首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
目的:探讨SD大鼠肝纤维化后肝组织及血清中转化生长因子-β1(Transforming Growth Factor-β1,TGF-β1)及Smad3的表达和变化,以及三七皂苷R1对肝纤维化的保护作用。方法:72只健康雄性SD大鼠分为对照组、二甲基亚硝胺(NDMA)组和三七皂苷R1组,再按不同时间点分为1、2、4周,3个亚组,每个亚组8只动物。NDMA组采用NDMA 2 m L/kg腹腔注射,三七皂苷R1组同时静脉注射三七皂苷R1,剂量为100 mg/kg体重,对照组注射等量的生理盐水。在各组的不同时间点采用RT-PCR及ELISA技术检测肝组织及血清中TGF-β1、Smad3的表达及变化。结果:1、TGF-β1、Smad3 m RNA及蛋白在各组中均有表达。2、对照组各时间点比较均无统计学意义(P>0.05)。NDMA组中,随着损伤时间的延长,TGF-β1、Smad3 m RNA及蛋白的表达逐渐上调,且各时间点与对照组比较有统计学意义(P<0.05)。而三七皂苷R1组TGF-β1、Smad3 m RNA及蛋白在各时间点均较NDMA组表达下调,有统计学意义(P<0.05)。结论:1、TGF-β1/Smad3信号参与了肝纤维化的发生和发展过程,且随损伤的逐渐加重,表达越高。2、三七皂苷R1可降低肝组织中TGF-β1/Smad3信号的表达,减轻肝细胞的纤维化,发挥保护肝组织损伤的作用。  相似文献   

4.
Silicosis is a devastating occupational disease caused by long-term inhalation of silica particles, inducing irreversible lung damage and affecting lung function, without effective treatment. Mesenchymal stem cells (MSCs) are a heterogeneous subset of adult stem cells that exhibit excellent self-renewal capacity, multi-lineage differentiation potential and immunomodulatory properties. The aim of this study was to explore the effect of bone marrow-derived mesenchymal stem cells (BMSCs) in a silica-induced rat model of pulmonary fibrosis. The rats were treated with BMSCs on days 14, 28 and 42 after perfusion with silica. Histological examination and hydroxyproline assays showed that BMSCs alleviated silica-induced pulmonary fibrosis in rats. Results from ELISA and qRT-PCR indicated that BMSCs inhibited the expression of inflammatory cytokines TNF-α, IL-1β and IL-6 in lung tissues and bronchoalveolar lavage fluid of rats exposed to silica particles. We also performed qRT-PCR, Western blot and immunohistochemistry to examine epithelial-mesenchymal transition (EMT)–related indicators and demonstrated that BMSCs up-regulate E-cadherin and down-regulate vimentin and extracellular matrix (ECM) components such as fibronectin and collagen Ⅰ. Additionally, BMSCs inhibited the silica-induced increase in TGF-β1, p-Smad2 and p-Smad3 and decrease in Smad7. These results suggested that BMSCs can inhibit inflammation and reverse EMT through the inhibition of the TGF-β/Smad signalling pathway to exhibit an anti-fibrotic effect in the rat silicosis model. Our study provides a new and meaningful perspective for silicosis treatment strategies.  相似文献   

5.
Airway epithelial apoptosis and epithelial mesenchymal transition (EMT) are two crucial components of asthma pathogenesis, concomitantly mediated by TGF-β1. RACK1 is the downstream target gene of TGF-β1 shown to enhancement in asthma mice in our previous study. Balb/c mice were sensitized twice and challenged with OVA every day for 7 days. Transformed human bronchial epithelial cells, BEAS-2B cells were cultured and exposed to recombinant soluble human TGF-β1 to induced apoptosis (30 ng/mL, 72 hours) and EMT (10 ng/mL, 48 hours) in vitro, respectively. siRNA and pharmacological inhibitors were used to evaluate the regulation of RACK1 protein in apoptosis and EMT. Western blotting analysis and immunostaining were used to detect the protein expressions in vivo and in vitro. Our data showed that RACK1 protein levels were significantly increased in OVA-challenged mice, as well as TGF-β1-induced apoptosis and EMT of BEAS-2B cells. Knockdown of RACK1 (siRACK1) significantly inhibited apoptosis and decreased TGF-β1 up-regulated EMT related protein levels (N-cadherin and Snail) in vitro via suppression of JNK and Smad3 activation. Moreover, siSmad3 or siJNK impaired TGF-β1-induced N-cadherin and Snail up-regulation in vitro. Importantly, JNK gene silencing (siERK) also impaired the regulatory effect of TGF-β1 on Smad3 activation. Our present data demonstrate that RACK1 is a concomitant regulator of TGF-β1 induces airway apoptosis and EMT via JNK/Smad/Snail signalling axis. Our findings may provide a new insight into understanding the regulation mechanism of RACK1 in asthma pathogenesis.  相似文献   

6.
Angiotensin II (AT II) is thought to be associated with the development of renal interstitial fibrosis. However, the molecular mechanisms of the interstitial fibrosis have not been extensively studied. We have examined the role of mitogen-activated protein kinases (MAPKs) on fibronectin (FN) accumulation in cultured normal rat kidney interstitial fibroblasts (NRK 49F cell line). AT II caused dose-dependent increases in FN accumulation and FN mRNA in these cells. AT II also activated the extracellular signal-regulated kinase (ERK) and p38 MAPK in the presence of AT II. These increases in FN accumulation and activation of MAPKs were inhibited with AT I receptor antagonist (ARB; CV-11974) in renal interstitial fibroblasts. The inhibitors against ERK (PD98059) and p38 MAPK (SB203580) significantly inhibited AT II-induced increases in FN mRNA. These findings suggest that the MAPKs play an important role in AT II-mediated renal interstitial fibrosis and that ARB may be useful for preventing renal interstitial fibrosis.  相似文献   

7.
8.
Phosphatase and tensin homology deleted on chromosome ten (PTEN) is a negative regulator of PI3K/Akt pathway, and here we investigated the effect of PTEN on lipogenesis in diabetic rats and high glucose-stimulated human renal proximal tubular cell line (HKC). Decreased PTEN and increased phospho-Akt were found in kidney of diabetic rats, and in vitro research revealed that high glucose attenuated PTEN expression in a time-dependent manner, concomitant with activation of Akt. Again, expression of PTEN significantly inhibited high glucose-caused increased phospho-Akt and lipogenic genes including SREBP-1, fatty acid synthase (FASN) and acetyl-CoA carboxylase (ACC). Furthermore, we confirmed inhibition of TGF-β1 pathway with SB431542 blocked the effect of high glucose on PTEN down-regulation, an increase in phospho-Akt and lipogenesis. These above data suggest that decreased PTEN mediates high glucose-induced lipogenesis in renal proximal tubular cells and TGF-β1 might be involved in PTEN down-regulation.  相似文献   

9.
Recently, several flavonoids have been shown to have cardioprotective, cancer preventive, or anti-inflammatory properties. However, the specific mechanisms underlying their protective effects remain unclear. We aimed to investigate the different effects of three representative flavonoids—hesperidin, naringin, and resveratrol—on intracellular adhesion molecule-1 (ICAM-1) induction in human umbilical vein endothelial cells (HUVECs) by using high-glucose (HG) concentrations and the possible underlying molecular mechanisms. In HG-induced HUVEC cultures, the effects of three different flavonoids on ICAM-1 production and p38 phosphorylation were examined in the presence or absence of inhibitors targeting the mitogen-activated protein kinase (MAPK) signal transduction pathway. HG stimulation of HUVECs increased the levels of the adhesion molecules ICAM-1 and endothelial selectin (E-selectin). Pretreatment with all the three flavonoids drastically inhibited ICAM-1 expression in a time-dependent manner, but did not alter VCAM-1 and E-selectin expressions. Moreover, we investigated the effects of flavonoids on the MAPK signal transduction pathway, because MAPK families are associated with vascular inflammation under stress. These flavonoids did not block HG-induced phosphorylation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), but completely inhibited the HG-induced phosphorylation of p38 MAPK. SB202190, an inhibitor of p38 MAPK, also inhibited the HG-induced enrichment of ICAM-1. This study demonstrated that hesperidin, naringin, and resveratrol reduced the HG-induced ICAM-1 expression via the p38 MAPK signaling pathway, contributing to the inhibition of monocyte adhesion to endothelial cells.  相似文献   

10.
11.
12.
C1q/tumor necrosis factor-related protein-3 (CTRP3) has been extensively reported as an important role involved in antifibrosis, antiapoptosis, and anti-inflammation. However, the role of CTRP3 involved in renal fibrosis remains unclear. Our current study explored the role of CTRP3 in renal fibrosis and its underlying mechanisms by using serums and renal biopsy specimens from renal fibrosis patients and control subjects, rats models with the surgery of unilateral ureteral obstruction (UUO) and human renal proximal tubular epithelial cells (HRPTEpiCs). We found that circulating levels of CTRP3 had no significant difference between renal fibrosis patients and healthy subjects; however, renal CTRP3 expression was markedly downregulated in the fibrotic region with an abundant expression of collagen-I. In UUO rat models, circulating levels of CTRP3 have not changed with the prolonged obstruction of the kidney; renal CTRP3 expression was decreased with the severity of renal fibrosis; adenovirus-mediated CTRP3 treatment inhibited renal interstitial fibrosis. In vitro experiments revealed that CTRP3 attenuates TGF-β1 induced tubular epithelial cells fibrotic changes; CTRP3 knockdown facilitates the expression of fibrotic markers in TGF-β1-induced HRPTEpiCs; recombinant CTRP3 or adenovirus-mediated CTRP3 overexpression significantly inhibited the Notch signaling pathway-associated factors, and knockdown of CTRP3 increased TGF-β1-mediated activation of the Notch signaling pathways. Collectively, our current study found that CTRP3 could improve renal fibrosis, to some extent, through inhibiting the Notch pathway.  相似文献   

13.
目的:研究肝星状细胞(use)中smad2特异性小干扰RNA(siRNA)对I型胶原表达的抑制作用,探讨抗肝纤维化的基因治疗新方法。方法:设计合成靶向Smad2基因的siRNA,将筛选成功的siRNA瞬时转染入体外培养的肝星状细胞(HSC),并给予转化生长因子p(TGF.B)刺激,应用RT—PCR和Westernblot技术检测对照组与实验组I型胶原mRNA水平和蛋白水平表达差异,研究siRNA对I型胶原表达的抑制作用。结果:siRNA能明显降低肝星状细胞中Smad2的RNA和蛋白的表达水平,证实筛选的siRNA有效,能特异性抑制Smad2的基因表达;TGF-β刺激肝星状细胞后,与对照组比较,siRNA转染组细胞外基质(ECM)成分I型胶原的表达水平明显降低(P〈0.05)。结论:siRNA能够抑制TGFβ对肝星状细胞的激活,阻断TGFB—Smads传导通路,使I型胶原分泌下调,有效抑制TGFB诱导的肝纤维化。  相似文献   

14.
15.
Transforming growth factor beta 1 (TGF-beta 1) and insulin-like growth factor I (IGF-I) have contrasting effects on cell cycle regulation in thyroid cells and TGF-beta 1 induces a dramatic decrease in IGF-I-induced cell proliferation. The aim of the present study was to investigate the molecular mechanism of cross-talk between TGF-beta 1 and IGF-I in FRTL-5 cells. TGF-beta 1 affected IGF-I-stimulated insulin receptor substrate 1 (IRS-1) tyrosine phosphorylation and its association with Grb2 protein. Moreover, TGF-beta 1 decreased the IGF-I-induced tyrosine phosphorylation of the adaptor protein CrkII and its association with the IGF-I receptor. These results were accompanied by TGF-beta 1 inhibition of IGF-I-stimulated mitogen-activated protein kinase phosphorylation and activation. Conversely, TGF-beta 1 did not alter IGF-I-stimulated IRS-1-associated phosphatidylinositol 3-kinase activity, IGF-I-induced tyrosine phosphorylation of Shc, and its binding to Grb2. Taken together, these findings provide a molecular basis for the growth-inhibitory action of TGF-beta 1 on the IGF-I-induced mitogenic effect.  相似文献   

16.
Glycosylation of mucins produced by human intestinal goblet cells plays a crucial role in their functions: mucus gel physico-chemical protective properties, host-bacteria interactions, cell-cell adhesion, cell migration, and cell signaling. Colonic mucin glycosylation can be modified by luminal metabolites of fiber fermentation like butyrate. Our aim was to assess the effect of butyrate on the expression of a large panel of glycosylation-related genes in human intestinal epithelial goblet cells HT29-Cl.16E. We found that only a very scarce group of genes: 9 out of 252 were evidenced by microarray screening, and only three had their modulation significantly confirmed by real time PCR quantification. The most striking effect of butyrate was its 8- to 18-fold increase of galectin-1 gene expression, which was confirmed at the protein level, specifically with a central and apical intracellular localization. Significant butyrate effects will be discussed in regard to their possible link with mucins expressed by HT29-Cl.16E cells.  相似文献   

17.
Previous studies have shown that tumor necrosis factor alpha (TNFalpha) is involved in the pathogenic events following exposure to fumonisin B(1) (FB(1)), a potent inhibitor of ceramide synthase and sphingolipid biosynthesis. The intimate role of sphingolipid mediators in TNFalpha signaling and cellular death suggests that FB(1) may alter the sensitivity of cells to TNFalpha-induced apoptosis. We tested the hypothesis that FB(1) treatment will increase the sensitivity of porcine renal epithelial cells to TNFalpha. Porcine renal epithelial cells (LLC-PK(1)) were treated with FB(1) for 48 h prior to treatment with TNFalpha. A dose-dependent increase in TNFalpha-induced apoptosis was observed in cells pretreated with FB(1). Cells treated with FB(1) showed increased DNA fragmentation and terminal uridine nucleotide end labeling in response to TNFalpha treatment. FB(1) increased DNA synthesis and resulted in cell cycle arrest in the G(2)/M phase of the cell cycle. Flow cytometric analysis of the cell cycle indicated that TNFalpha predominantly killed cells in the G(2)/M phase. The activation of JNK, a mitogen-activated protein kinase (MAPK), was increased following 48 h exposure to FB(1). Phosphorylation of p38 and ERK remained unchanged following treatment with FB(1). FB(1) also increased free sphingoid base levels under identical treatment conditions. Results suggest that FB(1) increased free sphingoid base levels and the population of cells in the G(2)/M phase. This population was shown to be most susceptible to TNFalpha-induced apoptosis. Phosphorylation of pro-apoptotic JNK may play an important role in these effects.  相似文献   

18.
目的建立大鼠心肌纤维化(myocardial fibrosis,MF)模型,探讨其病变规律,为临床防治MF研究提供实验动物模型。方法 100只雄性Wistar大鼠随机分为模型组(92只)和伪手术组(8只),模型组进行心脏冠状动脉结扎(coronary artery ligation,CAL),手术后第7、14、21、28、35、42、49、56天分别处死;留取心脏标本,HE染色和Masson染色观察心肌组织基本结构,定量测定心脏组织羟脯氨酸含量、心肌胶原和转化生长因子β1(transfor-ming growth factor,TGF-β1)的表达。另设立伪手术组作为对照。结果与伪手术组组相比,模型组大鼠手术7 d后心肌组织炎性反应即已严重,心肌细胞断裂,心肌胶原含量显著升高(P〈0.01),羟脯氨酸含量升高(P〈0.05),TGF-β1表达显著增高并持续保持在较高水平(P〈0.01),纤维化反应在第42天达到高峰,其后有好转趋势。结论 CAL法能成功建立可靠的心肌纤维化动物模型,其机制可能与上调TGF-β1表达有关。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号