首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Myosin Vb Is Associated with Plasma Membrane Recycling Systems   总被引:14,自引:0,他引:14       下载免费PDF全文
Myosin Va is associated with discrete vesicle populations in a number of cell types, but little is known of the function of myosin Vb. Yeast two-hybrid screening of a rabbit parietal cell cDNA library with dominant active Rab11a (Rab11aS20V) identified myosin Vb as an interacting protein for Rab11a, a marker for plasma membrane recycling systems. The isolated clone, corresponding to the carboxyl terminal 60 kDa of the myosin Vb tail, interacted with all members of the Rab11 family (Rab11a, Rab11b, and Rab25). GFP-myosin Vb and endogenous myosin Vb immunoreactivity codistributed with Rab11a in HeLa and Madin-Darby canine kidney (MDCK) cells. As with Rab11a in MDCK cells, the myosin Vb immunoreactivity was dispersed with nocodazole treatment and relocated to the apical corners of cells with taxol treatment. A green fluorescent protein (GFP)-myosin Vb tail chimera overexpressed in HeLa cells retarded transferrin recycling and caused accumulation of transferrin and the transferrin receptor in pericentrosomal vesicles. Expression of the myosin Vb tail chimera in polarized MDCK cells stably expressing the polymeric IgA receptor caused accumulation of basolaterally endocytosed polymeric IgA and the polymeric IgA receptor in the pericentrosomal region. The myosin Vb tail had no effects on transferrin trafficking in polarized MDCK cells. The GFP-myosin Va tail did not colocalize with Rab11a and had no effects on recycling system vesicle distribution in either HeLa or MDCK cells. The results indicate myosin Vb is associated with the plasma membrane recycling system in nonpolarized cells and the apical recycling system in polarized cells. The dominant negative effects of the myosin Vb tail chimera indicate that this unconventional myosin is required for transit out of plasma membrane recycling systems.  相似文献   

2.
Plasma membrane recycling is an important process necessary for maintaining membrane composition. The motor protein myosin Vb regulates plasma membrane recycling through its association with Rab11a. Overexpression of the tail of myosin Vb disrupts trafficking out of plasma membrane recycling systems and leads to the accumulation of Rab11a in both polarized and non-polarized cells. We have investigated the association of Rab11 family interacting protein 2 (Rab11-FIP2) with myosin Vb as an adapter protein between Rab11a and myosin Vb. Immunofluorescence studies indicated a colocalization of endogenous Rab11-FIP2 with green fluorescent protein-myosin Vb tail overexpressed in Madin-Darby canine kidney (MDCK) cells. Yeast two hybrid assays showed that amino acids 129-356 of Rab11-FIP2 were important for binding to myosin Vb tail. In vitro association assays and co-transfection experiments in both MDCK and HeLa cells confirmed this result but further refined the binding site to amino acids 129-290 of Rab11-FIP2. Like myosin Vb, functional studies indicated that Rab11-FIP2 is also important for normal plasma membrane recycling. Green fluorescent protein-Rab11-FIP2 (129-512), which lacks its amino-terminal C2 domain, functioned as a dominant negative acting truncation that caused accumulation of Rab11a and disrupted IgA trafficking in MDCK cells and transferrin trafficking in HeLa cells. The ternary association of myosin Vb and Rab11-FIP2 with Rab11a suggests that a multimeric protein complex is involved in vesicle trafficking through plasma membrane recycling systems.  相似文献   

3.
Cells use multiple pathways to internalize and recycle cell surface components. Although Rab11a and Myosin Vb are involved in the recycling of proteins internalized by clathrin-mediated endocytosis, Rab8a has been implicated in nonclathrin-dependent endocytosis and recycling. By yeast two-hybrid assays, we have now demonstrated that Myosin Vb can interact with Rab8a, but not Rab8b. We have confirmed the interaction of Myosin Vb with Rab11a and Rab8a in vivo by using fluorescent resonant energy transfer techniques. Rab8a and Myosin Vb colocalize to a tubular network containing EHD1 and EHD3, which does not contain Rab11a. Myosin Vb tail can cause the accumulation of both Rab11a and Rab8a in collapsed membrane cisternae, whereas dominant-negative Rab11-FIP2(129-512) selectively accumulates Rab11a but not Rab8a. Additionally, dynamic live cell imaging demonstrates distinct pathways for Rab11a and Rab8a vesicle trafficking. These findings indicate that Rab8a and Rab11a define different recycling pathways that both use Myosin Vb.  相似文献   

4.
The members of the family of Rab11 small GTPases are critical regulators of the plasma membrane vesicle recycling system. While previous studies have determined that the Golgi apparatus disperses during mitosis and reorganizes after cytokinesis, the fate of the recycling system during the cell cycle is more obscure. We have now studied in MDCK cells the fate during mitosis of an apical recycling system cargo, the polymeric IgA receptor (pIgAR), and regulators of the recycling system, Rab11a and its interacting proteins myosin Vb, Rab11-FIP1, Rab11-FIP2 and pp75/Rip11. Rab11a, pIgAR and myosin Vb containing vesicles dispersed into diffuse puncta in the cytosol during prophase and then became clustered near the spindle poles after metaphase, increasing in intensity throughout telophase. A similar pattern was observed for Rab11-FIP1 and Rab11-FIP2. However, Rab11-FIP1 lost colocalization with other recycling system markers during late prophase, relocating to the pericentriolar material. During telophase, Rab11-FIP1 returned to recycling system vesicles. Western blot analysis indicated that both Rab11a and pIgAR remained associated with membrane vesicles throughout the cell cycle. This behavior of the Rab11a-containing apical recycling endosome system during division was distinct from that of the Golgi apparatus. These results indicate that critical components of the apical recycling system remain associated on vesicles throughout the cell cycle and may provide a means for rapid re-establishment of plasma membrane components after mitosis.  相似文献   

5.
A Role of myosin Vb and Rab11-FIP2 in the aquaporin-2 shuttle   总被引:4,自引:0,他引:4  
Arginine-vasopressin (AVP) regulates water reabsorption in renal collecting duct principal cells. Its binding to Gs-coupled vasopressin V2 receptors increases cyclic AMP (cAMP) and subsequently elicits the redistribution of the water channel aquaporin-2 (AQP2) from intracellular vesicles into the plasma membrane (AQP2 shuttle), thereby facilitating water reabsorption from primary urine. The AQP2 shuttle is a paradigm for cAMP-dependent exocytic processes. Using sections of rat kidney, the AQP2-expressing cell line CD8, and primary principal cells, we studied the role of the motor protein myosin Vb, its vesicular receptor Rab11, and the myosin Vb- and Rab11-binding protein Rab11-FIP2 in the AQP2 shuttle. Myosin Vb colocalized with AQP2 intracellularly in resting and at the plasma membrane in AVP-treated cells. Rab11 was found on AQP2-bearing vesicles. A dominant-negative myosin Vb tail construct and Rab11-FIP2 lacking the C2 domain (Rab11-FIP2-DeltaC2), which disrupt recycling, caused condensation of AQP2 in a Rab11-positive compartment and abolished the AQP2 shuttle. This effect was dependent on binding of myosin Vb tail and Rab11-FIP2-DeltaC2 to Rab11. In summary, we identified myosin Vb as a motor protein involved in AQP2 recycling and show that myosin Vb- and Rab11-FIP2-dependent recycling of AQP2 is an integral part of the AQP2 shuttle.  相似文献   

6.
Agonist-stimulated internalization followed by recycling to the cell membrane play an important role in fine-tuning the activity of chemokine receptors. Because the recycling of chemokine receptors is critical for the reestablishment of the cellular responsiveness to ligand, it is crucial to understand the mechanisms underlying the receptor recycling and resensitization. In the present study, we have demonstrated that the chemokine receptor CXCR2 associated with myosin Vb and Rab11-family interacting protein 2 (FIP2) in a ligand-dependent manner. Truncation of the C-terminal domain of the receptor did not affect the association, suggesting that the interactions occur upstream of the C terminus of CXCR2. After ligand stimulation, the internalized CXCR2 colocalized with myosin Vb and Rab11-FIP2 in Rab11a-positive vesicles. The colocalization lasted for approximately 2 h, and little colocalization was observed after 4 h of ligand stimulation. CXCR2 also colocalized with myosin Vb tail or Rab11-FIP2 (129-512), the N-terminal-truncated mutants of myosin Vb and Rab11-FIP2, respectively, but in a highly condensed manner. Expression of the enhanced green fluorescent protein-tagged myosin Vb tail significantly retarded the recycling and resensitization of CXCR2. CXCR2 recycling was also reduced by the expression Rab11-FIP2 (129-512). Moreover, expression of the myosin Vb tail reduced CXCR2- and CXCR4-mediated chemotaxis. These data indicate that Rab11-FIP2 and myosin Vb regulate CXCR2 recycling and receptor-mediated chemotaxis and that passage of internalized CXCR2 through Rab11a-positive recycling system is critical for physiological response to a chemokine.  相似文献   

7.
Cystic fibrosis transmembrane conductance regulator (CFTR)-mediated Cl(-) secretion across fluid-transporting epithelia is regulated, in part, by modulating the number of CFTR Cl(-) channels in the plasma membrane by adjusting CFTR endocytosis and recycling. However, the mechanisms that regulate CFTR recycling in airway epithelial cells remain unknown, at least in part, because the recycling itineraries of CFTR in these cells are incompletely understood. In a previous study, we demonstrated that CFTR undergoes trafficking in Rab11a-specific apical recycling endosomes in human airway epithelial cells. Myosin Vb is a plus-end-directed, actin-based mechanoenzyme that facilitates protein trafficking in Rab11a-specific recycling vesicles in several cell model systems. There are no published studies examining the role of myosin Vb in airway epithelial cells. Thus, the goal of this study was to determine whether myosin Vb facilitates CFTR recycling in polarized human airway epithelial cells. Endogenous CFTR formed a complex with endogenous myosin Vb and Rab11a. Silencing myosin Vb by RNA-mediated interference decreased the expression of wild-type CFTR and DeltaF508-CFTR in the apical membrane and decreased CFTR-mediated Cl(-) secretion across polarized human airway epithelial cells. A recombinant tail domain fragment of myosin Vb attenuated the plasma membrane expression of CFTR by arresting CFTR recycling. The dominant-negative effect was dependent on the ability of the myosin Vb tail fragment to interact with Rab11a. Taken together, these data indicate that myosin Vb is required for CFTR recycling in Rab11a-specific apical recycling endosomes in polarized human airway epithelial cells.  相似文献   

8.
Sorting endosomes and the endocytic recycling compartment are critical intracellular stores for the rapid recycling of internalized membrane receptors to the cell surface in multiple cell types. However, the molecular mechanisms distinguishing fast receptor recycling from sorting endosomes and slow receptor recycling from the endocytic recycling compartment remain poorly understood. We previously reported that Rab15 differentially regulates transferrin receptor trafficking through sorting endosomes and the endocytic recycling compartment, suggesting a role for distinct Rab15-effector interactions at these endocytic compartments. In this study, we identified the novel protein Rab15 effector protein (REP15) as a binding partner for Rab15-GTP. REP15 is compartment specific, colocalizing with Rab15 and Rab11 on the endocytic recycling compartment but not with Rab15, Rab4, or early endosome antigen 1 on sorting endosomes. REP15 interacts directly with Rab15-GTP but not with Rab5 or Rab11. Consistent with its localization, REP15 overexpression and small interfering RNA-mediated depletion inhibited transferrin receptor recycling from the endocytic recycling compartment, without affecting receptor entry into or recycling from sorting endosomes. Our data identify REP15 as a compartment-specific protein for receptor recycling from the endocytic recycling compartment, highlighting that the rapid and slow modes of transferrin receptor recycling are mechanistically distinct pathways.  相似文献   

9.
Endocytic motifs in the carboxyl terminus of cystic fibrosis transmembrane conductance regulator (CFTR) direct internalization from the plasma membrane by clathrin-mediated endocytosis. However, the fate of such internalized CFTR has remained unknown. Internalized membrane proteins can be either targeted for degradation or recycled back to the plasma membrane. Using cell surface biotinylation and antibody uptake studies, we show that CFTR undergoes constitutive endocytosis and recycling back to the plasma membrane. Expression of dominant negative Rme-1 (a protein that regulates exit from the endosomal recycling compartment) in CFTR-expressing cells results in the expansion of recycling compartments. Transferrin, a marker for the endosomal recycling compartment, and CFTR accumulate in these enlarged recycling endosomes. Such accumulation leads to a loss of cell surface CFTR because it is prevented from being recycled back to the cell surface. In contrast, traffic of the low-density lipoprotein (LDL) is unaffected by the expression of dominant negative Rme-1. In addition, chimeras containing the extracellular domain of the transferrin receptor and the carboxyl terminal tail of CFTR also enter Rme-1-regulated recycling compartments and accumulate in these compartments containing dominant negative Rme-1, suggesting that in addition to endocytic signals, the carboxyl terminal tail of CFTR also contains intracellular traffic information.  相似文献   

10.
The potential application of transferrin receptors as delivery vehicles for transport of macromolecular drugs across intestinal epithelial cells is limited by several factors, including the low level of transferrin receptor-mediated transcytosis, particularly in the apical-to-basolateral direction. The GTPase inhibitor, AG10 (tyrphostin A8), has been shown previously to increase the apical-to-basolateral transcytosis of transferrin in Caco-2 cells. However, the mechanism of the increased transcytosis has not been established. In this report, the effect of AG10 on the trafficking of endocytosed transferrin among different endosomal compartments as well as the involvement of Rab11 in the intracellular trafficking of transferrin was investigated. Confocal microscopy studies showed a high level of colocalization of FITC-transferrin with Rab5 and Rab11 in Caco-2 cells pulsed at 16 degrees C and 37 degrees C, which indicated the presence of apically endocytosed FITC-transferrin in early endosomes and apical recycling endosomes at 16 degrees C and 37 degrees C, respectively. The effect of AG10 on the accumulation of transferrin within different endosomal compartment was studied, and an increase in the transcytosis and recycling of internalized (125)I-labeled transferrin, as well as a decrease in cell-associated (125)I-labeled transferrin, was observed in AG10-treated Caco-2 cells pulsed at 37 degrees C for 30 min and chased for 30 min. Moreover, confocal microscopy showed that FITC-transferrin exhibited an increased level of colocalization with Rab11, but not with Rab5, in the presence of AG10. These results suggest an effect of AG10 on the later steps of transferrin receptor trafficking, which are involved in subsequent recycling, and possibly transcytosis, of endocytosed transferrin in Caco-2 cells.  相似文献   

11.
RGS4, a heterotrimeric G-protein inhibitor, localizes to plasma membrane (PM) and endosomal compartments. Here, we examined Rab-mediated control of RGS4 internalization and recycling. Wild type and constitutively active Rab5 decreased RGS4 PM levels while increasing its endosomal targeting. Rab5, however, did not appreciably affect the PM localization or function of the M1 muscarinic receptor (M1R)/Gq signaling cascade. RGS4-containing endosomes co-localized with subsets of Rab5-, transferrin receptor-, and Lamp1/Lysotracker-marked compartments suggesting RGS4 traffics through PM recycling or acidified endosome pathways. Rab7 activity promoted TGN association, whereas Rab7(dominant negative) trapped RGS4 in late endosomes. Furthermore, RGS4 was found to co-localize with an endosomal pool marked by Rab11, the protein that mediates recycling/sorting of proteins to the PM. The Cys-12 residue in RGS4 appeared important for its Rab11-mediated trafficking to the PM. Rab11(dominant negative) decreased RGS4 PM levels and increased the number of RGS4-containing endosomes. Inhibition of Rab11 activity decreased RGS4 function as an inhibitor of M1R activity without affecting localization and function of the M1R/Gq signaling complex. Thus, both Rab5 activation and Rab11 inhibition decreased RGS4 function in a manner that is independent from their effects on the localization and function of the M1R/Gq signaling complex. This is the first study to implicate Rab GTPases in the intracellular trafficking of an RGS protein. Thus, Rab GTPases may be novel molecular targets for the selective regulation of M1R-mediated signaling via their specific effects on RGS4 trafficking and function.  相似文献   

12.
To investigate the cell entry and intracellular trafficking of anthrax oedema factor (EF) and lethal factor (LF), they were C‐terminally fused to the enhanced green fluorescent protein (EGFP) and monomeric Cherry (mCherry) fluorescent proteins. Both chimeras bound to the surface of BHK cells treated with protective antigen (PA) in a patchy mode. Binding was followed by rapid internalization, and the two anthrax factors were found to traffic along the same endocytic route and with identical kinetics, indicating that their intracellular path is essentially dictated by PA. Colocalization studies indicated that anthrax toxins enter caveolin‐1 containing compartments and then endosomes marked by phoshatidylinositol 3‐phoshate and Rab5, but not by early endosome antigen 1 and transferrin. After 40 min, both EF and LF chimeras were observed to localize within late compartments. Eventually, LF and EF appeared in the cytosol with a time‐course consistent with translocation from late endosomes. Only the EGFP derivatives reached the cytosol because they are translocated by the PA channel, while the mCherry derivatives are not. This difference is attributed to a higher resistance of mCherry to unfolding. After translocation, LF disperses in the cytosol, while EF localizes on the cytosolic face of late endosomes.  相似文献   

13.
The interaction of anthrax toxin protective antigen (PA) and target cells was assessed, and the importance of the cytosolic domain of tumor endothelium marker 8 (TEM8) in its function as a cellular receptor for PA was evaluated. PA binding and proteolytic processing on the Chinese hamster ovary cell surface occurred rapidly, with both processes nearly reaching steady state in 5 min. Remarkably, the resulting PA63 fragment was present on the cell surface only as an oligomer, and furthermore, the oligomer was the only PA species internalized, suggesting that oligomerization of PA63 triggers receptor-mediated endocytosis. Following internalization, the PA63 oligomer was rapidly and irreversibly transformed to an SDS/heat-resistant form, in a process requiring an acidic compartment. This conformational change was functionally correlated with membrane insertion, channel formation, and translocation of lethal factor into the cytosol. To explore the role of the TEM8 cytosolic tail, a series of truncated TEM8 mutants was transfected into a PA receptor-deficient Chinese hamster ovary cell line. Interestingly, all of the cytosolic tail truncated TEM8 mutants functioned as PA receptors, as determined by PA binding, processing, oligomer formation, and translocation of an lethal factor fusion toxin into the cytosol. Moreover, cells transfected with a TEM8 construct truncated before the predicted transmembrane domain failed to bind PA, demonstrating that residues 321-343 are needed for cell surface anchoring. Further evidence that the cytosolic domain plays no essential role in anthrax toxin action was obtained by showing that TEM8 anchored by a glycosylphosphatidylinositol tail also functioned as a PA receptor.  相似文献   

14.
We found that phoshatidylinositol-3 kinase (PI3-K) markedly contributes to the increased surface expression of bovine transferrin receptor (TfR) on Theileria-infected lymphocytes. We observed that all aspects of TfR turnover are upregulated in parasitized B cells and we were able to detect TfR colocalizing with EEA1 (early endosome antigen 1) and Rab11 at the ultrastructure level in Theileria-infected B cells. We demonstrated recycling of TfR through Rab5- and Rab11-positive compartments by transfection of dominant negative guanosine diphosphate (GDP)-on mutants of the GTPases. Therefore, in Theileria-transformed B cells constitutive PI3-K activity leads to accelerated TfR recycling through Rab5- and Rab11-positive compartments.  相似文献   

15.
Rab11a is a small GTP-binding protein enriched in the pericentriolar plasma membrane recycling systems. We hypothesized that Rab11a-binding proteins exist as downstream effectors of its action. Here we define a family of four Rab11-interacting proteins: Rab11-Family Interacting Protein 1 (Rab11-FIP1), Rab11-Family Interacting Protein 2 (Rab11-FIP2), Rab11-Family Interacting Protein 3 (Rab11-FIP3), and pp75/Rip11. All four interacting proteins associated with wild type Rab11a and dominant active Rab11a (Rab11aS20V) as well as Rab11b and Rab25. Rab11-FIP2 also interacted with dominant negative Rab11a (Rab11aS25N) and the tail of myosin Vb. The binding of Rab11-FIP1, Rab11-FIP2, and Rab11-FIP3 to Rab11a was dependent upon a conserved carboxyl-terminal amphipathic alpha-helix. Rab11-FIP1, Rab11-FIP2, and pp75/Rip11 colocalized with Rab11a in plasma membrane recycling systems in both non-polarized HeLa cells and polarized Madin-Darby canine kidney cells. GFP-Rab11-FIP3 also colocalized with Rab11a in HeLa cells. Rab11-FIP1, Rab11-FIP2, and pp75/Rip11 also coenriched with Rab11a and H(+)K(+)-ATPase on parietal cell tubulovesicles, and Rab11-FIP1 and Rab11-FIP2 translocated with Rab11a and the H(+)K(+)-ATPase upon stimulating parietal cells with histamine. The results suggest that the function of Rab11a in plasma membrane recycling systems is dependent upon a compendium of protein effectors.  相似文献   

16.
ß1-adrenergic receptors (ß1-AR) are internalized in response to agonists and then recycle back for another round of signaling. The serine 312 to alanine mutant of the ß1-AR (S312A) is internalized but does not recycle. We determined that WT ß1-AR and S312A were internalized initially to an early sorting compartment because they colocalized by > 70% with the early endosomal markers rab5a and early endosomal antigen-1 (EEA1). Subsequently, the WT ß1-AR trafficked via rab4a-expressing sorting endosomes to recycling endosomes. In recycling endosomes WT ß1-AR were colocalized by > 70% with the rab11 GTPase. S312A did not colocalize with either rab4a or rab11, instead they exited from early endosomes to late endosomes/lysosomes in which they were degraded. Rab11a played a prominent role in recycling of the WT ß1-AR because dominant negative rab11a inhibited, while constitutively active rab11a accelerated the recycling of the ß1-AR. Next, we determined the effect of each of the rab11-interacting proteins on trafficking of the WT ß1-AR. The recycling of the ß1-AR was markedly inhibited when myosin Vb, FIP2, FIP3 and rabphillin were knocked down. These data indicate that rab11a and a select group of its binding partners play a prominent role in recycling of the human ß1-AR.  相似文献   

17.
Rab22a is a member of the Rab family of small GTPases that localizes in the endocytic pathway. In CHO cells, expression of canine Rab22a (cRab22a) causes a dramatic enlargement of early endocytic compartments. We wondered whether transferrin recycling is altered in these cells. Expression of the wild-type protein and a GTP hydrolysis-deficient mutant led to the redistribution of transferrin receptor to large cRab22a-positive structures in the periphery of the cell and to a significant decrease in the plasma membrane receptor. Kinetic analysis of transferrin uptake indicates that internalization and early recycling were not affected by cRab22a expression. However, recycling from large cRab22a-positive compartments was strongly inhibited. A similar effect on transferrin transport was observed when human but not canine Rab22a was expressed in HeLa cells. After internalization for short periods of time (5 to 8 min) or at a reduced temperature (16 degrees C), transferrin localized with endogenous Rab22a in small vesicles that did not tubulate with brefeldin A, suggesting that the endogenous protein is present in early/sorting endosomes. Rab22a depletion by small interfering RNA disorganized the perinuclear recycling center and strongly inhibited transferrin recycling. We speculate that Rab22a controls the transport of the transferrin receptor from sorting to recycling endosomes.  相似文献   

18.
The Rab11-family interacting proteins (Rab11-FIPs) facilitate Rab11-dependent vesicle recycling. We hypothesized that Rab11-FIPs define discrete subdomains and carry out temporally distinct roles within the recycling system. We used live-cell deconvolution microscopy of HeLa cells expressing chimeric fluorescent Rab11-FIPs to examine Rab11-FIP localization, transferrin passage through Rab11-FIP–containing compartments, and overlap among Rab11-FIPs within the recycling system. FIP1A, FIP2, and FIP5 occupy widely distributed mobile tubules and vesicles, whereas FIP1B, FIP1C, and FIP3 localize to perinuclear tubules. Internalized transferrin entered Rab11-FIP–containing compartments within 5 min, reaching maximum colocalization with FIP1B and FIP2 early in the time course, whereas localization with FIP1A, FIP1C, FIP3, and FIP5 was delayed until 10 min or later. Whereas direct interactions with FIP1A were only observed for FIP1B and FIP1C, FIP1A also associated with membranes containing FIP3. Live-cell dual-expression studies of Rab11-FIPs revealed the tubular dynamics of Rab11-FIP–containing compartments and demonstrated a series of selective associations among Rab11-FIPs in real time. These findings suggest that Rab11-FIP1 proteins participate in spatially and temporally distinct steps of the recycling process along a complex and dynamic tubular network in which Rab11-FIPs occupy discrete domains.  相似文献   

19.
20.
Several GTPases of the Rab family, known to be regulators of membrane traffic between organelles, have been described and localized to various intracellular compartments. Rab11 has previously been reported to be associated with the pericentriolar recycling compartment, post-Golgi vesicles, and the trans-Golgi network (TGN). We compared the effect of overexpression of wild-type and mutant forms of Rab11 on the different intracellular transport steps in the endocytic/degradative and the biosynthetic/exocytic pathways in HeLa cells. We also studied transport from endosomes to the Golgi apparatus using the Shiga toxin B subunit (STxB) and TGN38 as reporter molecules. Overexpression of both Rab11 wild-type (Rab11wt) and mutants altered the localization of the transferrrin receptor (TfR), internalized Tf, the STxB, and TGN38. In cells overexpressing Rab11wt and in a GTPase-deficient Rab11 mutant (Rab11Q70L), these proteins were found in vesicles showing characteristics of sorting endosomes lacking cellubrevin (Cb). In contrast, they were redistributed into an extended tubular network, together with Cb, in cells overexpressing a dominant negative mutant of Rab11 (Rab11S25N). This tubularized compartment was not accessible to Tf internalized at temperatures <20 degrees C, suggesting that it is of recycling endosomal origin. Overexpression of Rab11wt, Rab11Q70L, and Rab11S25N also inhibited STxB and TGN38 transport from endosomes to the TGN. These results suggest that Rab11 influences endosome to TGN trafficking primarily by regulating membrane distribution inside the early endosomal pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号