首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
1,25(OH)2D3 is an antiproliferative agent that may inhibit proliferation of breast cancer (BC) cells in vitro and BC development in animals. Epidemiological studies have shown a high incidence of BC in people less exposed to solar rays. To unravel the role of Vitamin D3 in BC patients, we have investigated serum levels of 25(OH)D3 and its active form 1,25(OH)2D3 as well as tissue expression of 1alpha-hydroxylase, 24-hydroxylase, and Vitamin D-receptor (VDR), determined by semiquantitative RT-PCR, in 88 Brazilian BC patients and 35 women without cancer (submitted to mammoplasties or resection of benign lesions). Median age of women with and without cancer was 51 and 46 years, respectively, and the majority of BC patients were classified as clinical stage II (67%). Although no differences in 25(OH)D3 serum concentration were found, 1,25(OH)2D3 (40+/-21 pg/ml) levels in BC patients were lower than in women without cancer (53+/-23). Our results indicate that 24-hydroxylase, VDR and 1alpha-hydroxylase mRNA tissue expression is similar in both groups and no correlation between 24-hydroxylase, 1alpha-hydroxylase, and VDR expression in breast tumors was found. A low 1,25(OH)2D3 serum concentration seems to be associated to breast cancer, however, the mechanism involved in this regulation is still unclear.  相似文献   

3.
Of the various risk factors contributing to osteoporosis, dietary/lifestyle factors are important. In a clinical study we reported that women with caffeine intakes >300 mg/day had higher bone loss and women with vitamin D receptor (VDR) variant, tt were at a greater risk for this deleterious effect of caffeine. However, the mechanism of how caffeine effects bone metabolism is not clear. 1,25-Dihydroxy vitamin D3 (1,25(OH)2D3) plays a critical role in regulating bone metabolism. The receptor for 1,25(OH)2D3, VDR has been demonstrated in osteoblast cells and it belongs to the superfamily of nuclear hormone receptors. To understand the molecular mechanism of the role of caffeine in relation to bone, we tested the effect of caffeine on VDR expression and 1,25(OH)2D3 mediated actions in bone. We therefore examined the effect of different doses of caffeine (0.2, 0.5, 1.0 and 10 mM) on 1,25(OH)2D3 induced VDR protein expression in human osteoblast cells. We also tested the effect of different doses of caffeine on 1,25(OH)2D3 induced alkaline phosphatase (ALP) activity, a widely used marker of osteoblastic activity. Caffeine dose dependently decreased the 1,25(OH)2D3 induced VDR expression and at concentrations of 1 and 10 mM, VDR expression was decreased by about 50–70%, respectively. In addition, the 1,25(OH)2D3 induced alkaline phosphatase activity was also reduced at similar doses thus affecting the osteoblastic function. The basal ALP activity was not affected with increasing doses of caffeine. Overall, our results suggest that caffeine affects 1,25(OH)2D3 stimulated VDR protein expression and 1,25(OH)2D3 mediated actions in human osteoblast cells.  相似文献   

4.
5.
6.
The steroid hormone 1,25(OH)2-vitamin D3 [1,25D] has been shown to affect the growth and proliferation of primary cultures of ventricular myocytes isolated from neonatal rat hearts. The research presented here shows that the vitamin D receptor [VDR] is present in murine cardiac myocytes (HL-1 cells), and that 1,25D affects the growth, proliferation and morphology of these cells. In addition we show that 1,25D effects expression of ANP, myotrophin, and c-myc. Furthermore, 1,25D effects expression and localization of the VDR within the cell. Murine HL-1 cardiac myocytes were grown and treated with 1,25D in culture, and growth and morphology were assessed with microscopic analysis. Cells were counted and protein levels were evaluated through Western blot analysis. Subcellular localization of the VDR was determined using immunofluorescence and confocal microscopy. 1,25D was found to decrease proliferation and alter cellular morphology of the HL-1 cells. Treatment with 1,25D increased expression of myotrophin while decreasing expression of atrial natriuretic peptide [ANP] and c-myc. 1,25D treatment also increased expression and nuclear localization of the VDR in these cardiac myocytes. Thus 1,25D is an important hormone involved in modulating and maintaining heart cell structure and function.  相似文献   

7.
Prostate cancer is the most commonly diagnosed cancer in the majority of western countries. Due to their antiproliferative and proapoptotic activity, vitamin D analogues have been introduced recently as an experimental therapy for prostate cancer. Clusterin (CLU) is a glycoprotein that has two known isoforms generated in human cells. A nuclear form of CLU protein (nCLU) is pro-apoptotic, and a secretory form (sCLU) is pro-survival. In this study, we analyzed whether proapoptotic and antiproliferative effects of 1,25(OH)2D3 on LNCaP prostate cancer cells are modulated by expression of sCLU. Using colony forming assay, we studied the effect of treatment with different doses of 1,25(OH)2D3 (10−6, 10−7, 10−10 M) on proliferation of LNCaP cells that were stable transfected and over-express sCLU (LNT-1) as compared to empty vector-transfected cells (LN/C). We also measured apoptosis using TUNEL assay. sCLU over-expression protected against both antiproliferative (30%) and proapoptotic (15%) effects of 1,25(OH)2D3, although this effect was statistically not significant. In conclusion, our findings demonstrate that expression of sCLU modulates growth regulatory effects of 1,25(OH)2D3 in prostate cancer indicating that CLU interferes with vitamin D signalling pathways.  相似文献   

8.
9.
Vitamin D3 (VD3) is a fat-soluble prohormone that plays a crucial role in bone metabolism, immunity, and control of cell proliferation and cell differentiation in mammals. The actinomycete Pseudonocardia autotrophica is capable of bioconversion of VD3 into its physiologically active forms, namely, 25(OH)VD3 or 1α,25(OH)2VD3. In this study, we isolated and characterized Vdh (vitamin D3 hydroxylase), which hydroxylates VD3 from P. autotrophica NBRC 12743. The vdh gene encodes a protein containing 403 amino acids with a molecular weight of 44,368 Da. This hydroxylase was found to be homologous with the P450 belonging to CYP107 family. Vdh had the same ratio of the Vmax values for VD3 25-hydroxylation and 25(OH)VD3 1α-hydroxylation, while other enzymes showed preferential regio-specific hydroxylation on VD3. We characterized a collection of Vdh mutants obtained by random mutagenesis and obtained a Vdh-K1 mutant by the combination of four amino acid substitutions. Vdh-K1 showed one-order higher VD3 25-hydroxylase activity than the wild-type enzyme. Biotransformation of VD3 into 25(OH)VD3 was successfully accomplished with a Vdh-expressed recombinant strain of actinobacterium Rhodococcus erythropolis. Vdh may be a useful enzyme for the production of physiologically active forms of VD3 by a single cytochrome P450.  相似文献   

10.
Yang L  Wang J  Fan Y  Chen S  Wang L  Ma J 《Cellular immunology》2011,(1):173-179
1,25(OH)2D3, the active metabolite of vitamin D3, its activity is not limited to mineral and skeletal homeostasis. In recent years, there has been increasing evidence pointing to the role of its activity in the regulation of cell proliferation, cell differentiation and immunomodulation. Here we report lipopolysaccharide (LPS), a glycolipid that is produced and secreted by gram-negative bacteria during peritonitis, plus high glucose (HG) can significantly inhibit mesothelial cell viability while induce more apoptosis in rat peritoneal mesothelial cells (RPMC). Pretreatment with 1,25(OH)2D3 can reverse the above effect in a concentration dependent manner. HG plus LPS can down-regulate the levels of both mRNA and protein of VDR, and up-regulate the expression of TGF-β1 and TNF-α in RPMC, which can also be effectively reversed by pretreatment with 1,25(OH)2D3. The above results suggest that HG plus LPS may induce changes in RPMC’s viability and apoptosis, leading to peritoneal injury. 1,25(OH)2D3 can reverse the inhibition of cell viability, the increase of apoptotic rate and induction of fibrosis related cytokine TGF-β1 and TNF-α by HG plus LPS in RPMC, thus protect peritoneal membrane.  相似文献   

11.
Inhibitory effect of 1α,25dihydroxycholecalciferol (1,25D3 = calcitriol) in different cell type is well recognized but its promoting effect on vascular smooth muscle cells (SMCs) is poor established. Therefore, the aim of this study was to determine stimulatory effect of calcitriol on aortal SMCs proliferation in culture. We used the cell division analysis procedure based on the quantitative sequential halving of the stably incorporating fluorescent dye carboxyfluorescein diacetate succinimidyl ester (CFSE). This technique allowed the visualization of cycles of SMCs division by flow cytometry. Rat aortal SMCs were labeled with CFSE and cultured for up to 10 days with defined concentration of calcitriol in medium. Proliferative activity as the percentage of SMCs in different phases of the cell cycle using propidium iodide was determined. Apoptosis was assessed using Annexin-V/CFDA method. The results suggest that low concentrations of an active form of vitamin D—1α,25dihydroxycholecalciferol applied in supraphysiological concentration of 10 nmol/l is a mitogenic factor for aortal SMCs. None of the applied concentrations of calcitriol caused apoptosis. The findings well support our morphological (LM) and ultrastructural (TEM and SEM) observations.  相似文献   

12.
The characteristics of the mass spectra of vitamin D3 related compounds were investigated by GC–MS and LC–MS using 22-oxacalcitriol (OCT), an analog of 1,25-dihydroxyvitamin D3, and related compounds. Fragmentation during GC–MS (electron impact ionization) of TMS-derivatives of OCT and the postulated metabolites gave useful structural information concerning the vitamin D3-skeleton and its side-chain, especially with respect to the oxidation positions of metabolites. In contrast, few fragment ions were observed in LC–MS (atmospheric pressure chemical ionization), showing that LC–MS gave poor structural information, except for molecular mass. However, when comparing the signal-to-noise ratio (S/N) observed during GC–MS and LC–MS analysis for OCT in plasma extracts, the S/N in LC–MS was over ten-times greater than in GC–MS, possibly due to the low recovery on derivatization and thermal-isomerization in GC–MS. Furthermore, both the GC–MS and the LC–MS allowed the analysis of many postulated metabolites in a single injection without any prior isolation of target metabolites from biological fluids by LC. These results suggest that GC–MS and LC–MS analysis for vitamin D3 related compounds such as OCT each have unique and distinct advantages. Therefore, the complementary use of both techniques enables the rapid and detailed characterization of vitamin D3 related compounds.  相似文献   

13.
Summary Evidence from results of autoradiographic studies in mice indicates that nuclei of Sertoli cells and of epithelial cells in the ductuli efferentes contain receptors for 1,25(OH)2 vitamin D3.  相似文献   

14.
Thyroid hormones enhance osteoclast formation and their excess is an important cause of secondary osteoporosis. 3,5,3' -Triiodo-L-thyronine (T3) induced the mRNA expression of receptor activator of nuclear factor-kappa B ligand (RANKL), which is a key molecule in osteoclast formation, in primary osteoblastic cells (POB). This effect was amplified in the copresence of 1 alpha,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)). Although T3 alone did not induce octeoclasts in coculture of bone marrow cells with POB, T3 enhanced 1,25(OH)(2)D(3)-induced osteoclast formation. Thyroxine (T4) also enhanced 1,25(OH)(2)D(3)-induced osteoclast formation. These data suggested that T4 was locally metabolized to T3 for its action, since T4 is a prohormone with little hormonal activity. The mRNA expression of type-2 iodothyronine deiodinase (D2), which is responsible for maintaining local T3 concentration, was induced by 1,25(OH)(2)D(3) dose- and time-dependently. Our data would facilitate our understanding of the mechanism of osteoclast formation by thyroid hormones and suggest a novel interaction between thyroid hormones and 1,25(OH)(2)D(3).  相似文献   

15.
Vitamin D3 (VD3) is a fat-soluble prohormone in mammals. VD3 is inert and must be activated by hydroxylation at the C-25 and C-1α positions to exert its biological activity. We recently accomplished the bioconversion of VD3 to 25(OH)VD3 with a recombinant strain of Rhodococcus erythropolis and found that the permeability of VD3 into the cytoplasm may be the rate-limiting step of 25(OH)VD3 production (Sallam et al., 2010). When the cells were treated with the lipid II-targeting lantibiotic nisin, the permeability of green chemiluminescent cyclodextrin (GCCD), which is used as a model substrate instead of VD3-partially methylated-β-cyclodextrin (PMCD) complex, was drastically induced. Nisin also induced VD3 hydroxylation, and the rate was correlated with the expression levels of Vdh and its redox partner proteins. In the bioconversion reaction, the stability of the redox partner proteins and the additional NADH-regenerating system are crucial for VD3 hydroxylation. The degradation rate of the [2Fe–2S] cluster of ferredoxin ThcC from R. erythropolis NI86/21 is faster than that of AciB from Acinetobacter sp. OC4. Therefore, the nisin-treated R. erythropolis cells coexpressing Vdh and AciBC (1176.5 μg) exhibited much greater 25(OH)VD3 production than the cells coexpressing Vdh and ThcCD (431.7 μg) after four consecutive 16 h reactions. These results suggest that nisin forms nisin-lipid II pore complexes in the Rhodococcus membrane that increase the accessibility of VD3–PMCD complexes to the inside of the cells. Furthermore, nisin-treated Rhodococcus cells can be utilized for the bioconversion of other fat-soluble chemicals.  相似文献   

16.
The extensive use of depleted uranium (DU) in today's society results in the increase of the number of human population exposed to this radionuclide. The aim of this work was to investigate in vivo the effects of a chronic exposure to DU on vitamin D3 metabolism, a hormone essential in mineral and bone homeostasis. The experiments were carried out in rats after a chronic contamination for 9 months by DU through drinking water at 40 mg/L (1 mg/rat/day). This dose corresponds to the double of highest concentration found naturally in Finland. In DU-exposed rats, the active vitamin D (1,25(OH)2D3) plasma level was significantly decreased. In kidney, a decreased gene expression was observed for cyp24a1, as well as for vdr and rxrα, the principal regulators of CYP24A1. Similarly, mRNA levels of vitamin D target genes ecac1, cabp-d28k and ncx-1, involved in renal calcium transport were decreased in kidney. In the brain lower levels of messengers were observed for cyp27a1 as well as for lxrβ, involved in its regulation. In conclusion, this study showed for the first time that DU affects both the vitamin D active form (1,25(OH)2D3) level and the vitamin D receptor expression, and consequently could modulate the expression of cyp24a1 and vitamin D target genes involved in calcium homeostasis.  相似文献   

17.
The current investigation demonstrates the antitumor effects of combined supplementations of vanadium (V) (4.27 µmol/L drinking water ad libitum) and1α, 25-dihydroxy vitamin D3 (Vitamin D3) (0.3 μg/100 μL propylene glycol per os twice a week) on 1, 2 dimethylhydrazine (DMH) (20 mg/kg body weight) induced rat colon carcinogenesis. There was a significant reduction in incidence (70%), multiplicity (P < 0.0001) and volume (P < 0.01) of colon tumors. HPLC-fluorescence assay detected the combinatorial actions of V and Vitamin D3 against DMH-induced colonic O6-methylguanine DNA adducts formation (at four sequential time points; ANOVA, F = 13.56, P < 0.01). Simultaneous inhibition of DNA single strand breaks (P < 0.001) indicates the potency of the combination regimen in limiting the initiation event of colon carcinogenesis. Immunohistochemical analysis revealed that the effect of V and vitamin D3 occurred through suppression of cell proliferation (BrdU-LI: P < 0.001) along with an induction of apoptosis (TUNEL-LI: P < 0.01). The immunoexpression of tumor suppressor p53 and downregulation of antiapoptotic protein BCl-2 in subsequent immunofluorescence assay further provide strong evidence for the combinatorial inhibitory actions of vanadium and vitamin D3 against DMH-induced rat colon carcinogenesis.  相似文献   

18.
Summary Eleven different secosteroids or steroids (10–10 to 10–8 m) were acutely and reversibly introduced in solutions delivered to the lumen of single proximal tubules of the amphibianNecturus kidney while recording basolateral cell membrane potentialV m. Seven of these molecules (1,25(OH)2D3, 25(OH)D3, 24,25(OH)2D3, 5,6-trans-25(OH)D3, 19-diol-cholesterol, estradiol and testosterone) resulted in changes ofV m (V m) occurring in a few seconds, the largest V m being observed with 1,25(OH)2D3, +6.5±0.75 mV (n=19); these seven (seco)steroids but not the four inactive sterols (vitamin D3, cholesterol, 1D3 and aldosterone) possess a hydroxyl group on at least one carbon of the C17 to C25 lateral chain of the sterol ring. The V m effect was present in Na+-free or Cl-free media, but it was abolished in HCO3-free media. Depolarization of cell membrane potential by addition of glucose, 11mm, in luminal perfusion fluid abolished the 1,25(OH)2D3-evoked V m effect, suggesting dependence of the latter on the absolute value of membrane potential. Barium, a blocking agent of K+ conductances, suppressed the 1,25(OH)2D3-evoked V m effect, even when the proper effects of barium of cell membrane potential were canceled by current clamp. Pretreatment with quinine, a putative blocker of Ca2+-dependent K+ channels also abolished the 1,25(OH)2D3-evoked depolarization. Such observations are consistent with the presence of Ca2+-dependent K+ channels at the apical cell membrane of the proximal tubule, these channels being inactivated by 1,25(OH)2D3 and probably by other (seco)steroids.  相似文献   

19.
1,25-Dihydroxyvitamin D3, the physiologically active form of vitamin D3, exerts its functions through a receptor-mediated mechanism and plays an important role in the cell differentiation. This study investigated the effects of 1,25-dihydroxyvitamin D3 on the proliferation and differentiation of porcine preadipocyte. Stromal-vascular cells containing preadipocytes were prepared from dorsal subcutaneous adipose tissue of approximately 3-day-old Chinese male crossbred pigs. After confluence, the differentiation was induced by transferrin, dexamethasone and insulin for 2 days, and then subsequently cultured for 6 days. The cells were treated with 1,25-dihydroxyvitamin D3 during the induction of differentiation (the early phase of differentiation) or throughout the differentiation period. The terminal differentiation markers, such as glycerol-3-phosphate dehydrogenase activity and lipid accumulation were measured during the process of cultures. The treatment with 1,25-dihydroxyvitamin D3 severely affected the induction of all differentiation markers throughout the differentiation period. 1,25-Dihydroxyvitamin D3 suppressed the expression of peroxisome proliferator-activated receptor gamma mRNA and interfered with the induction of retinoid X receptor alpha mRNA. The mRNAs of the adipogenesis-related genes, lipoprotein lipase, stearoyl-CoA desaturase, phosphoenolpyruvate carboxykinase, glycerol-3-phosphate dehydrogenase and glucose transporter 4 were reduced when 1,25-dihydroxyvitamin D3 was added into differentiation medium. Also, 1,25-dihydroxyvitamin D3 inhibited preadipocyte differentiation in dose-dependent manner. These results suggested that 1,25-dihydroxyvitamin D3 inhibited porcine preadipocyte differentiation through suppressing PPAR gamma and RXR alpha mRNA expressions and then down regulating the expression of adipogenesis-related genes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号