首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.

Background

Neuronal iron accumulation is thought to be relevant to the pathogenesis of Parkinson’s disease (PD), although the mechanism remains elusive. We hypothesized that neuronal iron uptake may be stimulated by functional mitochondrial iron deficiency.

Objective

To determine firstly whether the mitochondrial toxin, 1-methyl-4-phenylpyridinium iodide (MPP+), results in upregulation of iron-import proteins and transporters of iron into the mitochondria, and secondly whether similar changes in expression are induced by toxins with different mechanisms of action.

Methods

We used quantitative PCR and Western blotting to investigate expression of the iron importers, divalent metal transporter, transferrin receptor 1 and 2 (TfR1 and TfR2) and mitoferrin-2 and the iron exporter ferroportin in differentiated SH-SY5Y cells exposed to three different toxins relevant to PD, MPP+, paraquat (a free radical generator) and lactacystin (an inhibitor of the ubiquitin-proteasome system (UPS)).

Results

MPP+ resulted in increased mRNA and protein levels of genes involved in cellular iron import and transport into the mitochondria. Similar changes occurred following exposure to paraquat, another inducer of oxidative stress. Lactacystin also resulted in increased TfR1 mRNA levels, although the other changes were not found.

Conclusion

Our results support the hypothesis of a functional mitochondrial iron deficit driving neuronal iron uptake but also suggest that differences exist in neuronal iron handling induced by different toxins.  相似文献   

3.

Background

5′-Nitro-indirubinoxime (5′-NIO) is a new derivative of indirubin that exhibits anti-cancer activity in a variety of human cancer cells. However, its mechanism has not been fully clarified.

Methods

Human salivary gland adenocarcinoma (SGT) cells were used in this study. Western blot and RT-PCR analyses were performed to determine cellular Notch levels. The cell cycle stage and level of apoptosis were analyzed using flow cytometry analysis.

Results

5′-NIO significantly inhibited the mRNA levels of Notch-1 and Notch-3 and their ligands (Delta1, 2, 3, and Jagged-2) in SGT cells. Immunocytochemistry analysis showed that 5′-NIO specifically decreased the level of Notch-1 in the nucleus. In addition, 5′-NIO induced G1 cell cycle arrest by reducing levels of CDK4 and CDK6 in SGT cells. Using flow cytometry and immunoblotting analysis, we found that 5′-NIO induces apoptosis following the secretion of cytochrome c and the activation of caspase-3 and caspase-7. Intracellular Notch-1 overexpression led to a decrease in G1 phase arrest and an inhibition of 5′-NIO-induced apoptosis.

Conclusion

These observations suggest that 5′-NIO induces cell cycle arrest and apoptosis by down-regulating Notch-1 signaling.

General significance

This study identifies a new mechanism of 5′-NIO-mediated anti-tumor properties. Thus, 5′-NIO could be used as a candidate for salivary gland adenocarcinoma therapeutics.  相似文献   

4.

Objective

Development of a qPCR test for the detection of trisomy 21 using segmental duplications.

Methods

Segmental duplications in the TTC3 gene on chromosome 21 and the KDM2A gene on chromosome 11 were selected as molecular markers for the diagnostic qPCR assay. A set of consensus primers selected from the conserved regions of these segmental duplications were used to amplify internal diverse sequences that were detected and quantified with different probes labeled with distinct fluorescence. The copy numbers of these two fragments were determined based on the ΔCq values of qPCR. The results of qPCR for prenatal and neonatal screening of Down's syndrome were compared with the conventional karyotype analysis by testing 82 normal individuals and 50 subjects with Down's syndrome.

Results

The ΔCq values of segmental duplications on chr21 and 11 ranged between 0.33 and 0.75 in normal individuals, and between 0.91 and 1.18 in subjects with Down's syndrome. The ΔCq values of these two segmental duplications clearly discriminated Down's syndrome from normal individuals (P < 0.001). Furthermore, the qPCR results were consistent with karyotype analysis.

Conclusion

Our qPCR can be used for rapid prenatal and neonatal screening of Down's syndrome.  相似文献   

5.

Background

Hydroxy-1-aryl-isochromans (HAIC) are newly emerging natural polyphenolic antioxidants, enriched in extravirgin olive oil, whose antioxidative potency was only scarcely characterized using cell-free systems and cells.

Methods

We characterized the activity of HAIC to inactivate reactive oxygen species (ROS) generated by the xanthine/xanthine oxidase system, mitochondria (rat brain) and neural cells. ROS levels were estimated using ROS-sensitive probes, such as Amplex Red, MitoSOXRED.

Results

HAIC (with 2, 3 or 4 hydroxyl substituents) effectively scavenge ROS released from mitochondria. EC50 values estimated with mitochondria and submitochondrial particles were around 20 μM. Moreover, in PC12 and cultured neural primary cells, HAIC buffered cytosolic ROS. Although HAIC permeate biological membranes, HAIC fail to buffer matrix ROS in isolated mitochondria. We show that hydrogen peroxide was effectively abolished by HAIC, whereas the production of superoxide was not affected.

Conclusion

HAIC exert high antioxidative activity to reduce hydrogen peroxide. The antioxidative activity of HAIC is comparable with that of the stilbene-like, polyphenolic resveratrol, but much higher than that of trolox, N-acetylcysteine or melatonin.

General significance

Unlike resveratrol, HAIC do not impair mitochondrial ATP synthesis or Ca2+ retention by mitochondria. Thus, HAIC have the decisive advantage to be potent antioxidants with no detrimental side effects on mitochondrial functions.  相似文献   

6.

Background

To date microRNAs and their contribution to the onset and propagation of salivary adenoid cystic carcinoma (SACC) are limited. The objective of this study was to identify miR-181a and its mechanism in the metastasis of SACC.

Methods

At first microarray and quantitative RT-PCR were used to investigate microRNA profiles and miR-181a in paired SACC cell lines with different metastatic potential. Then the effect of miR-181a on metastatic potential of SACC was investigated. MiR-181a target genes and Snai2 promoter activity were investigated using luciferase reporter gene assays. Western blot was used to detect MAPK–Snai2 pathway-related protein level.

Results

A panel of deregulated microRNAs (including miR-181a) was identified in paired of SACC cell lines. Functional analysis indicated that miR-181a inhibited SACC cell migration, invasion and proliferation in vitro, and it suppressed tumor growth and lung metastasis in vivo. Direct targeting of miR-181a to MAP2K1, MAPK1 and Snai2 was confirmed by luciferase reporter gene assays. MiR-181a mimic inhibited the expression of MAP2K1, MAPK1 and Snai2 in SACC cells. MAP2K1 or MAPK1 siRNA suppressed Snai2 gene promoter activity and reduced Snai2 expression and the metastatic potential of SACC cells.

Conclusions

Our results indicate that miR-181a plays an important role in the metastasis of SACC, and may serve as a novel therapeutic target for SACC. MiR-181a regulates the MAPK–Snai2 pathway both through direct cis-regulatory mechanism and through indirect trans-regulatory mechanism.

General significance

To our knowledge, this is the first study revealing that miR-181a deregulation mediated the metastasis of SACC by regulating MAPK–Snai2 pathway.  相似文献   

7.
Sixty 3-month-old homozygote male mice were studied for circadian rhythmicity in the toxicity of florfenicol overdose. Animals were kept under a regimen of 12h light, 12h darkness (12:12 LD) with food and water available ad libitum. The LD50 (median lethal) dose was determined in a preliminary experiment and was administered to groups of 10 mice at six different clock times (hours) after light onset (HALO): 0, 4, 8, 12, 16, and 20 HALO. Cosinor analysis verified a statistically significant (P <. 04) circadian rhythm in the toxic effect (mortality) of florfenicol. Mortality was greatest when the drug was injected 4h after the commencement of the activity span (16 HALO) and least when injected 4h after the start of the diurnal rest span (4 HALO). Mortality was 2.5 times greater when drug injection was given at 16 HALO than at 4 HALO. (Chronobiology International, 18(3), 567–572, 2001)  相似文献   

8.

Objective

The parasympathetic nervous system regulates inflammation in peripheral tissues through a pathway termed the “cholinergic anti-inflammatory reflex” (CAIR). Mice deficient in the alpha 7 nicotinic acetylcholine receptor (α7−/−) have an impaired CAIR due to decreased signaling through this pathway. The purpose of this study was to determine if the increased inflammation in α7−/− mice is associated with enhanced serum and macrophage atherogenicity.

Methods

We measured serum markers of inflammation and oxidative stress, and macrophage atherogenicity in mouse peritoneal macrophages harvested from α7−/− mice on the background of C57BL/6 mice, as well as on the background of the atherosclerotic Apolipoprotein E-deficient (ApoE−/−) mice.

Results

α7-Deficiency had no significant effects on serum cholesterol, or on markers of serum oxidative stress (TBARS and paraoxonase1 activities). However, α7-deficiency significantly increased serum CRP and IL-6 (p < 0.05) levels in atherosclerotic mice, confirming an anti-inflammatory role for the α7 receptor. Macrophage cholesterol mass was increased by 25% in both normal and atherosclerotic mice in the absence of the α7 receptor (p < 0.05). This was accompanied by conditional increases in oxidized LDL uptake and in macrophage total peroxide levels. Furthermore, α7-deficiency reduced macrophage paraoxonase2 mRNA and activity by 50-100% in normal and atherosclerotic mice (p < 0.05 for each), indicating a reduction in macrophage anti-oxidant capacity in the α7−/− mice.

Conclusion

The above results suggest an anti-atherogenic role for the macrophage α7nAchr, through a mechanism that involves attenuated macrophage oxidative stress and decreased uptake of oxidized LDL.  相似文献   

9.
The myeloid translocation gene (MTG) homologue Nervy associates with PlexinA on the plasma membrane, where it functions as an A-kinase anchoring protein (AKAP) to modulate plexin-mediated semaphorin signaling in Drosophila. Mammalian MTG16b is an AKAP found in immune cells where plexin-mediated semaphorin signaling regulates immune responses. This study provides the first evidence that MTG16b is a dual AKAP capable of binding plexins. These interactions are selective (PlexinA1 and A3 bind MTG, while PlexinB1 does not) and can be regulated by PKA-phosphorylation. Collectively, these data suggest a possible mechanism for the targeting and integration of adenosine 3′,5′-cyclic monophosphate (cAMP) and semaphorin signaling in immune cells.

Structured summary

MINT-7556975: PlexinA3 (uniprotkb:P51805) physically interacts (MI:0915) with MTG 16b (uniprotkb:O75081) by anti tag coimmunoprecipitation (MI:0007)MINT-7557008: RI alpha (uniprotkb:Q9DBC7) physically interacts (MI:0915) with MTG 16b (uniprotkb:O75081) by anti bait coimmunoprecipitation (MI:0006)MINT-7556989: MTG 16b (uniprotkb:O75081) physically interacts (MI:0915) with PlexinA3 (uniprotkb:P51805) by pull down (MI:0096)  相似文献   

10.

Background

The activation of various P2 receptors (P2R) by extracellular nucleotides promotes diverse cellular events, including the stimulation of cell signaling protein and increases in [Ca2+]i. We report that some agents that can block P2X7R receptors also promote diverse P2X7R-independent effects on cell signaling.

Methods

We exposed native rat parotid acinar cells, salivary gland cell lines (Par-C10, HSY, HSG), and PC12 cells to suramin, DIDS (4,4′-diisothiocyano stilbene-2,2′-disulfonic acid), Cibacron Blue 3GA, Brilliant Blue G, and the P2X7R-selective antagonist A438079, and examined the activation/phosphorylation of ERK1/2, PKCδ, Src, CDCP1, and other signaling proteins.

Results

With the exception of suramin, these agents blocked the phosphorylation of ERK1/2 by BzATP in rat parotid acinar cells; but higher concentrations of suramin blocked ATP-stimulated 45Ca2+ entry. Aside from A438079, these agents increased the phosphorylation of ERK1/2, Src, PKCδ, and other proteins (including Dok-1) within minutes in an agent- and cell type-specific manner in the absence of a P2X7R ligand. The stimulatory effect of these compounds on the tyrosine phosphorylation of CDCP1 and its Src-dependent association with PKCδ was blocked by knockdown of CDCP1, which also blocked Src and PKCδ phosphorylation.

Conclusions

Several agents used as P2X7R blockers promote the activation of various signaling proteins and thereby act more like receptor agonists than antagonists.

General significance

Some compounds used to block P2 receptors have complicated effects that may confound their use in blocking receptor activation and other biological processes for which they are employed, including their use as blockers of various ion transport proteins.  相似文献   

11.
12.
13.

Background

Previously, we identified two missense mutations in the chondroitin N-acetylgalactosaminyltransferase-1 gene in patients with neuropathy. These mutations are associated with a profound decrease in chondroitin N-acetylgalactosaminyltransferase-1 enzyme activity. Here, we describe a patient with neuropathy who is heterozygous for a chondroitin synthase-1 mutation. Chondroitin synthase-1 has two glycosyltransferase activities: it acts as a GlcUA and a GalNAc transferase and is responsible for adding repeated disaccharide units to growing chondroitin sulfate chains.

Methods

Recombinant wild-type chondroitin synthase-1 enzyme and the F362S mutant were expressed. These enzymes and cells expressing them were then characterized.

Results

The mutant chondroitin synthase-1 protein retained approximately 50% of each glycosyltransferase activity relative to the wild-type chondroitin synthase-1 protein. Furthermore, unlike chondroitin polymerase comprised of wild-type chondroitin synthase-1 protein, the non-reducing terminal 4-O-sulfation of GalNAc residues synthesized by chondroitin N-acetylgalactosaminyltransferase-1 did not facilitate the elongation of chondroitin sulfate chains when chondroitin polymerase that consists of the mutant chondroitin synthase-1 protein was used as the enzyme source.

Conclusions

The chondroitin synthase-1 F362S mutation in a patient with neuropathy resulted in a decrease in chondroitin polymerization activity and the mutant protein was defective in regulating the number of chondroitin sulfate chains via chondroitin N-acetylgalactosaminyltransferase-1. Thus, the progression of peripheral neuropathies may result from defects in these regulatory systems.

General significance

The elongation of chondroitin sulfate chains may be tightly regulated by the cooperative expression of chondroitin synthase-1 and chondroitin N-acetylgalactosaminyltransferase-1 in peripheral neurons and peripheral neuropathies may result from synthesis of abnormally truncated chondroitin sulfate chains.  相似文献   

14.
Lv Z  Zhang X  Liu L  Chen J  Nie Z  Sheng Q  Zhang W  Jiang C  Yu W  Wang D  Wu X  Zhang S  Li J  Zhang Y 《Gene》2012,502(2):118-124

Background

Prohibitin (PHB) is an evolutionarily conserved multifunctional protein with ubiquitous expression. However, its molecular roles are largely unknown.

Methods

To better understand the function of prohibitin protein in silkworm (BmPHB), its coding sequence was isolated from a cDNA library of silkworm pupae. An His-tagged BmPHB fusion protein was expressed in Escherichia coli Rosetta (DE3) and purified with affinity and reversed-phase chromatography. Purified rBmPHB was used to generate anti-BmPHB polyclonal antibody. The subcellular localization of BmPHB was analysed by immunohistochemistry.

Results

BmPHB gene has an ORF of 825 bp, encoding a predicted peptide with 274 amino acid residues. Immunostaining indicate that prohibitin is expressed in nucleus and predominately in cytoplasm. Western blot analyses indicated that, in the fifth instar larva, BmPHB was expressed descendingly in gonad, malpighian tubule, trachea, fatty body, intestine, and head. However, no expression was detected in larva's silk gland and epidermis. In addition, BmPHB was expressed in the nascent egg, larva and pupa, but not in the moth.

Conclusions

The expression of BmPHB gene presents differential characteristic in different stage and tissues. It may play important roles in the development of silkworm.

General significance

Studies on prohibitin have been still restricted to a few specific insects and insect cell lines such as Drosophila, Acyrthosiphon pisum and mosquito cell lines, not yet in silkworm. This is a first characterization of prohibitin in silkworm, B. mori.  相似文献   

15.
The plant hormone abscisic acid (ABA) triggers production of reactive oxygen species (ROS) in guard cells via the AtrbohD and AtrbohF NADPH oxidases, leading to stomatal closure. The ABA-activated SnRK2 protein kinase open stomata 1 (OST1) (SRK2E/SnRK2.6) acts upstream of ROS in guard cell ABA signaling. Here, we report that OST1 phosphorylates Ser13 and Ser174 on AtrbohF. In addition, substitution of Ser174 to Ala results in a ∼40% reduction in the phosphorylation of AtrbohF by OST1. We also show that OST1 physically interacts with AtrbohF. These results provide biochemical evidence suggesting that OST1 regulates AtrbohF activity.

Structured summary

MINT-7260179, MINT-7260147, MINT-7260165: OST1 (uniprotkb:Q940H6) phosphorylates (MI:0217) ATRBOHF (uniprotkb:O48538) by protein kinase assay (MI:0424)MINT-7260208: OST1 (uniprotkb:Q940H6) and ATRBOHF (uniprotkb:O48538) physically interact (MI:0915) by bimolecular fluorescence complementation (MI:0809)  相似文献   

16.
When deprived of an anchorage to the extracellular matrix, fibroblasts arrest in the G1 phase with inactivation of Cdk4/6 and Cdk2 and destruction of Cdc6, the assembler of prereplicative complexes essential for S phase onset. How cellular anchorages control these kinases and Cdc6 stability is poorly understood. Here, we report that in rat embryonic fibroblasts, activation of mammalian target of rapamycin complex 1 by a Tsc2 mutation or overexpression of a constitutively active mutant Rheb overrides the absence of the anchorage and stabilizes Cdc6 at least partly via activating Cdk4/6 that induces Emi1, an APC/CCdh1 ubiquitin ligase inhibitor.

Structured summary

MINT-7890626: cdc27 (uniprotkb:Q4V8A2) physically interacts (MI:0915) with Cyclin-A (uniprotkb:Q6AY13) by anti bait coimmunoprecipitation (MI:0006)  相似文献   

17.
Wang F  Xing T  Wang N  Liu L 《Cytokine》2012,57(1):127-129

Objective

To investigate the levels of plasma CD146 and P-selectin in patients with type 2 diabetic nephropathy at different stages.

Methods

A total of 80 patients with type 2 diabetes mellitus were enrolled in the present study. According to 24 h urinary albumin excretion ratio and renal function, they were further divided into group of diabetes without microalbuminuria (DN0, n = 20), microalbuminuria group (DN1, n = 20), macroalbuminuria group (DN2, n = 20) and renal insufficiency group (DN3, n = 20). Another 20 healthy subjects were enrolled as control group (non-DM). Plasma CD146 and P-selectin were measured by ELISA.

Results

Plasma CD146 and P-selectin were significantly increased in patients with type 2 diabetes with microalbuminuria (DN1) compared with health control (CD146: 415.3 ± 29.0 vs. 243.5 ± 14.7 ng/ml, P < 0.05; P-selectin: 66.8 ± 3.4 vs. 45.3 ± 2.7 ng/ml, P < 0.001). With the development of diabetic nephropathy, both plasma CD146 and P-selectin level progressively rise, with the highest levels in patients with significant renal insufficiency (DN3: 515.9 ± 36.9 and 81.5 ± 5.1 ng/ml respectively, P < 0.001). Moreover, the increase in CD146 is positively co-related to the rise of P-selectin in patients with type 2 diabetes.

Conclusion

Expression of CD146 and P-selectin in patients with type 2 diabetes is elevated, and they are positively correlated with severity of diabetic nephropathy.  相似文献   

18.

Background

Notch signaling plays a critical role in the maintenance of intestinal crypt epithelial cell proliferation. The aim of this study was to investigate the role of Notch signaling in the proliferation and regeneration of intestinal epithelium after intestinal ischemia reperfusion (I/R) injury.

Methods

Male Sprague-Dawley rats were subjected to sham operation or I/R by occlusion of the superior mesenteric artery (SMA) for 20 min. Intestinal tissue samples were collected at 0, 1, 2, 4, and 6 h after reperfusion. Proliferation of the intestinal epithelium was evaluated by immunohistochemical staining of proliferating nuclear antigen (PCNA). The mRNA and protein expression levels of Notch signaling components were examined using Real-time PCR and Western blot analyses. Immunofluorescence was also performed to detect the expression and location of Jagged-2, cleaved Notch-1, and Hes-1 in the intestine. Finally, the γ-secretase inhibitor DAPT and the siRNA for Jagged-2 and Hes-1 were applied to investigate the functional role of Notch signaling in the proliferation of intestinal epithelial cells in an in vitro IEC-6 culture system.

Results

I/R injury caused increased intestinal crypt epithelial cell proliferation and increased mRNA and protein expression of Jagged-2, Notch-1, and Hes-1. The immunofluorescence results further confirmed increased protein expression of Jagged-2, cleaved Notch-1, and Hes-1 in the intestinal crypts. The inhibition of Notch signaling with DAPT and the suppression of Jagged-2 and Hes-1 expression using siRNA both significantly inhibited the proliferation of IEC-6 cells.

Conclusion

The Jagged-2/Notch-1/Hes-1 signaling pathway is involved in intestinal epithelium regeneration early after I/R injury by increasing crypt epithelial cell proliferation.  相似文献   

19.

Context

Molecular diagnosis of congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency (21OHD) has not been straightforward.

Objective

To conduct a comprehensive genetic analysis by Multiplex Ligation dependent Probe Amplification (MLPA) and evaluate its reliability for the molecular CAH-21OHD diagnosis.

Patients and methods

We studied 99 patients from 90 families with salt-wasting (SW; n = 32), simple-virilizing (SV; n = 29), and non-classical (NC; n = 29) CAH-21OHD. Molecular analysis was sequentially performed by detecting the most frequent point mutations by allele-specific oligonucleotide polymerase chain reaction (ASO-PCR), large rearrangements by MLPA, and rare mutations by direct sequencing. Parental segregation was evaluated.

Results

ASO-PCR detected microconversions in 164 alleles (91.1%). MLPA identified CYP21A1P large conversions to CYP21A2 in 7 of the remaining 16 (43.7%), 30-kb deletions including the 3′-end of CYP21A1P, C4B, and the 5′-end of CYP21A2 in 3 of the 16 (18.7%), and a complete CYP21A2 deletion in one (6.3%). Five alleles (2.7%) required direct sequencing; three mutations located in the CYP21A2 gene and two derived from CYP21A1P were found. No parental segregation was observed in patients with the c.329_336del and/or the CL6 cluster mutations. These cases were not diagnosed by ASO-PCR, but MLPA detected deletions in the promoter region of the CYP21A2 gene, explaining the genotype/phenotype dissociation.

Conclusion

Using the proposed algorithm, all alleles were elucidated. False-positive results in MLPA occurred when mutations or polymorphisms were located close to the probe-binding regions. These difficulties were overcome by the association of MLPA with ASO-PCR and paternal segregation. Using these approaches, we can successfully use MLPA in a cost-effective laboratory routine for the molecular diagnosis of CAH-21OHD.  相似文献   

20.

Background

We profiled the expression of circulating microRNAs (miRNAs) in mice using Illumina small RNA deep sequencing in order to identify the miRNAs that may potentially be used as biomarkers to distinguish between gram-negative and gram-positive bacterial infections.

Results

Recombinant-specific gram-negative pathogen Escherichia coli (Xen14) and gram-positive pathogen Staphylococcus aureus (Xen29) were used to induce bacterial infection in mice at a concentration of 1 × 108 bacteria/100 μL of phosphate buffered saline (PBS). Small RNA libraries generated from the serum of mice after exposure to PBS, Xen14, Xen29, and Xen14 + Xen29 via the routes of subcutaneous injection (I), cut wound (C), or under grafted skin (S) were analyzed using an Illumina HiSeq2000 Sequencer. Following exposure to gram-negative bacteria alone, no differentially expressed miRNA was found in the injection, cut, or skin graft models. Exposure to mixed bacteria induced a similar expression pattern of the circulating miRNAs to that induced by gram-positive bacterial infection. Upon gram-positive bacterial infection, 9 miRNAs (mir-193b-3p, mir-133a-1-3p, mir-133a-2-3p, mir-133a-1-5p, mir-133b-3p, mir-434-3p, mir-127-3p, mir-676-3p, mir-215-5p) showed upregulation greater than 4-fold with a p-value < 0.01. Among them, mir-193b-3p, mir-133a-1-3p, and mir-133a-2-3p presented the most common miRNA targets expressed in the mice exposed to gram-positive bacterial infection.

Conclusions

This study identified mir-193b-3p, mir-133a-1-3p, and mir-133a-2-3p as potential circulating miRNAs for gram-positive bacterial infections.

Electronic supplementary material

The online version of this article (doi:10.1186/s12929-014-0106-y) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号