首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Loss of genome stability leads to reduced fitness, fertility and a high mutation rate. Therefore, the genome is guarded by the pathways monitoring its integrity and neutralizing DNA lesions. To analyze the mechanism of DNA damage induction by cytidine analog zebularine, we performed a forward-directed suppressor genetic screen in the background of Arabidopsis thaliana zebularine-hypersensitive structural maintenance of chromosomes 6b (smc6b) mutant. We show that smc6b hypersensitivity was suppressed by the mutations in EQUILIBRATIVE NUCLEOSIDE TRANSPORTER 3 (ENT3), DNA METHYLTRANSFERASE 1 (MET1) and DECREASE IN DNA METHYLATION 1 (DDM1). Superior resistance of ent3 plants to zebularine indicated that ENT3 is likely necessary for the import of the drug to the cells. Identification of MET1 and DDM1 suggested that zebularine induces DNA damage by interference with the maintenance of CG DNA methylation. The same holds for structurally similar compounds 5-azacytidine and 2-deoxy-5-azacytidine. Based on our genetic and biochemical data, we propose that zebularine induces enzymatic DNA–protein crosslinks (DPCs) of MET1 and zebularine-containing DNA in Arabidopsis, which was confirmed by native chromatin immunoprecipitation experiments. Moreover, zebularine-induced DPCs accumulate preferentially in 45S rDNA chromocenters in a DDM1-dependent manner. These findings open a new avenue for studying genome stability and DPC repair in plants.  相似文献   

2.
The purpose of this study is to investigate (1) the induction of epigenetic effects in the crustacean Daphnia magna using DNA methylation as an epigenetic mark and (2) the potential stable transfer of such an epigenetic effect to non-exposed subsequent generations. Daphnids were exposed to chemical substances known to affect DNA methylation in mammals: vinclozolin, 5-azacytidine, 2′-deoxy-5-azacytidine, genistein and biochanin A. Effects on overall DNA cytosine methylation, body length and reproduction were evaluated in 21 day experiments. Using a multi-generational experimental design these endpoints were also evaluated in the F1 and F2 generation of both exposed and non-exposed offspring from F0 daphnids exposed to 5-azacytidine, genistein or vinclozolin. A reduction in DNA methylation was consistently observed in daphnids exposed to vinclozolin and 5-azacytidine. Only in organisms exposed to 5-azacytidine was this effect transferred to the two subsequent non-exposed generations. A concurrent reduction in body length at day 7 was observed in these treatments. For the first time, exposure to environmental chemicals was shown to affect DNA methylation in the parental generation of D. magna. We also demonstrated a transgenerational alteration in an epigenetic system in D. magna, which indicates the possibility of transgenerational inheritance of environment-induced epigenetic changes in non-exposed subsequent generations.  相似文献   

3.
Amination of acetonitrile by the amines MeNH2, PrnNH2, PriNH2, ButNH2, and Et2NH is efficiently promoted by the lanthanide iodides LnI2 (Ln = Nd, Dy, Tm), LnI3 (Ln = Pr, Nd, Dy) and LnI3(THF)3 (Ln = Pr, Nd, Dy). The formed mono- and N,N′-disubstituted amidines MeC(NH)NHR (R = Pri, But), MeC(NH)NEt2, MeC(NR)NHR (R = Me, Prn) were isolated mainly as the complexes with starting iodide of general composition LnI2(amidine)x (1) or LnI3(amidine)x (2) (x = 3-8). In the products 1, which evidently are the mixtures of LnI2+, and LnI3 derivatives, the metal exists in trivalent state but one of the ligands actually is amidinate anion. A part of the generated amidines remains in the reaction solutions in free form. Heating of the 1 and 2 in vacuum at 150-200 °C affords corresponding amidine and the complexes with reduced amount of the amidine ligands LnI2(amidine)y (3) or LnI3(amidine)y (4) (y = 2-3). The products 3 and 4 displayed the same catalytic activity in the acetonitrile-amine cross-coupling as the initial iodides. SmI2 and especially YbI2 revealed lower activity. The structure of isopropylacetamidine (5), tert-butylacetamidine (6) and {Dy[MeC(NH)NEt2]6}I3(MeCN) (7) were determined by X-ray diffraction analysis.  相似文献   

4.
Escherichiacoli RecBCD is a bipolar DNA helicase possessing two motor subunits (RecB, a 3′-to-5′ translocase, and RecD, a 5′-to-3′ translocase) that is involved in the major pathway of recombinational repair. Previous studies indicated that the minimal kinetic mechanism needed to describe the ATP-dependent unwinding of blunt-ended DNA by RecBCD in vitro is a sequential n-step mechanism with two to three additional kinetic steps prior to initiating DNA unwinding. Since RecBCD can “melt out” ∼ 6 bp upon binding to the end of a blunt-ended DNA duplex in a Mg2+-dependent but ATP-independent reaction, we investigated the effects of noncomplementary single-stranded (ss) DNA tails [3′-(dT)6 and 5′-(dT)6 or 5′-(dT)10] on the mechanism of RecBCD and RecBC unwinding of duplex DNA using rapid kinetic methods. As with blunt-ended DNA, RecBCD unwinding of DNA possessing 3′-(dT)6 and 5′-(dT)6 noncomplementary ssDNA tails is well described by a sequential n-step mechanism with the same unwinding rate (mkU = 774 ± 16 bp s− 1) and kinetic step size (m = 3.3 ± 1.3 bp), yet two to three additional kinetic steps are still required prior to initiation of DNA unwinding (kC = 45 ± 2 s− 1). However, when the noncomplementary 5′ ssDNA tail is extended to 10 nt [5′-(dT)10 and 3′-(dT)6], the DNA end structure for which RecBCD displays optimal binding affinity, the additional kinetic steps are no longer needed, although a slightly slower unwinding rate (mkU = 538 ± 24 bp s− 1) is observed with a similar kinetic step size (m = 3.9 ± 0.5 bp). The RecBC DNA helicase (without the RecD subunit) does not initiate unwinding efficiently from a blunt DNA end. However, RecBC does initiate well from a DNA end possessing noncomplementary twin 5′-(dT)6 and 3′-(dT)6 tails, and unwinding can be described by a simple uniform n-step sequential scheme, without the need for the additional kC initiation steps, with a similar kinetic step size (m = 4.4 ± 1.7 bp) and unwinding rate (mkobs = 396 ± 15 bp s− 1). These results suggest that the additional kinetic steps with rate constant kC required for RecBCD to initiate unwinding of blunt-ended and twin (dT)6-tailed DNA reflect processes needed to engage the RecD motor with the 5′ ssDNA.  相似文献   

5.
The amount of nuclear DNA, expressed as the C-value, was estimated for 13 marine halophytic plant species from six families. Plant material was collected in the nature reserve of the Strunjan saltpan in the Northern Adriatic and comprised all halophytic species inside the investigated area. Reproductive region of the shoot or root tips of halophytes were dissected, nuclei were Feulgen stained and 2C-values were measured by DNA image cytometry as follows: Crithmum maritimum (4.38 pg DNA), Artemisia caerulescens (6.43 pg), Aster tripolium (21.43 pg), Inula crithmoides (3.63 pg), Atriplex portulacoides (1.83 pg), A. prostrata (1.51 pg), Salicornia europaea (2.75 pg), Salsola soda (2.62 pg), Sarcocornia fruticosa (5.91 pg), Suaeda maritima (2.11 pg), Limonium angustifolium (5.06 pg), Puccinellia palustris (8.15 pg) and Ruppia cirrhosa (4.65 pg). With the exception of the C-value estimate for A. caerulescens, which has been listed in the Plant DNA C-values Database, the C-values represent the first estimates for all the examined species. In addition, the C-value for R. cirrhosa is also the first report for the family Ruppiaceae. The investigated halophytes had a smaller genome size compared to other known C-values for species within a particular family and also when compared to the mean values of dicots and monocots. The study also showed that halophylic annuals have a smaller genome size (2.49 pg) than perennial ones (7.45 pg DNA).  相似文献   

6.
Copper(II) complexes [Cu(satp)(L)] (1-3) of a Schiff base thiolate (salicylidene-2-aminothiophenol, H2satp) and phenanthroline bases (L), viz. 1,10-phenanthroline (phen in 1), dipyrido[3,2-d:2′,3′-f]quinoxaline (dpq in 2) and dipyrido[3,2-a:2′,3′-c]phenazine (dppz in 3), were prepared, characterized and their anaerobic DNA photocleavage activity and hypoxic photocytotoxicity studied. The redox active complexes show the Cu(II)-Cu(I) couple near − 0.5 V for 1 and near 0.0 V vs. SCE (saturated calomel electrode) for 2 and 3. The one-electron paramagnetic complexes (~ 1.85 μB) are avid DNA binders giving Kb values within 1.0 × 105 − 8.0 × 105 M− 1. Thermal melting and viscosity data along with molecular docking calculations suggest DNA groove and/or partial intercalative binding of the complexes. The complexes show anaerobic DNA cleavage activity in red light under argon via type-I pathway, while DNA photocleavage in air proceeds via hydroxyl radical pathway. The DFT (density functional theory) calculations reveal a thyil radical pathway for the anaerobic DNA photocleavage activity and suggest the possibility of generation of a transient copper(I) species due to bond breakage between the copper and sulfur to generate the thyil radical. An oxidation of the copper(I) species is likely by oxygen in an aerobic medium or by the buffer medium in an anaerobic condition. Complex 3 exhibits significant photocytotoxicity in HeLa cells (IC50 = 8.3(± 1.0) μM) in visible light, while showing lower dark toxicity (IC50 = 17.2(± 1.0) μM). A significant reduction in the dark toxicity is observed under hypoxic cellular conditions (IC50 = 30.0(± 1.0) μM in dark), while retaining its photocytotoxicity (IC50 = 8.0(± 1.0) μM).  相似文献   

7.
Crucial nuclear events throughout the life histories of red algae have eluded researchers. Use of the DNA fluorochrome 4′,6-diamidino-2-phenylindole (DAPI) and microspectrofluorometry has now resolved the problems. In the parasitic red alga Choreocolax polysiphoniae (= Leachiella pacifica), the amounts of nuclear DNA during the processes of meiosis and fertilization are documented as well as the transfer of the newly formed zygote nucleus to the adjacent accessory cell. In this organism, the G2 period predominates in the cell cycle of vegetative and reproductive cells; many nondividing vegetative cells become highly polyploid. The results indicate that the use of various fluorochromes combined with microspectrofluorometric measurements of individual nuclei is valuable for study of many developmental problems in lower eukaryotes where the relatively small nuclear DNA content has made study with conventional dyes impossible.  相似文献   

8.
The most common and widespread species of Nasturtium in central Europe are the tetraploid Nasturtium officinale (2n = 4x = 32), the octoploid Nasturtium microphyllum (2n = 8x = 64), and their hexaploid hybrid Nasturtium × sterile (2n = 6x = 48). For the first time, flow cytometry was used to measure the genome size (2C DNA content) of these taxa. The highest nuclear DNA content was found in the octoploid N. microphyllum (2C = 1.43 pg) and the lowest in the tetraploid N. officinale (2C = 0.76 pg). Some differences in the amount of nuclear DNA were observed for the hexaploid N. × sterile (2C = 1.09-1.12 pg). Genome size analysis was thus proposed as a very useful tool for the identification of species of Nasturtium in their vegetative stage.  相似文献   

9.
The binary phase behavior of purified 1, 3-dipalmitoyl-2-stearoyl-sn-glycerol (PSP) and 1, 2-dipalmitoyl-3-stearoyl-sn-glycerol (PPS) was investigated at a very slow (0.1 °C/min) and a relatively fast (3.0 °C/min) cooling rate. Mixtures with molar fractions of 0.1 increments were studied in terms of melting and crystallization, polymorphism, solid fat content (SFC), hardness and microstructure. Only the α-form of a double chain length (DCL) structure was detected for all mixtures in both experiments. The kinetic phase diagram, constructed using heating DSC thermograms, displayed two distinct behaviors separated by a singularity at the 0.5PSP composition: a eutectic in the XPSP ≤ 0.5 and a monotectic in the XPSP ≤ 0.5 concentration region. The singularity was attributed to the formation of a 1:1 (mol:mol) molecular compound. Apart from the segment from 0.0PSP to the eutectic point, XE, the simulation of the liquidus line using a model based on the Hildebrand equation suggested that the molecular interactions are strong and tend to favor the formation of unlike pairs in the liquid state and that the miscibility is not significantly dependent on cooling rate. The kinetic effects are manifest in all measured properties, particularly dramatically in the XPSP ≤ XE concentration region. An analysis of induction time as measured by pulse nuclear magnetic resonance (pNMR) showed that PPS retards crystal growth, an effect which can explain the peculiarity of this concentration region. At both cooling rates, fit of the SFC (%) versus time curves to a modified form of the Avrami model revealed two common growth modes for all the mixtures. The polarized light microscope (PLM) of the PSP-PPS mixtures revealed networks made of spherulitic crystallites of size, growth direction and boundaries that are varied and sensitive to composition and cooling rate. The change in the microstructure and final SFC (%), particularly noticeable at compositions close to the eutectic, explain in part the differences seen in relative hardness.  相似文献   

10.
Summary The acrocentric chromosomes of 18 unrelated individuals were analyzed by sequential staining by the chromomycin A3/methyl green R-banding technique to identify the chromosomes, followed by an indirect immunoperoxidase technique to detect 5-methylcytosine (5MeC)-rich DNA. The short arms of both chromosomes 15 usually (92% of the chromosomes) had a large collection of 5MeC-rich DNA, which was always rich in AT base pairs. Much less commonly (11% of the possible occasions), a collection of 5MeC-rich DNA was seen on the short arm of a chromosome 13, 14, 21 or 22, and this DNA was always rich in GC base pairs. Sequential distamycin A/DAPI (DA/DAPI) and R-banding studies were carried out in 13 of these 18 individuals. There was bright DA/DAPI fluorescence of the 5MeC-rich region on the short arm of chromosome 15 but not on that of any other acrocentric chromosome. One implication of these findings is that bisatellited or other abnormal chromosomes that are DA/DAPI negative and 5MeC positive cannot be derived from number 15. In the case of a de novo chromosome of this type, the specific origin from any other acrocentric chromosome could be demonstrated by examining 5MeC-binding of the parental chromosomes.  相似文献   

11.
Human tissue from uninvolved liver of cancer patients was fractionated using differential centrifugation and characterized for 11βHSD enzyme activity against corticosterone, dehydrocorticosterone, 7α- and 7β-hydroxy-dehydroepiandrosterone, and 7-oxo-dehydroepiandrosterone. An enzyme activity was observed in nuclear protein fractions that utilized either NADP+ or NAD+, but not NADPH and NADH, as pyridine nucleotide cofactor with Km values of 12 ± 2 and 390 ± 2 μM, compared to the Km for microsomal 11βHSD1 of 43 ± 8 and 264 ± 24 μM, respectively. The Km for corticosterone in the NADP+-dependent nuclear oxidation reaction was 102 ± 16 nM, compared to 4.3 ± 0.8 μM for 11βHSD1. The Kcat values for nuclear activity with NADP+ was 1687 nmol/min/mg/μmol, compared to 755 nmol/min/mg/μmol for microsomal 11βHSD1 activity. Inhibitors of 11βHSD1 decreased both nuclear and microsomal enzyme activities, suggesting that the nuclear activity may be due to an enzyme similar to 11βHSD Type 1 and 2.  相似文献   

12.
2-Phenylquinoline-4-carboylhydrazide (HL), and its novel nickel(II), zinc(II) complexes [M(HL)2(L)]·2H2O·NO3 (M = Ni (1), M = Zn (2)), have been synthesized and characterized by elemental analysis, molar conductivity, and IR spectra. The crystal structure of [Ni(HL)2(L)]·2H2O·NO3 obtained from ethanol solution was determined by X-ray diffraction analysis, crystallized in the rhombohedral system, space group , Z = 18, a = 31.913(3) Å, b = 31.913(3) Å, c = 27.709(2) Å, α = 90°, β = 90°, γ = 120°, R1 = 0.0647. The interactions of the complexes and the ligand with calf thymus DNA had been investigated using UV-Vis spectra, fluorescent spectra, CD (circular dichroism) spectra, CV (cyclic voltammetry) and viscosity measurements. These compounds were tested against MFC (mouse forestomach carcinoma) cell lines. The complex 1 showed significant cytotoxic activity against MFC cell lines. The cleavage reaction on plasmid DNA has been monitored by agarose gel electrophoresis. Results suggest that the two complexes bound to DNA via a groove binding mode and the complexes can cleave pBR322 DNA.  相似文献   

13.
Tuber wounding induces a cascade of biological responses that are involved in processes required to heal and protect surviving plant tissues. Little is known about the coordination of these processes, including essential wound-induced DNA synthesis, yet they play critical roles in maintaining marketability of the harvested crop and tubers cut for seed. A sensitive “Click-iT EdU Assay” employing incorporation of the thymidine analog, 5-ethynyl-2′-deoxyuridine (EdU), in conjunction with 4′,6-diamindino-2-phenylindole (DAPI) counter labeling, was employed to objectively identify and determine the time course and spatial distribution of tuber nuclei that were wound-induced to enter S-phase of the cell cycle. Both labeling procedures are rapid and sensitive in situ. Following wounding, EdU incorporation (indicating DNA synthesis) was not detectable until after 12 h, rapidly reached a maximum at about 18 h and then declined to near zero at 48 h. About 28% of the nuclei were EdU labeled at 18 h reflecting the proportion of cells in S-phase of the cell cycle. During the ∼30 h in which induced cells were progressing through S-phase, de novo DNA synthesis extended 7–8 cell layers below the wound surface. Cessation of nuclear DNA synthesis occurred about 4 d prior to completion of wound closing layer formation. Initiation of wound periderm development followed at 7 d, i.e. about 5 d after cessation of nuclear DNA biosynthesis; at this time the phellogen developed and meristematic activity was detected via the production of new phellem cells. Collectively, these results provide new insight into the coordination of wound-induced nucleic acid synthesis with associated tuber wound-healing processes.  相似文献   

14.
Hepatocellular carcinoma is one of the most common cancers worldwide. During tumorigenesis, tumor suppressor and cancer-related genes are commonly silenced by aberrant DNA methylation in their promoter regions. Zebularine (1-(β-D-ribofuranosyl)-1,2-dihydropyrimidin-2-one) acts as an inhibitor of DNA methylation and exhibits chemical stability and minimal cytotoxicity both in vitro and in vivo. In this study, we explore the effect and possible mechanism of action of zebularine on hepatocellular carcinoma cell line HepG2. We demonstrate that zebularine exhibits antitumor activity on HepG2 cells by inhibiting cell proliferation and inducing apoptosis, however, it has little effect on DNA methylation in HepG2 cells. On the other hand, zebularine treatment downregulated CDK2 and the phosphorylation of retinoblastoma protein (Rb), and upregulated p21WAF/CIP1 and p53. We also found that zebularine treatment upregulated the phosphorylation of p44/42 mitogen-activated protein kinase (MAPK). These results suggest that the p44/42 MAPK pathway plays a role in zebularine-induced cell-cycle arrest by regulating the activity of p21WAF/CIP1 and Rb. Furthermore, although the proapoptotic protein Bax levels were not affected, the antiapoptotic protein Bcl-2 level was downregulated with zebularine treatment. In addition, the data in the present study indicate that inhibition of the double-stranded RNA-dependent protein kinase (PKR) is involved in inducing apoptosis with zebularine. These results suggest a novel mechanism of zebularine-induced cell growth arrest and apoptosis via a DNA methylation-independent pathway in hepatocellular carcinoma.  相似文献   

15.
[M(TPA)Cl]ClO4·nH2O complexes (1: M = CoII, n = 0; 2: M = CuII, n = ½; 3: M = ZnII, n = 0) where TPA = tris(2-pyridylmethyl)amine, were synthesized and structurally characterized. The molecular structure of [Cu(TPA)Cl]ClO4·½H2O was determined by single crystal X-ray crystallography. In aqueous solution, the complex ions [M(TPA)Cl]+ (M = CoII or CuII) are hydrolyzed to the corresponding aqua species [M(TPA)(H2O)]2+. In contrast to the TBP [Cu(TPA)(H2O)]2+, the corresponding TBP cobalt(II) species showed severe distortion towards tetrahedral geometry. The interactions of the three complexes with DNA have been investigated at pH 7.0 (1.0 mM Tris-Cl buffer) and 37 °C. Significant DNA cleavages were obtained for complexes 1 and 2, whereas complex 3 did not show any detectable cleavage for DNA. Under pseudo Michaelis-Menten kinetic conditions, the kinetic parameters kcat and KM were determined as kcat = 6.59 h−1 and KM = 2.20 × 10−4 M for 1 and the corresponding parameters for 2 are kcat = 5.7 × 10−2 h−1 and KM = 6.9 × 10−5 M, and the reactivity of the complexes in promoting the cleavage of DNA decreases in the order 1 > 2 ? 3. The rate enhancements for the DNA cleavage by 1 and 2 correspond to 1.8 × 108 and 1.6 × 106, respectively, over the non-catalyzed DNA. The reactivity of the two complexes was discussed in relation to other related artificial nucleases.  相似文献   

16.
Small angle x-ray scattering was used to follow changes in the conformation and interactions of nucleosome core particles (NCP) as a function of the monovalent salt concentration Cs. The maximal extension (Dmax) of the NCP (145 ± 3-bp DNA) increases from 137 ± 5 Å to 165 ± 5 Å when Cs rises from 10 to 50 mM and remains constant with further increases of Cs up to 200 mM. In view of the very weak increase of the Rg value in the same Cs range, we attribute this Dmax variation to tail extension, a proposal confirmed by simulations of the entire I(q) curves, considering an ideal solution of particles with tails either condensed or extended. This tail extension is observed at higher salt values when particles contain longer DNA fragments (165 ± 10 bp). The maximal extension of the tails always coincides with the screening of repulsive interactions between particles. The second virial coefficient becomes smaller than the hard sphere virial coefficient and eventually becomes negative (net attractive interactions) for NCP145. Addition of salt simultaneously screens Coulombic repulsive interactions between NCP and Coulombic attractive interactions between tails and DNA inside the NCP. We discuss how the coupling of these two phenomena may be of biological relevance.  相似文献   

17.
18.
Double complex salts [M(NH3)4][M′(Ox)2(H2O)2] · 2H2O (M = Pd, Pt, M′ = Ni, Zn) were synthesized by combination of solutions containing corresponding cations [M(NH3)4]2+ and anions [M′(Ox)2(H2O)2]2−. The salts obtained were characterized by IR spectroscopy, thermal analysis, powder and single crystal X-ray diffraction. The prepared compounds are isostructural and crystallize in the orthorhombic crystal system (space group I222, Z = 2). Thermal decomposition of the salts in helium or hydrogen atmosphere at 200-400 °C results in formation of nano-sized bimetallic powders. Depending on the phase diagram of the respective bimetallic system and temperature conditions, they can be single phase or multiphase products. In particular, thermal decomposition of double complex salts [M(NH3)4][Zn(Ox)2(H2O)2] · 2H2O (M = Pd, Pt) results in formation of PdZn and PtZn intermetallic compounds, correspondingly. Decomposition of [Pd(NH3)4][Ni(Ox)2(H2O)2] · 2H2O affords a disordered solid solution Pd0.5Ni0.5. Disordered Pt0.5Ni0.5 was obtained from [Pt(NH3)4][Ni(Ox)2(H2O)2] · 2H2O in helium atmosphere, while in hydrogen atmosphere - a two-phase mixture of disordered Pt0.5Ni0.5 and ordered PtNi. In all cases crystallite sizes of bimetallic particles varied within 50-250 Å.  相似文献   

19.
Protactinium complexation with sulfate ions was studied with the element at tracer scale (CPa ∼ 10−12 M) by solvent extraction method. The involved aqueous system was Pa(V)/H2O/HClO4/Na2SO4/NaClO4 at 10 and 60 °C. The extraction experiments were conducted using the chelating agent thenoyltrifluoroacetone (TTA) in toluene. For both values of temperature, a systematic study was performed in order to determine the formation constants (β1, β2 and β3) of sulfate complexes of Pa(V) at different ionic strength. For each temperature, the extrapolation of these constants to zero ionic strength was performed using the Specific Interaction Theory, leading to values of 2.8 ± 0.5, 6.5 ± 0.5, 7.8 ± 0.5 at 10 °C and 4.3 ± 0.3, 8.4 ± 1.3, 9.6 ± 0.4 at 60 °C. Interaction coefficients involving the sulfate complexes of protactinium(V) were also derived.  相似文献   

20.
The coordination of long chain fatty acid (LCFA) transport across the mitochondrial membrane (VPAL) with subsequent oxidation rate through β-oxidation and the tricarboxylic acid (TCA) cycle (Vtca) has been difficult to characterize in the intact heart. Kinetic analysis of dynamic 13C-NMR distinguished these flux rates in isolated rabbit hearts. Hearts were perfused in a 9.4 T magnet with either 0.5 mM [2,4,6,8,10,12,14,16-13C8] palmitate (n = 4), or 0.5 mM 13C-labeled palmitate plus 0.08 mM unlabeled butyrate (n = 4). Butyrate is a short chain fatty acid (SCFA) that bypasses the LCFA transporters of mitochondria. In hearts oxidizing palmitate alone, the ratio of VTCA to VPAL was 8:1. This is consistent with one molecule of palmitate yielding eight molecules of acetyl-CoA for the subsequent oxidation through the TCA cycle. Addition of butyrate elevated this ratio; VTCA/VPAL = 12:1 due to an SCFA-induced increase in VTCA of 43% (p < 0.05). However, SCFA oxidation did not significantly reduce palmitate transport into the mitochondria: VPAL = 1.0 ± 0.2 μmol/min/g dw with palmitate alone versus 0.9 ± 0.1 with palmitate plus butyrate. Thus, the products of β-oxidation are preferentially channeled to the TCA cycle, away from mitochondrial efflux via carnitine acetyltransferase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号