首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Synaptic vesicle proteins govern all relevant functions of the synaptic vesicle life cycle, including vesicle biogenesis, vesicle transport, uptake and storage of neurotransmitters, and regulated endocytosis and exocytosis. In spite of impressive progress made in the past years, not all known vesicular functions can be assigned to defined protein components, suggesting that the repertoire of synaptic vesicle proteins is still incomplete. We have identified and characterized a novel synaptic vesicle membrane protein of 31 kDa with six putative transmembrane helices that, according to its membrane topology and phylogenetic relation, may function as a vesicular transporter. The vesicular allocation is demonstrated by subcellular fractionation, heterologous expression, immunocytochemical analysis of brain sections and immunoelectron microscopy. The protein is expressed in select brain regions and contained in subpopulations of nerve terminals that immunostain for the vesicular glutamate transporter 1 and the vesicular GABA transporter VGaT (vesicular amino acid transporter) and may attribute specific and as yet undiscovered functions to subsets of glutamatergic and GABAergic synapses.  相似文献   

2.
Synaptic transmission depends on the efficient loading of transmitters into synaptic vesicles by vesicular neurotransmitter transporters. The vesicular monoamine transporter-2 (VMAT2) is essential for loading monoamines into vesicles and maintaining normal neurotransmission. In an effort to understand the regulatory mechanisms associated with VMAT2, we have embarked upon a systematic search for interacting proteins. Glutathione-S-transferase pull-down assays combined with mass spectrometry led to the identification of the 70-kDa heat shock cognate protein (Hsc70) as a VMAT2 interacting protein. Co-immunoprecipitation experiments in brain tissue and heterologous cells confirmed this interaction. A direct binding was observed between the amino terminus and the third cytoplasmic loop of VMAT2, as well as, a region containing the substrate binding and the carboxy-terminal domains of Hsc70. Furthermore, VMAT2 and Hsc70 co-fractionated with purified synaptic vesicles obtained from a sucrose gradient, suggesting that this interaction occurs at the synaptic vesicle membrane. The functional significance of this novel VMAT2/Hsc70 interaction was examined by performing vesicular uptake assays in heterologous cells and purified synaptic vesicles from brain tissue. Recombinant Hsc70 produced a dose-dependent inhibition of VMAT2 activity. This effect was mimicked by the closely related Hsp70 protein. In contrast, VMAT2 activity was not altered in the presence of previously denatured Hsc70 or Hsp70, as well as the unrelated Hsp60 protein; confirming the specificity of the Hsc70 effect. Finally, a purified Hsc70 fragment that binds VMAT2 was sufficient to inhibit VMAT2 activity in synaptic vesicles. Our results suggest an important role for Hsc70 in VMAT2 function and regulation.  相似文献   

3.
The synaptic vesicle-associated synapsin proteins may participate in synaptic transmission, but their exact functional role(s) here remain(s) uncertain. We here briefly describe the important characteristics of the synapsin proteins, and review recent studies on transgenic mice devoid of the gene products encoded by the synapsin I and II genes, where both neurochemical, cell biological and electrophysiological methods have been employed. We present evidence for synapsin effects on both neurotransmitter synthesis and homeostasis, as well as on synaptic vesicle development and functions. Moreover, we describe physiological analyses of excitatory glutamatergic hippocampal synapses where a novel synapsin-dependent delayed response enhancement (DRE) phase occurs, and demonstrate the postnatal developmental patterns of both frequency facilitations and DRE responses. Finally, we report synapsin I and II effects in distinct excitatory glutamatergic synapses in the hippocampus, and indicate that synapsin-dependent modulations of synaptic function may use distinct presynaptic response patterns in order to induce different classes of presynaptic plasticity.  相似文献   

4.
1. Selective protein–protein interactions between neurotransmitter transporters and their synaptic targets play important roles in regulating chemical neurotransmission. We screened a yeast two-hybrid library with bait containing the C-terminal amino acids of VGLUT1 and obtained clones that encode endophilin 1 and endophilin 3, proteins considered to play an integral role in glutamatergic vesicle formation.2. Using a modified yeast plasmid vector to enable more cost-effective screens, we analyzed the selectivity and specificity of this interaction. Endophilins 1 and 3 selectively recognize only VGLUT1 as the C-terminus of VGLUT2 and VGLUT3 do not interact with either endophilin isoform. We mutagenized four conserved stretches of primary sequence in VGLUT1 that includes two polyproline motifs (Pro1, PPAPPP, and Pro2, PPRPPPP), found only in VGLUT1, and two conserved stretches (SEEK, SYGAT), found also in VGLUT2 and VGLUT3. The absence of the VGLUT conserved regions does not affect VGLUT1–endophilin association. Of the two polyproline stretches, only one (Pro2) is required for binding specificity to both endophilin 1 and endophilin 3.3. We also show that endophilin 1 and endophilin 3 co-localize with VGLUT1 in synaptic terminals of differentiated rat neocortical neurons in primary culture. These results indicate that VGLUT1 and both endophilins are enriched in a class of excitatory synaptic terminals in cortical neurons and there, may interact to play an important role affecting the vesicular sequestration and synaptic release of glutamate.  相似文献   

5.
Chemical synapses are specialist points of contact between two neurons, where information transfer takes place. Communication occurs through the release of neurotransmitter substances from small synaptic vesicles in the presynaptic terminal, which fuse with the presynaptic plasma membrane in response to neuronal stimulation. However, as neurons in the central nervous system typically only possess ~ 200 vesicles, high levels of release would quickly lead to a depletion in the number of vesicles, as well as leading to an increase in the area of the presynaptic plasma membrane (and possible misalignment with postsynaptic structures). Hence, synaptic vesicle fusion is tightly coupled to a local recycling of synaptic vesicles. For a long time, however, the exact molecular mechanisms coupling fusion and subsequent recycling remained unclear. Recent work now indicates a unique role for the plasma membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2), acting together with the vesicular protein synaptotagmin, in coupling these two processes. In this work, we review the evidence for such a mechanism and discuss both the possible advantages and disadvantages for vesicle recycling (and hence signal transduction) in the nervous system. This article is part of a Special Issue entitled Lipids and Vesicular Transport.  相似文献   

6.
As membrane transporter proteins, VGLUT1-3 mediate the uptake of glutamate into synaptic vesicles at presynaptic nerve terminals of excitatory neural cells. This function is crucial for exocytosis and the role of glutamate as the major excitatory neurotransmitter in the central nervous system. The three transporters, sharing 76% amino acid sequence identity in humans, are highly homologous but differ in regional expression in the brain. Although little is known regarding their three-dimensional structures, hydropathy analysis on these proteins predicts 12 transmembrane segments connected by loops, a topology similar to other members in the major facilitator superfamily, where VGLUT1-3 have been phylogenetically classified. In this work, we present a three-dimensional model for the human VGLUT1 protein based on its distant bacterial homolog in the same superfamily, the glycerol-3-phosphate transporter from Escherichia coli. This structural model, stable during molecular dynamics simulations in phospholipid bilayers solvated by water, reveals amino acid residues that face its pore and are likely to affect substrate translocation. Docking of VGLUT1 substrates to this pore localizes two different binding sites, to which inhibitors also bind with an overall trend in binding affinity that is in agreement with previously published experimental data.  相似文献   

7.
阿尔兹海默病(Alzheimer’s disease,AD)是一种多因素复杂性神经退行性疾病,β淀粉样蛋白(pamyloid,AB)级联假说和谷氨酸兴奋性毒性是其重要的发病机制。囊泡谷氨酸转运体(vesicularglutamate transporters,VGLUTs)可特异性地将神经元内的谷氨酸转移入突触囊泡,且一个独立功能单位的VGLUT对于完成一个囊泡的填充是必要和充分的,没有VGLUT的突触囊泡中就没有谷氨酸(glutamate,Glul,VGLUT在一定程度上决定了释放进突触间隙Glu的量,是谷氨酸能突触传递的关键因子。在AD中Aβ增多聚集,VGLUTs表达减低,且VGLUTs转运Glu和Glu的囊泡释放与淀粉样前体蛋白(amyloid precursor protein,APP)代谢和A13的释放在突触囊泡的循环中存在行为平行性和共定位。胞外AB的增加可增强囊泡的释放几率,而Glu引起的突触活性增加亦可增加胞外A[3的浓度。APP/Aβ与谷氨酸能系统之间相互影响导致AD的发生,VGLUTs可能在其中发挥重要作用,被认为是治疗AD的潜在的药物靶点和预警标志物。  相似文献   

8.
gamma-Hydroxybutyrate (GHB) is an endogenous metabolite of mammalian brain which is derived from GABA. Much evidence favours its role as an endogenous neuromodulator, synthesized, stored and released at particular synapses expressing specific receptors. One key step for GHB involvement in neurotransmission is its uptake by a specific population of synaptic vesicles. We demonstrate that this specific uptake exists in a crude synaptic vesicle pool obtained from rat brain. The kinetic parameters and the pharmacology of this transport are in favour of an active vesicular uptake system for GHB via the vesicular inhibitory amino acid transporter. This result supports the idea that GABA and GHB accumulate together and are coliberated in some GABAergic synapses of the rat brain, where GHB acts as a modulatory factor for the activity of these synapses following stimulation of specific receptors.  相似文献   

9.
Neurotransmission depends on the regulated release of chemical transmitter molecules. This requires the packaging of these substances into the specialized secretory vesicles of neurons and neuroendocrine cells, a process mediated by specific vesicular transporters. The family of genes encoding the vesicular transporters for biogenic amines and acetylcholine have recently been cloned. Direct comparison of their transport characteristics and pharmacology provides information about vesicular transport bioenergetics, substrate feature recognition by each transporter, and the role of vesicular amine storage in the mechanism of action of psychopharmacologic and neurotoxic agents. Regulation of vesicular transport activity may affect levels of neurotransmitter available for neurosecretion and be an important site for the regulation of synaptic function. Gene knockout studies have determined vesicular transport function is critical for survival and have enabled further evaluation of the role of vesicular neurotransmitter transporters in behavior and neurotoxicity. Molecular analysis is beginning to reveal the sites involved in vesicular transporter function and the sites that determine substrate specificity. In addition, the molecular basis for the selective targeting of these transporters to specific vesicle populations and the biogenesis of monoaminergic and cholinergic synaptic vesicles are areas of research that are currently being explored. This information provides new insights into the pharmacology and physiology of biogenic amine and acetylcholine vesicular storage in cardiovascular, endocrine, and central nervous system function and has important implications for neurodegenerative disease.  相似文献   

10.
The calcium-triggered neurotransmitter release requires three SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins: synaptobrevin 2 (or vesicle-associated membrane protein 2) on the synaptic vesicle and syntaxin 1 and SNAP-25 (synaptosome-associated protein of 25 kDa) at the presynaptic plasma membrane. This minimal fusion machinery is believed to drive fusion of the vesicle to the presynaptic membrane. Complexin, also known as synaphin, is a neuronal cytosolic protein that acts as a major regulator of synaptic vesicle exocytosis. Stimulatory and inhibitory effects of complexin have both been reported, suggesting the duality of its function. To shed light on the molecular basis of the complexin's dual function, we have performed an EPR investigation of the complexin-SNARE quaternary complex. We found that the accessory α-helix (amino acids 27-48) by itself has the capacity to replace the C-terminus of the SNARE motif of vesicle-associated membrane protein 2 in the four-helix bundle and makes the SNARE complex weaker when the N-terminal region of complexin I (amino acids 1-26) is removed. However, the accessory α-helix remains detached from the SNARE core when the N-terminal region of complexin I is present. Thus, our data show the possibility that the balance between the activities of the accessory α-helix and the N-terminal domain might determine the final outcome of the complexin function, either stimulatory or inhibitory.  相似文献   

11.
We recently identified in a proteomic screen a novel synaptic vesicle membrane protein of 31 kDa (SV31) of unknown function. According to its membrane topology and its phylogenetic relation SV31 may function as a vesicular transporter. Based on its amino acid sequence similarity to a prokaryotic heavy metal ion transporter we analyzed its metal ion-binding properties and show that recombinant SV31 binds the divalent cations Zn(2+) and Ni(2+) and to a minor extent Cu(2+), but not Fe(2+), Co(2+), Mn(2+), or Ca(2+). Zn(2+)-binding of SV31 in viable cells was verified following heterologous transfection of pheochromocytoma cells 12 (PC12) with recombinant red fluorescent SV31 (SV31-RFP) and the fluorescent zinc indicator FluoZin-3. Sucrose density gradient fractionation of SV31-RFP-transfected PC12 cells revealed a partial overlap of SV31-RFP with synaptic-like vesicle markers and the early endosome marker rab5. Immunocytochemical analysis demonstrated a punctuate distribution in the cell soma and in neuritic processes and in addition in a compartment in vicinity to the plasma membrane that was immunopositive also for synaptosomal-associated protein 25 (SNAP-25) and syntaxin1A. Our data suggest that SV31 represents a novel Zn(2+) -binding protein that in PC12 cells is targeted to endosomes and subpopulations of synaptic-like microvesicles.  相似文献   

12.
The increasingly appreciated role of astrocytes in neurophysiology dictates a thorough understanding of the mechanisms underlying the communication between astrocytes and neurons. In particular, the uptake and release of signaling substances into/from astrocytes is considered as crucial. The release of different gliotransmitters involves regulated exocytosis, consisting of the fusion between the vesicle and the plasma membranes. After fusion with the plasma membrane vesicles may be retrieved into the cytoplasm and may continue to recycle. To study the mobility implicated in the retrieval of secretory vesicles, these structures have been previously efficiently and specifically labeled in cultured astrocytes, by exposing live cells to primary and secondary antibodies. Since the vesicle labeling and the vesicle mobility properties may be an artifact of cell culture conditions, we here asked whether the retrieving exocytotic vesicles can be labeled in brain tissue slices and whether their mobility differs to that observed in cell cultures. We labeled astrocytic vesicles and recorded their mobility with two-photon microscopy in hippocampal slices from transgenic mice with fluorescently tagged astrocytes (GFP mice) and in wild-type mice with astrocytes labeled by Fluo4 fluorescence indicator. Glutamatergic vesicles and peptidergic granules were labeled by the anti-vesicular glutamate transporter 1 (vGlut1) and anti-atrial natriuretic peptide (ANP) antibodies, respectively. We report that the vesicle mobility parameters (velocity, maximal displacement and track length) recorded in astrocytes from tissue slices are similar to those reported previously in cultured astrocytes.  相似文献   

13.
Abstract: Synaptic vesicles isolated from electric ray electric organ have been shown previously to contain a 34-kDa protein that binds azido-ATP, azido-AMP, and N -ethylmaleimide. The protein was found to share similarities with the mitochondrial ADP/ATP carrier and assumed to represent the synaptic vesicle nucleotide transporter. Synaptic vesicles were purified by sucrose density gradient centrifugation and subsequent chromatography on Sephacryl S-1000 from both Torpedo electric organ and bovine brain cerebral cortex. They contained ATP-binding proteins of 35 kDa and 34 kDa, respectively. ATP binding was inhibited by AMP. Both proteins were highly enriched after column chromatography of vesicle proteins of AMP-Sepharose. Antibodies were obtained against both proteins. Antibodies against the bovine brain synaptic vesicle protein of 34 kDa bound specifically to the 35-kDa protein of Torpedo vesicles. An N-terminal sequence obtained against the 34-kDa protein of bovine brain synaptic vesicles identified it as glyceraldehyde-3-phosphate dehydrogenase. The previously observed molecular characteristics of the putative vesicular nucleotide transporter in Torpedo fit those of glyceraldehyde-3-phosphate dehydrogenase. We, therefore, suggest that the protein previously identified as putative nucleotide transporter is, in fact, glyceraldehyde-3-phosphate dehydrogenase.  相似文献   

14.
Using electrophysiology and fluorescence microscopy with dye FM 1-43, a comparative study of peculiarities of neurotransmitter secretion, synaptic vesicle exo-endocytosis and recycling has been carried out in nerve terminals (NT) of the skin-sternal muscle of the frog Rana ridibunda and of the white mouse diaphragm muscle during a long-term high-frequency stimulation (20 imp/s). The obtained data have allowed identifying three synaptic vesicle pools and two recycling ways in the motor NT. In the frog NT, the long-term high-frequency stimulation induced consecutive expenditure of the pool ready to release, the mobilizational, and reserve vesicle pools. The exocytosis rate exceeded markedly the endocytosis rate; the slow synaptic vesicle recycling with replenishment of the reserve pool was predominant. In the mouse NT, only the vesicles of the ready to release and the mobilizational pools, which are replenished predominantly by fast recycling, were exocytosed. The exo- and endocytosis occurred practically in parallel, while vesicles of the reserve pool did not participate in the neurotransmitter secretion. It is suggested that evolution of the motor NT from the poikilothermal to homoiothermal animals went by the way of a decrease of the vesicle pool size, the more economic expenditure and the more effective reuse of synaptic vesicles owing to the high rates of endocytosis and recycling. These peculiarities can provide in NT of homoiothermal animals a long maintenance of neurotransmitter secretion at the steady and sufficiently high level to preserve reliability of synaptic transmission in the process of the high-frequency activity.  相似文献   

15.
In the nerve terminal, neurotransmitter is actively packaged into synaptic vesicles before its release by Ca2+-dependent exocytosis. The three vesicular glutamate transporters (VGLUT1, -2 and -3) are highly conserved proteins that display similar bioenergetic and pharmacological properties but are expressed in different brain areas. We used the divergent C-terminus of VGLUT1 as a bait in a yeast two-hybrid screen to identify and map the interaction between a proline-rich domain of VGLUT1 and the Src homology domain 3 (SH3) domain of endophilin. We further confirmed this interaction by using different glutathione-S-transferase-endophilin fusion proteins to pull down VGLUT1 from rat brain extracts. The expression profiles of the two genes and proteins were compared on rat brain sections, showing that endophilin is most highly expressed in regions and cells expressing VGLUT1. Double immunofluorescence in the rat cerebellum shows that most VGLUT1-positive terminals co-express endophilin, whereas VGLUT2-expressing terminals are often devoid of endophilin. However, neither VGLUT1 transport activity, endophilin enzymatic activity nor VGLUT1 synaptic targeting were altered by this interaction. Overall, the discovery of endophilin as a partner for VGLUT1 in nerve terminals strongly suggests the existence of functional differences between VGLUT1 and -2 terminals in their abilities to replenish vesicle pools.  相似文献   

16.
A vesicular glutamate transporter (VGLUT) is responsible for the accumulation of l-glutamate in synaptic vesicles in glutamatergic neurons. Two isoforms, VGLUT1 and VGLUT2, have been identified, which are complementarily expressed in these neurons. Mammalian pinealocytes, endocrine cells for melatonin, are also glutamatergic in nature, accumulate l-glutamate in synaptic-like microvesicles (SLMVs), and secrete it through exocytosis. Although the storage of l-glutamate in SLMVs is mediated through a VGLUT, the molecular nature of the transporter is less understood. We recently observed that VGLUT2 is expressed in pinealocytes. In the present study, we show that pinealocytes also express VGLUT1. RT-PCR and northern blot analyses indicated expression of the VGLUT1 gene in pineal gland. Western blotting with specific antibodies against VGLUT1 indicated the presence of VGLUT1 in pineal gland. Indirect immunofluorescence microscopy with a section of pineal gland and cultured cells indicated that VGLUT1 and VGLUT2 are co-localized with process terminal regions of pinealocytes. Furthermore, immunoelectronmicroscopy as well as subcellular fractionation studies revealed that both VGLUT1 and VGLUT2 are specifically associated with SLMVs. These results indicate that both VGLUTs are responsible for storage of l-glutamate in SLMVs in pinealocytes. Pinealocytes are the first exception as to complementary expression of VGLUT1 and VGLUT2.  相似文献   

17.
神经末梢突触囊泡释放神经递质过程的调控蛋白   总被引:3,自引:0,他引:3  
神经末梢突触囊泡释放神经递质是一个复杂且受到精细调控的过程,涉及多种蛋白质间的相互作用。位于突触囊泡膜上的突触囊泡蛋白/突触囊泡相关膜蛋白(synaptobrevin/VAMP),与位于突触前膜上的syntaxin和突触小体相关蛋白SNAP-25,三者聚合形成的可溶性N-甲基马来酰胺敏感因子(NSF)附着蛋白受体(SNARE)核心复合物是突触囊泡胞吐过程中的核心成分。本文主要围绕参与空触囊泡胞吐过程,以及调节SNARE核心复合物的形成,解离及其功能的蛋白质,并对突触囊泡胞吐过程的分子模型作一概述。  相似文献   

18.
How clathrin‐mediated endocytosis (CME) retrieves vesicle proteins into newly formed synaptic vesicles (SVs) remains a major puzzle. Besides its roles in stimulating clathrin‐coated vesicle formation and regulating SV size, the clathrin assembly protein AP180 has been identified as a key player in retrieving SV proteins. The mechanisms by which AP180 recruits SV proteins are not fully understood. Here, we show that following acute inactivation of AP180 in Drosophila, SV recycling is severely impaired at the larval neuromuscular synapse based on analyses of FM 1‐43 uptake and synaptic ultrastructure. More dramatically, AP180 activity is important to maintain the integrity of SV protein complexes at the plasma membrane during endocytosis. These observations suggest that AP180 normally clusters SV proteins together during recycling. Consistent with this notion, SV protein composition and distribution are altered in AP180 mutant flies. Finally, AP180 co‐immunoprecipitates with SV proteins, including the vesicular glutamate transporter and neuronal synaptobrevin. These results reveal a new mode by which AP180 couples protein retrieval to CME of SVs. AP180 is also genetically linked to Alzheimer's disease. Hence, the findings of this study may provide new mechanistic insight into the role of AP180 dysfunction in Alzheimer's disease.   相似文献   

19.
Phosphorylation of brain synaptic and coated vesicle proteins was stimulated by Ca2+ and calmodulin. As determined by 5-15% sodium dodecylsulfate (SDS) polyacrylamide gel electrophoresis (PAGE), molecular weights (Mr) of the major phosphorylated proteins were 55,000 and 53,000 in synaptic vesicles and 175,000 and 55,000 in coated vesicles. In synaptic vesicles, phosphorylation was inhibited by affinity-purified antibodies raised against a 30,000 Mr protein doublet endogenous to synaptic and coated vesicles. When this doublet, along with clathrin, was extracted from coated vesicles, phosphorylation did not take place, implying that the protein doublet may be closely associated with Ca2+/calmodulin-dependent protein kinase. Affinity-purified antibodies, raised against clathrin used as a control antibody, failed to inhibit Ca2+/calmodulin-dependent phosphorylation in either synaptic or coated vesicles. Immunoelectron cytochemistry revealed that this protein doublet was present in axon terminal synaptic and coated vesicles. Synaptic vesicles also displayed cAMP-dependent kinase activity; coated vesicles did not. The molecular weights of phosphorylated synaptic vesicle proteins in the presence of Mg2+ and cAMP were: 175,000, 100,000, 80,000, 57,000, 55,000, 53,000, 40,000, and 30,000. Based on the different phosphorylation patterns observed in synaptic and coated vesicles, we propose that brain vesicle protein kinase activities may be involved in the regulation of exocytosis and in retrieval of synaptic membrane in presynaptic axon terminals.  相似文献   

20.
Vesicular glutamate transporters (VGLUTs) are essential to glutamatergic synapses and determine the glutamatergic phenotype of neurones. The three known VGLUT isoforms display nearly identical uptake characteristics, but the associated expression domains in the adult rodent brain are largely segregated. Indeed, indirect evidence obtained in young VGLUT1-deficient mice indicated that in cells that co-express VGLUT1 and VGLUT2, the transporters may be targeted to different synaptic vesicles, which may populate different types of synapses formed by the same neurone. Direct evidence for a systematic segregation of VGLUT1 and VGLUT2 to distinct synapses and vesicles is lacking, and the mechanisms that may convey this segregation are not known. We show here that VGLUT1 and VGLUT2 are co-localized in many layers of the young hippocampus. Strikingly, VGLUT2 co-localizes with VGLUT1 in the mossy fibers at early stages. Furthermore, we show that a fraction of VGLUT1 and VGLUT2 is carried by the same vesicles at these stages. Hence, hippocampal neurones co-expressing VGLUT1 and VGLUT2 do not appear to sort them to separate vesicle pools. As the number of transporter molecules per vesicle affects quantal size, the developmental window where VGLUT1 and VGLUT2 are co-expressed may allow for greater plasticity in the control of quantal release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号