首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In vitro differentiation of myoblasts from skeletal muscle of rainbow trout   总被引:1,自引:0,他引:1  
Substrata, plating densities and tissue culture media were compared for their effects on the proliferation and differentiation of myoblasts from skeletal muscle of rainbow trout. Mononuclear cells were isolated from the lateralis muscle of 4–11-month-old trout and plated on to glass coverslips coated with fibronectin, laminin or Matrigel. Cell proliferation was estimated by determining the density of nuclei on successive days in culture, and myoblast differentiation was detected by immunostaining cultures with the myosin-specific monoclonal antibody MF20. Mononuclear cell proliferation was highest for cells cultured on fibronectin or laminin and lowest for cells cultured on Matrigel, but the total number of nuclei in myosin-positive cells did not differ between substrata. The percentage of nuclei in myosin-positive myocytes and myotubes was significantly higher for cells cultured on Matrigel. The proportion of cells adhering to Matrigel and undergoing differentiation increased with plating density. Of three media tested, Dulbecco's Modified Eagle Medium (DMEM), RPMI 1640 (RPMI), Leibovitz's L-15 (L-15) supplemented with 1 or 10% fetal bovine serum (FBS), a significantly greater proportion of the myoblasts differentiated when cells were cultured in L-15+ 10% FBS. These results suggest that culturing trout muscle-derived cells on a substratum of Matrigel at a high density and maintaining cells in L-15+ 10% FBS provide the conditions that maximize the proportion of cells that actively synthesize muscle myosin and facilitate trout myoblast differentiation in vitro .  相似文献   

2.
The canine endometrium is frequently affected by severe alterations with unclear pathogenesis and is, therefore, an important subject of research in veterinary gynecology. Therefore, the aim of our study was to establish a three-dimensional in vitro system of the canine endometrium suitable for experimental approaches. For this reason, intact uterine glands were isolated from canine uteri and placed together with stromal cells on culture dishes coated with several extracellular matrix components (collagen I, IV, fibronectin, laminin, gelatin, Matrigel?) for up to 4 d to support differentiation of cultured cells. Immunohistochemical detection of laminin on freshly isolated glands showed a partial preservation of the basement membrane—an important factor for epithelial differentiation. Glandular structures were differentiated and polarized during culture time as shown by electron microscopy. Signs of degeneration and loss of cell–cell adhesions as seen occasionally on day 4 depended on the individual dog. In general, morphology was best preserved on Matrigel? matrix. No significant changes of cultured glandular explants were observed concerning proliferation and steroid receptor (estrogen, progesterone) expression when compared with the original uterine tissue as assessed by immunohistochemical staining. Lectin histochemistry revealed comparable results for the in vivo endometrial glands and the cultured glandular explants during the whole culture period. This in vitro reconstitution of the canine endometrium is a promising tool to study the cyclic events in the normal endometrium as well as alterations in the affected uterus.  相似文献   

3.
4.
Skeletal muscle cells are a useful model for studying cell differentiation. Muscle cell differentiation is marked by myoblast proliferation followed by progressive fusion to form large multinucleated myotubes that synthesize muscle-specific proteins and contract spontaneously. The molecular analysis of myogenesis has advanced with the identification of several myogenic regulatory factors, including myod1, myd, and myogenin. These factors regulate each other's expression and that of muscle-specific proteins such as the acetylcholine receptor and acetylcholinesterase (AChE). In order to investigate the role of extracellular matrix (ECM) in myogenesis we have cultured myoblasts (C2C12) in the presence or absence of an exogenous ECM (Matrigel). In addition, we have induced differentiation of myoblasts in the presence or absence of Matrigel and/or chlorate, a specific inhibitor of proteoglycan sulfation. Our results indicated that the formation of fused myotubes and expression of AChE was stimulated by Matrigel. Treatment of myoblasts induced to differentiate with chlorate resulted in an inhibition of cell fusion and AChE activity. Chlorate treatment was also found to inhibit the deposition and assembly of ECM components such fibronectin and laminin. The expression of myogenin mRNA was observed when myoblasts were induced to differentiate, but was unaffected by the presence of Matrigel or by culture of the cells in the presence of chlorate. These results suggest that the expression of myogenin is independent of the presence of ECM, but that the presence of ECM is essential for the formation of myotubes and the expression of later muscle-specific gene products. © 1996 Wiley-Liss, Inc.  相似文献   

5.
The biomimetic approach of tissue engineering exploits the favorable properties of the extracellular matrix (ECM), to achieve better scaffold performance and tissue regeneration. ECM proteins regulate cell adhesion and differentiation through integrin mediated signal transduction. In the present study, we have examined the role of ECM proteins such as collagen type I, fibronectin, laminin and vitronectin in regulating the proliferation and osteogenic differentiation of bone marrow derived human mesenchymal stem cells (hMSCs). hMSCs were grown on selected ECM protein treated tissue culture plates. The growth kinetics was assessed by calculating the doubling time of the cells on different ECM treated plates. The cells were directed to osteoblast lineage by growing them in osteogenic induction media for 21 day. Differentiation was evaluated at different time points by osteoblast differentiation associated gene expression, alkaline phosphatase (ALP) activity, histochemical staining for mineralized matrix and calcium quantification. The doubling time of hMSCs cultured on collagen type I was significantly low, which was followed by laminin and fibronectin treated plates. However, doubling time of hMSCs cultured on vitronectin treated plate was not significantly different than that of the untreated control. High ALP gene (ALPL) expression and associated enhancement of mineralization were observed on collagen type I, fibronectin and vitronectin treated plates. Collagen type I showed early onset of mineralization with high ALP activity and up-regulation of osteopontin, ALPL, bone sialoprotein and osteocalcin genes. Vitronectin also up-regulated these genes and showed the highest amount of calcium in the secreted mineral matrix. Therefore, we conclude that, ECM proteins indeed modified the growth patterns and induced the osteoblast differentiation of hMSCs. Our findings have significant implication for bone tissue engineering applications.  相似文献   

6.
Components of the extracellular matrix may modulate the growth factor effects that play important roles in the proliferation and differentiation of precursor cells. We developed an in vitro cultivation protocol for cells of the larval marine bivalve Mytilus trossulus to study the role that extracellular matrix components may play in myodifferentiation and replication-mediated DNA synthesis using immunofluorescence and confocal laser scanning microscopy. Here, we demonstrate that the extracellular matrix regulates the expression of muscle proteins, leading to their assembly and the terminal muscle differentiation of larval cells during cultivation. We further show that the myogenesis process progresses in cells cultivated on fibronectin, carbon or poly-l-lysine but is inhibited in cells grown on a collagen carpet. Consistent with a decrease in muscle protein expression in cells cultivated on collagen, we demonstrate an increase in the number of BrdU-positive cells in comparison with cells cultured on other substrates during the entire cultivation period. Moreover, we demonstrate that the matrix-dependent myogenic differentiation of larval mussel cells is reversible. Round-shaped cells cultivated on collagen were able to differentiate into muscle cells after reseeding on fibronectin, carbon or poly-l-lysine. In addition, cells cultured on collagen and then transplanted to fibronectin exhibited distinct cross-striation and contractile activity. Taken together, our data suggest that the extracellular matrix participates in the regulation of the proliferation and myodifferentiation of mussel trochophore progenitor cells and validate novel approaches for successfully culturing cells from bivalves over extended periods.  相似文献   

7.
The interaction between the extracellular matrix and human tumor-cell clones S2-013 and S2-020, derived from a pancreatic cancer cell line (SUIT-2), was examined in vitro, using various cell differentiation-promoting matrices in two- and three-dimensional cultures. S2-013 cells (well-differentiated tubular adenocarcinoma in xenografts in nude mice) cultured in Matrigel formed glandular structures. Ultrastructural observation revealed a morphological polarity of cells and a distinct basal lamina. On the other hand, S2-020 cells (poorly differentiated tubular adenocarcinoma in xenografts) cultured in Matrigel formed neither glandular structures nor a basal lamina, but only cell aggregates. The morphology of these two sublines cultured in Matrigel expressed the histological degree of differentiation which they presented in nude mice. In contrast, in type I collagen gel, S2-013 cells formed glandular structures without a basal lamina, and in soft agar, they were able to form neither glandular structures nor a basal lamina. S2-020 cells cultured in type I collagen gel or soft agar formed the same simple cell aggregates as in Matrigel. Matrices used in a three-dimensional culture influenced the degree of differentiation in S2-013 cells but had no effect on the morphological differentiation in S2-020 cells. To detect the factors which induce basal lamina formation, S2-013 cells were cultured on a microporous membrane coated with extracellular matrix components such as laminin, type IV collagen, and fibronectin. S2-013 cells formed a basal lamina only on the laminin. These cell lines may be useful in investigating the mechanisms regulating the formation of glandular structures and basal lamina.  相似文献   

8.
The abundance and cross-linking of intramuscular connective tissue contributes to the background toughness of meat, and is thus undesirable. Connective tissue is mainly synthesized by intramuscular fibroblasts. Myocytes, adipocytes and fibroblasts are derived from a common pool of progenitor cells during the early embryonic development. It appears that multipotent mesenchymal stem cells first diverge into either myogenic or non-myogenic lineages; non-myogenic mesenchymal progenitors then develop into the stromal-vascular fraction of skeletal muscle wherein adipocytes, fibroblasts and derived mesenchymal progenitors reside. Because non-myogenic mesenchymal progenitors mainly undergo adipogenic or fibrogenic differentiation during muscle development, strengthening progenitor proliferation enhances the potential for both intramuscular adipogenesis and fibrogenesis, leading to the elevation of both marbling and connective tissue content in the resulting meat product. Furthermore, given the bipotent developmental potential of progenitor cells, enhancing their conversion to adipogenesis reduces fibrogenesis, which likely results in the overall improvement of marbling (more intramuscular adipocytes) and tenderness (less connective tissue) of meat. Fibrogenesis is mainly regulated by the transforming growth factor (TGF) β signaling pathway and its regulatory cascade. In addition, extracellular matrix, a part of the intramuscular connective tissue, provides a niche environment for regulating myogenic differentiation of satellite cells and muscle growth. Despite rapid progress, many questions remain in the role of extracellular matrix on muscle development, and factors determining the early differentiation of myogenic, adipogenic and fibrogenic cells, which warrant further studies.  相似文献   

9.
This work combines expertise in stem cell biology and bioengineering to define the system for geometric control of proliferation and differentiation of myogenic progenitor cells. We have created an artificial niche of myogenic progenitor cells, namely, modified extracellular matrix (ECM) substrates with spatially embedded growth or differentiation factors (GF, DF) that predictably direct muscle cell fate in a geometric pattern. Embedded GF and DF signal progenitor cells from specifically defined areas on the ECM successfully competed against culture media for myogenic cell fate determination at a clearly defined boundary. Differentiation of myoblasts into myotubes is induced in growth-promoting medium, myotube formation is delayed in differentiation-promoting medium, and myogenic cells, at different stages of proliferation and differentiation, can be induced to coexist adjacently in identical culture media. This method can be used to identify molecular interactions between cells in different stages of myogenic differentiation, which are likely to be important determinants of tissue repair. The designed ECM niches can be further developed into a vehicle for transplantation of myogenic progenitor cells maintaining their regenerative potential. Additionally, this work may also serve as a general model to engineer synthetic cellular niches to harness the regenerative potential of organ stem cells.  相似文献   

10.
The basal lamina protein, laminin, has been shown to promote migration and proliferation of cultured skeletal myoblasts, resulting in increased myotube formation. However, skeletal myotubes adhere poorly to a laminin substrate, and long-term cultures of skeletal myotubes on laminin have not been achieved. We have found that cultured satellite cells from bupivacaine-damaged rat skeletal muscle actively proliferate and differentiate on a diluted Matrigel substrate composed of laminin, type IV collagen, heparan sulfate proteoglycan, and entactin. Myotubes cultured on diluted Matrigel are contractile and have never been observed to detach from the culture dish; rather, myotubes generally atrophy after 2-3 weeks in culture. Antibodies directed against the various protein components of Matrigel were used to determine the role of each component in enhancing muscle differentiation. Anti-laminin impaired satellite cell adhesion, whereas antibodies against either type IV collagen or heparan sulfate proteoglycan had no effect. Anti-entactin did not inhibit attachment, proliferation, or fusion of cultured satellite cells; however, myotubes exposed to anti-entactin failed to adhere to the culture dish after spontaneous myotube contractions began. We conclude that entactin is responsible for long-term maintenance and maturation of contractile skeletal myotubes on a diluted Matrigel substrate. This is the first study to assign a biological function for entactin in myogenesis.  相似文献   

11.
Skeletal myoblasts from fetal muscle respond adversely to fibronectin and laminin substrata: when primary mouse skeletal myoblasts are plated onto laminin, more myosin and desmin-positive myoblasts (myo+ cells) develop than on plates coated with fibronectin or collagen. In clonal cultures virtually all cells differentiate into postmitotic, fusion-capable myo + myoblasts on laminin after 3 days. In contrast, on fibronectin, the majority of the cells becomes myosin- and desmin-negative, partially due to proliferation of undifferentiated myoblast precursor cells, partially due to dedifferentiation or modulation of myoblasts into fibroblast-like myo- cells. Loss of the myogenic phenotype on fibronectin was also observed in cloned mouse myoblasts and in cultures of a differentiating mouse satellite cell line, MM14Dy, confirming that the appearance of desmin-negative cells is a result of myoblast modulation and not due simply to overgrowth by muscle fibroblasts. In the light of other effects of laminin on myoblasts, such as the stimulation of migration, differentiation and proliferation, our findings are consistent with the notion that laminin and fibronectin may be counteracting factors in the control of muscle differentiation.  相似文献   

12.
The relationship between the adhesion of five human colorectal carcinoma cell lines to extracellular matrix (ECM) proteins, namely type I collagen, type IV collagen, fibronectin, laminin and basement membrane extract (Matrigel), and the ability of these cells to express morphological differentiation when grown in a basement membrane extract (Matrigel) or on normal rat mesenchymal cells has been examined. Two cell lines, SW1222 and HRA-19, organised into glandular structures, with well-defined polarity when cultured on both substrata as well as in three-dimensional (3D) collagen gel culture as previously shown. The remaining three cell lines (SW620, SW480 and HT29) grew as loose aggregates or as they would normally grow on tissue culture plastic. Addition to the culture medium of a hexapeptide, containing the cell-matrix recognition sequence arginine-glycine-aspartic acid (RGD), inhibited attachment and glandular formation of SW1222 and HRA-19 when these cells were grown on living mesenchymal cells, but not in Matrigel. The morphological differentiation of HRA-19 cells in 3D-collagen was also inhibited by the same RGD-containing peptide, as previously shown for SW1222 cells. Attachment of the remaining three cell lines was inhibited on mesenchyme but not in Matrigel, further supporting the specificity of the peptide effect on epithelial-mesenchymal binding. In conclusion we have shown that colorectal tumour cells are able to bind ECM proteins and that the cellular binding is an essential step in the induction of the morphological differentiation seen on living mesenchymal cells, in basement membrane extracts and in type I collagen gel.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Laminin and fibronectin are glycoproteins that influence cell behavior and mediate cell/substratum adhesion. We have examined the interaction of these macromolecules with the serine protease plasminogen activator (PA) in two types of extracellular matrices; one produced by the murine Engelbreth-Holm-Swarm (EHS) tumor (Matrigel), and another by normal kidney epithelial cells in culture. Matrigel was found to contain significant quantities of tissue-type PA (tPA). Two of the major components of Matrigel, laminin and type IV collagen, were also examined. Tissue-type PA was associated with purified preparations of laminin; however, it was not found associated with type IV collagen. Normal kidney epithelial cells in culture secrete large amounts of urokinase (UK) and deposit a subepithelial matrix containing both laminin and fibronectin. These matrix macromolecules were isolated from the deposited matrix by immunoprecipitation, examined by zymography, and found to contain UK. The potential role of this interaction in the mechanisms of cell migration and matrix remodeling is discussed.  相似文献   

14.
Monocyte-derived macrophages are important sources of angiogenic factors in cancer and other disease states. Upon extravasation from vasculature, monocytes encounter the extracellular matrix. We hypothesized that interaction with extracellular matrix proteins leads monocytes to adopt an angiogenic phenotype. We performed endothelial cell chemotaxis assays on conditioned medium (CM) from monocytes that had been cultured in vitro on various matrix substrates (collagen I, laminin, Matrigel, fibronectin), in the presence of autologous serum, or on tissue culture plastic alone. Monocytes cultured on Matrigel and on fibronectin were the most potent inducers of angiogenic activity compared with tissue culture plastic or autologous serum-differentiated monocytes. This increased angiogenic activity was associated with increased expression of angiogenic CXC chemokines (IL-8, epithelial neutrophil-activating peptide-78, growth-related oncogene alpha, and growth-related oncogene gamma) but not of vascular endothelial growth factor. Additionally, CM from monocytes cultured on fibronectin-depleted Matrigel (MG(FN-)) induced significantly less angiogenic activity than CM from monocytes cultured on control-depleted Matrigel. ELISA analysis of CM from monocytes cultured on MG(FN-) revealed a significant decrease in GRO-alpha and GRO-gamma compared with CM from monocytes cultured on MG. Incubation of monocytes before adherence on fibronectin with PHSCN (a competitive peptide inhibitor of the PHSRN sequence of fibronectin binding via alpha(5)beta(1) integrin) results in diminished expression of angiogenic activity and CXC chemokines compared with control peptide. These data suggest that fibronectin, via alpha(5)beta(1) integrin, promotes CXC chemokine-dependent angiogenic activity from monocytes.  相似文献   

15.
The intra-hepatic population of liver progenitor cells expands during liver injury when hepatocyte proliferation is inhibited. These cells can be purified by density gradient centrifugation and cultured. Separated by size only this population contains small cells of hematopoietic, epithelial and endothelial lineages and is thought to contain liver stem cells. The identity of liver stem cells remains unknown although there is some evidence that tissue Sca1+ CD45 cells display progenitor cell characteristics. We identified both intra-hepatic and gall bladder Sca1+ cells following liver injury and expanded ex vivo Sca1 cells as part of heterogenous cell culture or as a purified population. We found significant difference between the proliferation of Sca-1 cells when plated on laminin or collagen I while proliferation of heterogenous population was not affected by the extracellular matrix indicating the necessity for culture of Sca1+ cells with laminin matrix or laminin producing cells in long term liver progenitor cell cultures.  相似文献   

16.
Embryoid bodies (EBs) are used as in vitro model to study early extraembryonic tissue formation and differentiation. In this study, a novel method using three dimensional extracellular matrices for in vitro generation of EBs from buffalo embryonic stem (ES) cells and its differentiation potential by teratoma formation was successfully established. In vitro derived inner cell masses (ICMs) of hatched buffalo blastocyst were cultured on buffalo fetal fibroblast feeder layer for primary cell colony formation. For generation of EBs, pluripotent ES cells were seeded onto four different types of extracellular matrices viz; collagen-IV, laminin, fibronectin and matrigel using undifferentiating ES cell culture medium. After 5days of culture, ESCs gradually grew into aggregates and formed simple EBs having circular structures. Twenty-six days later, they formed cystic EBs over collagen matrix with higher EBs formation and greater proliferation rate as compared to other extracellular matrices. Studies involving histological observations, fluorescence microscopy and RT-PCR analysis of the in vivo developed teratoma revealed that presence of all the three germ layer derivatives viz. ectoderm (NCAM), mesoderm (Flk-1) and endoderm (AFP). In conclusion, the method described here demonstrates a simple and cost-effective way of generating EBs from buffalo ES cells. Collagen-IV matrix was found cytocompatible as it supported buffalo EBs formation, their subsequent differentiation could prove to be useful as promising candidate for ES cells based therapeutic applications.  相似文献   

17.
Diverse repetitive forces deform the intestinal epithelium and basement membrane. Such repetitive deformation induces intestinal epithelial proliferation, differentiation, and intracellular signaling. Although at least some deformation-induced signals probably involve integrins, the matrix-dependence of these signals is poorly understood. We compared rapid strain activation of p38 and jnk in human Caco-2 intestinal epithelial cells cultured on collagen I, collagen IV, laminin, and tissue fibronectin. These signals were inhibited in cells on a fibronectin substrate, but activated by strain on collagens and laminin. Furthermore, adding 300 microg/ml plasma fibronectin (approximately the concentration found in plasma) to the culture medium inhibited strain activation of p38 and jnk in cells cultured on collagen. Since tissue and plasma fibronectin levels vary in acute or chronic inflammatory or infectious conditions, these results suggest that tissue or plasma fibronectin may modulate the intestinal epithelial response to repetitive deformation.  相似文献   

18.
Fibrosis and defective muscle regeneration can hamper the functional recovery of the soft palate muscles after cleft palate repair. This causes persistent problems in speech, swallowing, and sucking. In vitro culture systems that allow the study of satellite cells (myogenic stem cells) from head muscles are crucial to develop new therapies based on tissue engineering to promote muscle regeneration after surgery. These systems will offer new perspectives for the treatment of cleft palate patients. A protocol for the isolation, culture and differentiation of satellite cells from head muscles is presented. The isolation is based on enzymatic digestion and trituration to release the satellite cells. In addition, this protocol comprises an innovative method using extracellular matrix gel coatings of millimeter size, which requires only low numbers of satellite cells for differentiation assays.  相似文献   

19.
Extracellular matrix regulation of intestinal epithelial differentiation may affect development, differentiation during migration to villus tips, healing, inflammatory bowel disease, and malignant transformation. Cell culture studies of intestinal epithelial biology may also depend on the matrix substrate used. We evaluated matrix effects on differentiation and proliferation in human intestinal Caco-2 epithelial cells, a model for intestinal epithelial differentiation. Proliferation, brush border enzyme specific activity, and spreading were compared in cells cultured on tissue culture plastic with interstitial collagen I and the basement membrane constituents collagen IV and laminin. Each matrix significantly increased alkaline phosphatase, dipeptidyl peptidase, lactase, sucrase-isomaltase, and cell spreading in comparison to plastic. However, the basement membrane proteins collagen IV and laminin further promoted all four brush border enzymes but inhibited spreading compared to collagen I. Proliferation was most rapid on type I collagen and slowest on laminin and tissue culture plastic. Basement membrane matrix proteins may promote intestinal epithelial differentiation and inhibit proliferation compared with interstitial collagen I.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号