a high activity of ornithine decarboxylase at the onset of the budding process, the activity of which
was inhibited by 1,4-diamino-2-butanone. The activity of ornithine decarboxylase remained at a basal level during vegetative
growth of both the mycelial phase and the late stage of yeast phase, and also through the yeast-to-mycelium transition.
Received: 18 December 1995 / Accepted: 8 March 1996 相似文献
4.
多胺是生物体内广泛存在的一类具有多种生物活性的低分子化合物,其合成的关键限速酶是鸟氨酸脱羧酶,鸟氨酸脱羧酶和多胺共同参与生物生长发育等重要生理过程。细菌鸟氨酸脱羧酶在结构上和真核生物略有不同,但是功能类似,其能通过促进多胺的产生发挥对细菌的调节作用。研究发现,细菌鸟氨酸脱羧酶也参与细菌对其他物种的作用,但对人体的作用尚不明确。因此,本文综述了国内外关于细菌鸟氨酸脱羧酶在促进细菌生长、适应环境、抗生素抗性和生物膜形成等方面的作用及相关机制,希望能对细菌鸟氨酸脱羧酶及其作用的后续研究提供一些信息与参考。 相似文献
5.
Transgenic tobacco plants expressing the putrescine synthesis gene ornithine decarboxylase from mouse were raised to study the effects of up-regulation of a metabolic pathway as critical as the polyamine biosynthesis on the plant growth and development, in vitro-morphogenesis and their response to salt stress. Further, the response of the alternate pathway (arginine decarboxylase) for putrescine synthesis to the modulation of the ornithine decarboxylase pathway has also been investigated. The over-expression of the odc gene and increased levels of putrescine in tobacco led to a delay in plant regeneration on selection medium which could be overcome by the exogenous application of polyamine biosynthesis inhibitors and spermidine. Further, the lines generated had a variable in vitro morphogenic potential, which could be correlated to the shifts in their polyamine metabolism. These studies have brought forward the critical role played by polyamines in the normal development of plants and also their role in plant regeneration. Since polyamines are known to accumulate in cells under abiotic stress conditions, the tolerance of the transgenics to salt stress was also investigated and the transgenics with their polyamine metabolism up-graded showed increased tolerance to salt stress. 相似文献
6.
Characterization of arginine decarboxylase in rat brain and liver: distinction from ornithine decarboxylase 总被引:8,自引:0,他引:8
We compared the properties of mammalian arginine decarboxylase (ADC) and ornithine decarboxylase (ODC) in rat liver and brain. Mammalian ADC is thermally unstable and associated with mitochondrial membranes. ADC decarboxylates both arginine (Km = 0.75 mM) and ornithine (Km = 0.25 mM), a reaction not inhibited by the specific ODC inhibitor, difluoromethylomithine. ADC activity is inhibited by Ca2+, Co2+, and polyamines, is present in many organs being highest in aorta and lowest in testis, and is not recognized by a specific monoclonal antibody to ODC. In contrast, ODC is thermally stable, cytosolic, and mitochondrial and is expressed at low levels in most organs except testis. Although ADC and ODC are expressed in cultured rat C6 glioma cells, the patterns of expression during growth and confluence are very different. We conclude that mammalian ADC differs from ADC isoforms expressed in plants, bacteria, or Caenorhabditis elegans and is distinct from ODC. ADC serves to synthesize agmatine in proximity to mitochondria, an organelle also harboring agmatine's degradative enzyme, agmatinase, and a class of imidazoline receptor (I2) to which agmatine binds with high affinity. 相似文献
7.
Nasizadeh S Myhre L Thiman L Alm K Oredsson S Persson L 《Experimental cell research》2005,308(2):254-264
Polyamines are organic cations, which are considered essential for normal cell cycle progression. This view is based on results from numerous studies using a variety of enzyme inhibitors or polyamine analogues interfering with either the metabolism or the physiological functions of the polyamines. However, the presence of non-specific effects may be hard to rule out in such studies. In the present study, we have for the first time used a transgenic cell system to analyze the importance of polyamines in cell growth. We have earlier shown that expression of trypanosomal ODC in an ODC-deficient variant of CHO cells (C55.7) supported growth of these otherwise polyamine auxotrophic cells. However, one of the transgenic cell lines grew much slower than the others. As shown in the present study, the level of ODC activity was much lower in these cells, and that was reflected in a reduction of cellular polyamine levels. Analysis of cell cycle kinetics revealed that reduction of growth was correlated to prolongation of the G1, S, and G2 + M phases in the cells. Providing exogenous putrescine to the cells resulted in a normalization of polyamine levels as well as cell cycle kinetics indicating a causal relationship. 相似文献
8.
9.
Rajbabu Pakala Reuven Laskov Shlomo Rottem Uriel Bachrach 《FEMS microbiology letters》1988,49(3):357-361
Abstract Infecting NIH 3T3 cells with different species of mycoplasmas resulted only in a slight decrease in ornithine decarboxylase (ODC) activity and in the appearance of cadaverine in the infected cells. Similarly, the presence of mycoplasma in NIH 3T3 cells infected with a temperature-sensitive mutant of Rous Sarcoma virus did not bring about any significant changes either in the pattern of ODC activity or in putrescine levels, when transferred to the permissive temperature. This indicates that mycoplasmal contamination of cultures may not significantly change the putrescine metabolism in host cells. On the other hand, the presence of cadaverine in cultured cells may be attributed to contamination by mycoplasma. 相似文献
10.
Mierke CT 《The Journal of biological chemistry》2011,286(46):40025-40037
Metastasis is a key event of malignant tumor progression. The capability to metastasize depends on the ability of the cancer cell to migrate into connective tissue, adhere, and possibly transmigrate through the endothelium. Previously we reported that the endothelium does not generally act as barrier for cancer cells to migrate in three-dimensional extracellular matrices (3D-ECMs). Instead, the endothelium acts as an enhancer or a promoter for the invasiveness of certain cancer cells. How invasive cancer cells diminish the endothelial barrier function still remains elusive. Therefore, this study investigates whether invasive cancer cells can decrease the endothelial barrier function through alterations of endothelial biomechanical properties. To address this, MDA-MB-231 breast cancer cells were used that invade deeper and more numerous into 3D-ECMs when co-cultured with microvascular endothelial cells. Using magnetic tweezer measurements, MDA-MB-231 cells were found to alter the mechanical properties of endothelial cells by reducing endothelial cell stiffness. Using spontaneous bead diffusion, actin cytoskeletal remodeling dynamics were shown to be increased in endothelial cells co-cultured with MDA-MB-231 cells compared with mono-cultured endothelial cells. In addition, knockdown of the α5 integrin subunit in highly transmigrating α5β1(high) cells derived from breast, bladder, and kidney cancer cells abolished the endothelial invasion-enhancing effect comparable with the inhibition of myosin light chain kinase. These results indicate that the endothelial invasion-enhancing effect is α5β1 integrin-dependent. Moreover, inhibition of Rac-1, Rho kinase, MEK kinase, and PI3K reduced the endothelial invasion-enhancing effect, indicating that signaling via small GTPases may play a role in the endothelial facilitated increased invasiveness of cancer cells. In conclusion, decreased stiffness and increased cytoskeletal remodeling dynamics of endothelial cells may account for the breakdown of endothelial barrier function, suggesting that biomechanical alterations are sufficient to facilitate the transmigration and invasion of invasive cancer cells into 3D-ECMs. 相似文献
11.
Changes in the activity of choline kinase were measured in the cerebellum during development. Early transient increase was found in the enzyme activity just prior to and during birth. This period of increase did not coincide with the periods of transient elevation in ornithine decarboxylase and choline acetyltransferase previously observed in the developing cerebellum. The effects of the naturally occurring polyamines (putrescine, spermidine, and spermine) on choline kinase and choline acetyltransferase activities, and of phosphorylcholine (the product of the reaction catalyzed by choline kinase) on ornithine decarboxylase and choline acetyltransferase activities, were also examined. Choline acetyltransferase activity was not influenced by either polyamines or phosphorylcholine. However, choline kinase activity from 7-day-old, but not from adult, cerebellum was increased 25% in the presence of 4 mM spermine. In contrast, low spermidine concentrations (less than 2 mM) inhibited choline kinase activity selectively in 7-day-old cerebellum. Ornithine decarboxylase activity from 7-day-old cerebellum was inhibited in a concentration-dependent manner by phosphorylcholine. The present data together with other previous reports suggest that: (a) polyamines may play a role in choline utilization during development via their regulation of choline kinase activity, on the one hand, and of acetylcholinesterase activity on the other; and (b) during development, a reciprocal regulation of choline kinase and ornithine decarboxylase activities by their respective reaction products may exist, whereby choline kinase activity is regulated in a complex manner by polyamines and, in turn, ornithine decarboxylase is inhibited by phosphorylcholine. 相似文献
12.
Ornithine Decarboxylase Activity and Edema Formation in Cerebral Ischemia of Conscious Gerbils 总被引:1,自引:0,他引:1
A. Muralikrishna Rao Mustafa K. Bakaya Mary E. Maley M. Renuka Prasad Robert J. Dempsey 《Journal of neurochemistry》1995,65(6):2639-2643
Abstract: General anesthetic agents often affect the biochemical and physiologic changes triggered by cerebral ischemia. This study examined the regional activities of ornithine decarboxylase (ODC) in gerbils subjected to 5 min of bilateral carotid occlusion without anesthesia. At 2, 4, and 6 h of reperfusion, significant ODC activity was observed in both the cortex and the hippocampus. Pretreatment with α-difluoromethylornithine (DFMO) significantly blocked the ODC activity at 2, 4, and 6 h. Significant edema formation was found at 2, 4, and 6 h. At 2 h, edema formation was unaffected by administration of DFMO. However, DFMO treatment reduced later edema formation at 4 and 6 h. These results demonstrate that ODC activity and edema formation are delayed in gerbils after the induction of transient ischemia even with the removal of anesthetic agents and their potentially protective effects. These findings suggest that ODC activity and its induction of delayed cerebral edema are specific to cerebral ischemia and not to an anesthetic effect. DFMO treatment reduced both the ODC activity and edema formation, indicating a role for polyamines in postischemic edema formation. 相似文献
13.
In a glucose-salt solution (Earle's balanced salt solution), asparagine (Asn) stimulates ornithine decarboxylase (ODC) activity in a dose-dependent manner, and the addition of epidermal growth factor (EGF) potentiates the effect of Asn. However, EGF alone fails to activate ODC. Thus, the mechanism by which Asn activates ODC is important for understanding the regulation of ODC activity. Asn reduced antizyme-1 (AZ1) mRNA and protein. Among the amino acids tested, Asn and glutamine (Gln) effectively inhibited AZ1 expression, suggesting a differential role for amino acids in the regulation of ODC activity. Asn decreased the putrescine-induced AZ1 translation. The absence of amino acids increased the binding of eukaryotic initiation factor 4E-binding protein (4EBP1) to 5'-mRNA cap and thereby inhibited global protein synthesis. Asn failed to prevent the binding of 4EBP1 to mRNA, and the bound 4EBP1 was unphosphorylated, suggesting the involvement of the mammalian target of rapamycin (mTOR) in the regulation of AZ1 synthesis. Rapamycin treatment (4 h) failed to alter the expression of AZ1. However, extending the treatment (24 h) allowed expression in the presence of amino acids, indicating that AZ1 is expressed when TORC1 signaling is decreased. This suggests the involvement of cap-independent translation. However, transient inhibition of mTORC2 by PP242 completely abolished the phosphorylation of 4EBP1 and decreased basal as well as putrescine-induced AZ1 expression. Asn decreased the phosphorylation of mTOR-Ser(2448) and AKT-Ser(473), suggesting the inhibition of mTORC2. In the absence of amino acids, mTORC1 is inhibited, whereas mTORC2 is activated, leading to the inhibition of global protein synthesis and increased AZ1 synthesis via a cap-independent mechanism. 相似文献
14.
Paulina Kucharzewska 《Biochemical and biophysical research communications》2009,380(2):413-712
Hypoxia-dependent angiogenesis is an inherent feature of solid tumors, and a better understanding of the molecular mechanisms of hypoxic cell-death should provide additional targets for cancer therapy. Here, we show a novel role of the polyamines in endothelial cell (EC) survival during hypoxia. Polyamine depletion by specific inhibition of ornithine decarboxylase was shown to protect ECs from hypoxia-induced apoptosis. Inhibition of the polyamines resulted in a significant induction of PI3K/AKT and its down-stream target MCL-1, i.e. an anti-apoptotic member of the BCL-2 family. Specific inhibitors of PI3K reversed the decrease of hypoxia-induced apoptosis as well as the induction of MCL-1 in polyamine-deprived cells. Moreover, siRNA-mediated down-regulation of MCL-1 was found to counter-act the protective effect of polyamine inhibition. We conclude that the polyamines regulate hypoxia-induced apoptosis in ECs through PI3K/AKT and MCL-1 dependent pathways. Our results may have important implications for the modulation of hypoxia-driven neovascularization. 相似文献
15.
Francis Schuber Alexandre Aleksijevic Elizabeth Blée 《Biochimica et Biophysica Acta (BBA)/General Subjects》1981,675(2):178-187
Regulation of polyamine biosynthesis during growth and differentation of Euglena gracilis was investigated. Increased activity of l-ornithine decarboxylase (EC 4.1.1.17), the enzyme which catalyzes the initial step in polyamine synthesis in Euglena, and accumulation of polyamines were observed prior to DNA replication in synchronous cultures of heterotropically or photoautotrophically grown cells. In photoatotrophic cells three maxima of polyamine synthesis were observed during the light period of the cell cycle. The transition from quiescence of active growth was accompanied in heterotrophic Euglena by a very large stimulation of ornithine decaboxylase activity and polyamine synthesis; the decrease in growth potential of these cells was correlated with a decrease in polyamine levels. In contrast, differentiation of Euglena, i.e., a shift from heterotrophic to photoautotrophic mode of living in the absence of division, led only to a minor stimulation of polyamine biosynthesis. α-Methylornithine, an inhibitor of ornithine decarboxylase, blocked the growth of heterotrophic Euglena, and depletion of intracellular polyamines decreased the differentiation rate. Both events could be reversed only by addition of putrescine to the growth medium. This study suggests that Euglena requires a minimal intracellular level of polyamines to grow and differentiate under optimal conditions. This requirement seems to be more stringent for cell division. 相似文献
16.
Polyamines, Ornithine Decarboxylase, and Diamine Oxidase in the Substantia Nigra and Striatum of the Male Rat After Hemitransection 总被引:4,自引:4,他引:0
Maria Alfonsina Desiderio Isabella Zini Pierpaola Davalli Michele Zoli Arnaldo Corti Kjell Fuxe Luigi Francesco Agnati 《Journal of neurochemistry》1988,51(1):25-31
Partial hemitransection at the mesodiencephalic junction in the rat increased striatal and nigral putrescine concentrations on the lesioned side for at least 168 h, with maximal increases between 24 and 48 h. Spermidine and spermine levels declined at 24 h in the striatum, rising above control values at 48 h and further at 168 h. In the substantia nigra, they remained unchanged for the first 48 h and then increased by 168 h. Cadaverine in the striatum also increased at 48 h. On the intact side putrescine increased but to a much lesser extent (at 48 h in the striatum and at 24 and 48 h in the substantia nigra). Ornithine decarboxylase and diamine oxidase activities showed maximal increases at 24 h in the striatum of the lesioned side, whereas in the substantia nigra ornithine decarboxylase attained a very high value as early as 4 h after the operation and diamine oxidase activity peaked at 48 h. The enzyme activities returned toward the basal values at 168 h. On the intact side, ornithine decarboxylase showed a small increase starting at 4 h and diamine oxidase was enhanced at 48 h. These results indicate that the stimulation of biosynthetic and degradative enzymes of polyamine metabolism accompanied by marked and prolonged increases in putrescine may be essential events in the early phases of neuronal response to mechanical injury in the CNS. 相似文献
17.
G. Lombardi A. M. Szekely L. A. Bristol A. Guidotti H. Manev 《Journal of neurochemistry》1993,60(4):1317-1324
Abstract: Polyamines positively modulate the activity of the N -methyl- d -aspartate (NMDA)-sensitive glutamate receptors. The concentration of polyamines in the brain increases in certain pathological conditions, such as ischemia and brain trauma, and these compounds have been postulated to play a role in excitotoxic neuronal death. In primary cultures of rat cerebellar granule neurons, exogenous application of the polyamines spermidine and spermine (but not putrescine) potentiated the delayed neurotoxicity elicited by NMDA receptor stimulation with glutamate. Furthermore, both toxic and nontoxic concentrations of glutamate stimulated the activity of ornithine decarboxylase (ODC)—the key regulatory enzyme in polyamine synthesis—and increased the concentration of ODC mRNA in cerebellar granule neurons but not in glial cells. Glutamate-induced ODC activation but not neurotoxicity was blocked by the ODC inhibitor difluoromethylornithine. Thus, high extracellular polyamine concentrations potentiate glutamate-triggered neuronal death, but the glutamate-induced increase in neuronal ODC activity may not play a determinant role in the cascade of intracellular events responsible for delayed excitotoxicity. 相似文献
18.
Summary. Green tea which is widely consumed in China, Japan and India, contains polyphenolic compounds, which account for 30% of the
dry weight of the leaves. Most of the polyphenols are flavanols, of which (−)-epigallocatechin-3-gallate (EGCG) is most abundant.
Epidemiological studies revealed that the incidences of stomach and prostate cancers are the lowest in the world among a population
that consumes green tea on a regular basis. It has also been reported that the quantity of green tea consumed, plays an important
role in reducing cancer risk and in delaying cancer outbreak and recurrence. Various systems were used to confirm anti-cancer
activities of green tea and/or EGCG. These included experimental animals in which cancer was induced chemically. Cultured
cells transformed chemically or by oncogenes were also used. These studies clearly demonstrated that green tea or EGCG have
anticancer and cancer preventive properties. The mechanisms of these activities have also been studied in details. It has
been shown that green tea and its active components interfere with signal transduction pathways. Thus the activities of various
protein kinases are inhibited, the expression of nuclear proto-oncogenes declines and the activity of ornithine decarboxylase
(ODC) is reduced. ODC, which catalyzes the rate-limiting step in the biosynthesis of polyamines is closely linked with cellular
proliferation and carcinogenesis. Inhibitors of ODC, like α-difluoromethylornithine (DFMO) have long been used for cancer prevention and therapy. It has been suggested that polyamine
depletion by green tea could offer one explanation for its anti-cancer activities.
Received July 27, 2001 Accepted September 8, 2001 相似文献
19.
Changes in polyamines (PAs) in cells and cultivation media of alfalfa (Medicago sativa L.) and tobacco bright yellow 2 (BY-2) (Nicotiana tabacum L.) cell suspension cultures were studied over their growth cycles. The total content of PAs (both free and conjugated forms) was nearly 10 times higher in alfalfa, with high level of free putrescine (Put) (in exponential growth phase it represented about 65-73% of the intracellular Put pool). In contrast, the high content of soluble Put conjugates was found in tobacco cells (in exponential phase about 70% of the intracellular Put). Marked differences occurred in the amount of PAs excreted into the cultivation medium: alfalfa cells excreted at the first day after inoculation 2117.0, 230.5, 29.0 and 88.0 nmol g(-1) of cell fresh weight (FW) of Put, spermidine (Spd), spermine (Spm) and cadaverine (Cad), respectively, while at the same time tobacco cells excreted only small amount of Put and Spd (12.7 and 2.4 nmol g(-1) FW, respectively). On day 1 the amounts of Put, Spd, Spm and Cad excreted by alfalfa cells represented 21, 38, 12 and 15% of the total pool (intra- plus extra-cellular contents) of Put, Spd, Spm and Cad, respectively. In the course of lag-phase and the beginning of exponential phase the relative contents of extracellular PAs continually decreased (with the exception of Cad). On day 10, the extracellular Put, Spd, Spm and Cad still represented 11.3, 10.9, 2.1 and 27% of their total pools. The extracellular PAs in tobacco cells represented from day 3 only 0.1% from their total pools. The possible role of PA excretion into the cultivation medium in maintenance of intracellular PA contents in the cells of the two cell culture systems, differing markedly in growth rate and PA metabolism is discussed. 相似文献
20.
ODC induction by fresh medium added to stationary, medium-depleted, confluent cultures has been studied in transformed HeLa and CHO cells, and in normal human fibroblasts as an indicator of the resumption of cell multiplication. The transformed HeLa cell displays a more easily reversed G1 block, a higher peak ODC level, and a shorter time period for achievement of the peak ODC value than does the normal fibroblast. Low concentrations of microtubule depolymerizing agents like colchicine suppress ODC induction almost completely in the normal fibroblast, but hardly at all in the HeLa or CHO cells. Both transformed cells occasionally reveal a superinduction of ODC at very low colchicine levels (10?8-10?7 M) and a more variable response to such agents than does the normal fibroblast. Higher concentrations of colchicine suppress ODC induction in all cells. Experiments with actinomycin D and cycloheximide indicate that the principal colchicine action involves inhibition at the level of protein or mRNA synthesis, rather than inactivation of the already synthesized enzyme. These experiments are provisionally interpreted as an indication that a microtubular system is needed to reinitiate certain steps associated with growth in G1-blocked, normal cells, and that a second microtubular action terminating enzyme biosynthesis may exist. This microtubular control is defective in the transformed cells here studied. Specific microtubular actions necessary for initiation and termination of protein syntheses may occur throughout the cell reproductive cycle, and in the course of normal differentiation processes. 相似文献