首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Mitochondria: regulating the inevitable   总被引:7,自引:0,他引:7  
Parone PA  James D  Martinou JC 《Biochimie》2002,84(2-3):105-111
Apoptosis is a form of programmed cell death important in the development and tissue homeostasis of multicellular organisms. Abnormalities in cell death control can lead to a variety of diseases, including cancer and degenerative disorders. Hence, the process of apoptosis is tightly regulated through multiple independent signalling pathways that are initiated either from triggering events within the cell or at the cell surface. In recent years, mitochondria have emerged as the central components of such apoptotic signalling pathways and are now known to control apoptosis through the release of apoptogenic proteins. In this review we aim to give an overview of the role of the mitochondria during apoptosis and the molecular mechanisms involved.  相似文献   

2.
Death by design: mechanism and control of apoptosis   总被引:1,自引:0,他引:1  
Active cellular suicide by apoptosis plays important roles in animal development, tissue homeostasis and a wide variety of diseases, including cancer, AIDS, stroke and many neurodegenerative disorders. A central step in the execution of apoptosis is the activation of an unusual class of cysteine proteases, termed caspases, that are widely expressed as inactive zymogens. Originally, the mechanisms for regulating the caspase-based cell death programme seemed to be different in Caenorhabditis elegans, mammals and insects. However, recent results suggest that these apparent differences in the control of cell death reflect our incomplete knowledge, rather than genuine mechanistic differences between different organisms.  相似文献   

3.
Death by design: mechanism and control of apoptosis   总被引:8,自引:0,他引:8  
Active cellular suicide by apoptosis plays important roles in animal development, tissue homeostasis and a wide variety of diseases, including cancer, AIDS, stroke and many neurodegenerative disorders. A central step in the execution of apoptosis is the activation of an unusual class of cysteine proteases, termed caspases, that are widely expressed as inactive zymogens. Originally, the mechanisms for regulating the caspase-based cell death programme seemed to be different in Caenorhabditis elegans, mammals and insects. However, recent results suggest that these apparent differences in the control of cell death reflect our incomplete knowledge, rather than genuine mechanistic differences between different organisms.  相似文献   

4.
Active cellular suicide by apoptosis plays important roles in animal development, tissue homeostasis and a wide variety of diseases, including cancer, AIDS, stroke and many neurodegenerative disorders. A central step in the execution of apoptosis is the activation of an unusual class of cysteine proteases, termed caspases, that are widely expressed as inactive zymogens. Originally, the mechanisms for regulating the caspase-based cell death programme seemed to be different in Caenorhabditis elegans, mammals and insects. However, recent results suggest that these apparent differences in the control of cell death reflect our incomplete knowledge, rather than genuine mechanistic differences between different organisms.  相似文献   

5.
细胞凋亡的结构生物学研究进展   总被引:1,自引:0,他引:1  
在多细胞生物体内,细胞会发生编程性死亡(即细胞凋亡),使得细胞数量得到精确调控。细胞凋亡调控的异常与癌症、自身免疫病、神经退行性疾病等疾病密切相关。在过去的二十年里,人们详细地研究了参与细胞凋亡调控的分子机制。该文综述了近年来利用结构生物学手段,对参与细胞凋亡调控的分子,主要是Caspase和与Caspase活性调控直接相关的蛋白功能的研究进展。  相似文献   

6.
Cell death mechanisms in neurodegeneration   总被引:5,自引:1,他引:5  
Progressive cell loss in specific neuronal populations often associated with typical cytoskeletal protein aggregations is a pathological hallmark of neurodegenerative disorders, but the nature, time course and molecular causes of cell death and their relation to cytoskeletal pathologies are still unresolved. Apoptosis or alternative pathways of cell death have been discussed in Alzheimer's disease and other neurodegenerative disorders. Apoptotic DNA fragmentation in human brain as a sign of neuronal injury is found too frequent as to account for continous neuron loss in these slowly progressive processes. Morphological studies revealed extremely rare apoptotic neuronal death in Alzheimer's disease but yielded mixed results for Parkinson's disease and other neurodegenerative disorders. Based on recent data in human brain, as well as in animal and cell culture models, a picture is beginning to emerge suggesting that, in addition to apoptosis, other forms of programmed cell death may participate in neurodegeneration. Better understanding of the molecular players will further elucidate the mechanisms of cell death in these disorders and their relations to cytoskeletal abnormalities. Susceptible cell populations in a proapoptotic environment show increased vulnerability towards multiple noxious factors discussed in the pathogenesis of neurodegeneration. In conclusion, although many in vivo and in vitro data are in favor of apoptosis involvement in neurodegenerative processes, there is considerable evidence that very complex events may contribute to neuronal death with possible repair mechanisms, the elucidation of which may prove useful for future prevention and therapy of neurodegenerative disorders.  相似文献   

7.
Actinomycin D (act-D) anchors itself into DNA-base pairs by intercalation and thereby inhibits mRNA synthesis. It has been well established that act-D elicits apoptosis in various cell types involving endothelial cells. However, the regulatory mechanisms of actinomycin D-induced apoptotic cell death still remain unclear. Here, we investigated apoptotic cell death and its underlying regulatory mechanisms elicited by actinomycin D in ECV304. Act-D induced typical apoptotic features including chromatin condensation and translocation of phosphatidylserine. Since the phosphoinositide 3-OH kinase (PI3K)/protein kinase B (PKB) signaling pathway has been shown to prevent apoptosis in various cell types, it was of interest to determine if this pathway could protect against apoptosis induced by act-D. Inhibition of PI3K/PKB significantly increased act-D-induced apoptosis. Moreover, act-D-induced cell death was physiologically linked to PKB-mediated cell survival through caspase-8. These results suggest that cross-talk between the PKB and caspase-8 pathways may regulate the balance between cell survival and cell death in ECV304.  相似文献   

8.
Cell death is an essential process in all living organisms and occurs through different mechanisms. The three main types of programmed cell death are apoptosis, pyroptosis, and necroptosis, and each of these pathways employs complex molecular and cellular mechanisms. Although there are mechanisms and outcomes specific to each pathway, they share common components and features. In this review, we discuss recent discoveries in these three best understood modes of cell death, highlighting their singularities, and examining the intriguing notion that common players shape different individual pathways in this highly interconnected and coordinated cell death system. Understanding the similarities and differences of these cell death processes is crucial to enable targeted strategies to manipulate these pathways for therapeutic benefit.  相似文献   

9.
10.
Apoptosis represents a universal and exquisitely efficient cellular suicide pathway essential for a variety of normal biological processes ranging from embryonic development to ageing. In fact, tissue homeostasis is dependent on the perfect balance between positive and negative signals that determines the decision between life and death. Therefore, any imbalance can result in a wide range of pathologic disorders associated with unwanted apoptosis or cell growth. During the apoptotic process, the molecular players interact closely with each other in ways relevant to accelerate or interrupt the cellular death process. In addition, two major pathways of apoptosis activation have been recognized as the "intrinsic" mitochondrial pathway and the "extrinsic" death receptor pathway. Although these pathways act independently to initiate apoptosis, a delicate balance and cross-talk between the extrinsic and intrinsic pathways is thought to occur in many cell types. Interestingly, we have shown that ursodeoxycholic acid (UDCA), an endogenous hydrophilic bile acid, is a potent inhibitor of apoptosis by either stabilizing the mitochondrial membrane or modulating the expression of specific upstream targets. Herein, we review the main effectors involved in the death machinery, describe how they interact to regulate apoptosis, and discuss the main pathways that control cell death and survival. Further, we address multiple interesting targets as well as the potential application of UDCA as a therapeutic modality for apoptosis-related disorders.  相似文献   

11.
Endonucleases are the main instruments of obligatory DNA degradation in apoptosis. Many endonucleases have marked processive action; initially they split DNA in chromatin into very large domains, and then they perform in it internucleosomal fragmentation of DNA followed by its hydrolysis to small fragments (oligonucleotides). During apoptosis, DNA of chromatin is attacked by many nucleases that are different in activity, specificity, and order of action. The activity of every endonuclease is regulated in the cell through its own regulatory mechanism (metal ions and other effectors, possibly also S-adenosylmethionine). Apoptosis is impossible without endonucleases as far as it leads to accumulation of unnecessary (defective) DNA, disorders in cell differentiation, embryogenesis, the organism’s development, and is accompanied by various severe diseases. The interpretation of the structure and functions of endonucleases and of the nature and action of their modulating effectors is important not only for elucidation of mechanisms of apoptosis, but also for regulation and control of programmed cell death, cell differentiation, and development of organisms.  相似文献   

12.
Cerebral ischemia/reperfusion (I/R) injury triggers multiple and distinct but overlapping cell signaling pathways, which may lead to cell survival or cell damage. There is overwhelming evidence to suggest that besides necrosis, apoptosis do contributes significantly to the cell death subsequent to I/R injury. Both extrinsic and intrinsic apoptotic pathways play a vital role, and upon initiation, these pathways recruit downstream apoptotic molecules to execute cell death. Caspases and Bcl-2 family members appear to be crucial in regulating multiple apoptotic cell death pathways initiated during I/R. Similarly, inhibitor of apoptosis family of proteins (IAPs), mitogen-activated protein kinases, and newly identified apoptogenic molecules, like second mitochondrial-activated factor/direct IAP-binding protein with low pI (Smac/Diablo), omi/high-temperature requirement serine protease A2 (Omi/HtrA2), X-linked mammalian inhibitor of apoptosis protein-associated factor 1, and apoptosis-inducing factor, have emerged as potent regulators of cellular apoptotic/antiapoptotic machinery. All instances of cell survival/death mechanisms triggered during I/R are multifaceted and interlinked, which ultimately decide the fate of brain cells. Moreover, apoptotic cross-talk between major subcellular organelles suggests that therapeutic strategies should be optimally directed at multiple targets/mechanisms for better therapeutic outcome. Based on the current knowledge, this review briefly focuses I/R injury-induced multiple mechanisms of apoptosis, involving key apoptotic regulators and their emerging roles in orchestrating cell death programme. In addition, we have also highlighted the role of autophagy in modulating cell survival/death during cerebral ischemia. Furthermore, an attempt has been made to provide an encouraging outlook on emerging therapeutic approaches for cerebral ischemia. Venkata Prasuja Nakka and Anchal Gusain equally contributed to this work.  相似文献   

13.
The literature on apoptosis has grown tremendously in recent years, and the mechanisms that are involved in this programmed cell death pathway have been enlightened. It is now known that apoptosis takes place starting from early development to adult stage for the homeostasis of multicellular organisms, during disease development and in response to different stimuli in many different systems. In this review, we attempted to summarize the current knowledge on the circumstances and the mechanisms that lead to induction of apoptosis, while going over the molecular details of the modulator and mediators of apoptosis as well as drawing the lines between programmed and non-programmed cell death pathways. The review will particularly focus on Bcl-2 family proteins, the role of different caspases in the process of apoptosis, and their inhibitors as well as the importance of apoptosis during different disease states. Understanding the molecular mechanisms involved in apoptosis better will make a big impact on human diseases, particularly cancer, and its management in the clinics.  相似文献   

14.
Necroptosis and pyroptosis are inflammatory forms of regulated necrotic cell death as opposed to apoptosis that is generally considered immunologically silent. Recent studies revealed unexpected links in the pathways regulating and executing cell death in response to activation of signaling cascades inducing apoptosis, necroptosis, and pyroptosis. Emerging evidence suggests that receptor interacting protein kinase 1 and caspase-8 control the cross-talk between apoptosis, necroptosis, and pyroptosis and determine the type of cell death induced in response to activation of cell death signaling.  相似文献   

15.
昆虫细胞程序性死亡的研究进展   总被引:3,自引:0,他引:3  
在昆虫发育和抵抗病原微生物的入侵过程中,细胞凋亡与自噬性死亡现象十分常见。昆虫细胞凋亡的研究已经取得了许多的成果,但是有关细胞自噬程序性死亡的研究还正在深入。昆虫细胞凋亡的信号通路至少有3条:一条类似于线虫细胞的凋亡信号通路,另一条类似于哺乳动物细胞的凋亡信号通路, 还有一条不依赖于胱天蛋白酶的凋亡信号通路。在昆虫的多种组织细胞中,细胞凋亡与自噬程序性死亡在信号通路上存在互串(cross talking),可以相互促进、抑制或替代。了解昆虫细胞程序性死亡对防治害虫具有一定的意义。  相似文献   

16.
Homeostasis implies a balance between cell growth and cell death. This balance is essential for the development and maintenance of multicellular organisms. Homeostasis is controlled by several mechanisms including apoptosis, a process by which cells condemned to death are completely eliminated. However, in some cases, total destruction and removal of dead cells is not desirable, as when they fulfil a specific function such as formation of the skin barrier provided by corneocytes, also known as terminally differentiated keratinocytes. In this case, programmed cell death results in accumulation of functional cell corpses. Previously, this process has been associated with apoptotic cell death. In this overview, we discuss differences and similarities in the molecular regulation of epidermal programmed cell death and apoptosis. We conclude that despite earlier confusion, apoptosis and cornification occur through distinct molecular pathways, and that possibly antiapoptotic mechanisms are implicated in the terminal differentiation of keratinocytes.  相似文献   

17.
Cell death is critical to the normal functioning of multi-cellular organisms, playing a central role in development, immunity, inflammation, and cancer progression. Two cell death mechanisms, apoptosis and necroptosis, are dependent on the formation of distinct multi-protein complexes including the DISC, Apoptosome, Piddosome and Necrosome following the induction of cell death by specific stimuli. The role of several of these key multi-protein signalling platforms, namely the DISC, TNFR1 complex I/II, the Necrosome and Ripoptosome, in mediating these pathways will be discussed, as well as the open questions and potential therapeutic benefits of understanding their underlying mechanisms.  相似文献   

18.
Regulation of apoptosis by Bcl-2 family proteins   总被引:9,自引:0,他引:9  
For multicellular organisms, the rigorous control of programmed cell death is as important as that of cell proliferation. The mechanisms involved in the regulation of cell death are not yet understood, but a key component is the family of caspases which are activated in a cascade and are responsible for the apoptotic-specific changes and disassembly of the cell. Although the caspases represent a central point in apoptosis, their activation is regulated by a variety of other factors. Among these, Bcl-2 family plays a pivotal role in caspases activation, by this deciding whether a cell will live or die. Bcl-2 family members are known to focus much of their response to the mitochondria level, upstream the irreversible cellular damage, but their functions are not yet well defined. This review summarizes the recent data regarding the Bcl-2 proteins and the ways they regulate the apoptosis.  相似文献   

19.
Initial observations that the budding yeast Saccharomyces cerevisiae can be induced to undergo a form of cell death exhibiting typical markers of apoptosis has led to the emergence of a thriving new field of research. Since this discovery, a number of conserved pro- and antiapoptotic proteins have been identified in yeast. Indeed, early experiments have successfully validated yeasts as a powerful genetic tool with which to investigate mechanisms of apoptosis. However, we still have little understanding as to why programmes of cell suicide exist in unicellular organisms and how they may be benefit such organisms. Recent research has begun to elucidate pathways that regulate yeast apoptosis in response to environmental stimuli. These reports strengthen the idea that physiologically relevant mechanisms of programmed cell death are present, and that these function as important regulators of yeast cell populations.  相似文献   

20.
Yuan J 《Molecular cell》2006,23(1):1-12
The developmental cell death in the nematode C. elegans is controlled by a simple and dedicated genetic program. This genetic program is evolutionarily conserved in higher organisms, including mammals. However, although mammalian homologs of C. elegans cell death gene products continue to regulate apoptosis, they are no longer dedicated regulators of cell death. On the other hand, multiple cellular noncell death-related mechanisms have been recruited to regulate cell death under different conditions. Such evidence suggests that evolution has led to an extensive integration of mammalian apoptosis machinery with multiple cellular physiological processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号