首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The protein kinase AKT is activated strongly by many motogenic growth factors, yet has recently been shown capable of inhibiting migration in several cell types. Here we report that treatment with Migration Stimulating Factor (MSF), a truncated form of fibronectin that promotes the migration of many cell types, inhibits AKT activity in human fibroblasts and endothelial cells. In fibroblasts, treatment with either MSF or the AKT inhibitor, Akti-1/2, stimulated migration into 3D collagen gels to a similar extent and the effects of Akti-1/2 on migration could be blocked by the expression of an inhibitor-resistant mutant, AKT1 W80A. These data indicate that MSF promotes fibroblast migration, at least in part, by inhibiting the activity of AKT.  相似文献   

2.
Migration-stimulating factor (MSF), an oncofetal truncated isoform of fibronectin, is a potent stimulator of cell invasion. However, its distribution and motogenic role in non-small cell lung cancer (NSCLC) have never been identified. In this study, real-time PCR and immunohistochemical staining (IHC) were performed to detect MSF mRNA and protein levels in tumor tissues and matched adjacent tumor-free tissues. Furthermore, to examine the effect of MSF on invasiveness, MSF was upregulated in A549 cells. The invasiveness and viability of A549 cells were then determined using a transwell migration assay and the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) viability assays, respectively. The expression level of MSF in NSCLC tissue was markedly higher than in matched adjacent tumor-free tissue. Additionally, the level of MSF protein expression in stage III and IV NSCLC samples was higher than in stage I and II NSCLC samples. More importantly, we also demonstrated that migration and invasion of A549 cells increased substantially after upregulating MSF, although proliferation remained unchanged. Meanwhile, we found no correlation between increasing motility and invasiveness of MSF-overexpressing cells and expression levels and activities of matrix metalloprotease MMP-2 and MMP-9. Our current study shows that MSF plays a role in migration and invasion of A549 cells and suggests that MSF may be a potential biomarker of NSCLC progression.  相似文献   

3.
4.
Migration stimulating factor (MSF) is a potent autocrine and paracrine factor expressed by fibroblasts and epithelial cells in foetal skin, tumours and healing wounds. In tissue culture, MSF bioactivity is present in the conditioned medium of foetal and tumour derived fibroblasts, but not in normal adult fibroblasts or keratinocytes. The conditioned medium of early passage keratinocytes or a keratinocyte line (HaCaT) effectively inhibited the motogenic activity of rhMSF. Fractionation of keratinocyte conditioned medium by size-exclusion chromatography revealed the presence of bioactive MSF as well as a functional inhibitor of MSF (MSFI) in fractions corresponding to approximately 70 kDa and 25 kDa, respectively. MSFI was purified and identified as neutrophil gelatinase-associated lipocalin (NGAL or lipocalin-2). Immunostaining confirmed that keratinocytes expressed both MSF and NGAL, whereas normal adult fibroblasts did not express either. Recombinant and cell-produced NGAL neutralised the motogenic activity of rhMSF. NGAL is known to bind MMP-9 and promote the activity of this protease. In contrast, there was no evidence of NGAL-MSF binding in keratinocyte conditioned medium. MSF displays a number of bioactivities of relevance to cancer progression and wound healing. Our findings indicate a novel function of NGAL and a possible mechanism for regulating MSF activity in tissues.  相似文献   

5.
Fibronectin (FN) in hypertrophic scars and keloids   总被引:2,自引:0,他引:2  
Summary Fibronectin (FN) distribution was compared among samples of normal human dermis, hypertrophic scar, keloid, and granulation tissues from deep injuries. Localization was established by use of fibronectin antibodies and the indirect immunofluorescence method. Fresh-frozen tissue was sectioned on a cryostat and examined by epifluorescence. Hypertrophic scar and keloid demonstrated heavy deposition of FN, which conformed to the nodular characteristics of the lesions. Intense localization occurred in granulation tissue over fibroblasts which were stellate and vesiculated, and over small blood vessels. FN-staining was weak in areas over fibroblasts which were more rounded and nonvesiculated. Staining for FN was also minimal over the collagen in normal dermis and the deeper, larger collagen fascicles in the lesions. Fibroblasts cultured from normal dermis, hypertrophic scar, and keloid for 5–6 weeks were intensely stained for FN. Extracellular matrix was heavily positive in cultures from the lesions compared with those from normal dermis.Supported in part by NIH Research Grant 1 R01GM 25159  相似文献   

6.
Interactions between urokinase plasminogen activator receptor (uPAR) and its various ligands regulate tumor growth, invasion, and metastasis. Antibodies that bind specific uPAR epitopes may disrupt these interactions, thereby inhibiting these processes. Using a highly diverse and naïve human fragment of the antigen binding (Fab) phage display library, we identified 12 unique human Fabs that bind uPAR. Two of these antibodies compete against urokinase plasminogen activator (uPA) for uPAR binding, whereas a third competes with β1 integrins for uPAR binding. These competitive antibodies inhibit uPAR-dependent cell signaling and invasion in the non-small cell lung cancer cell line, H1299. Additionally, the integrin-blocking antibody abrogates uPAR/β1 integrin-mediated H1299 cell adhesion to fibronectin and vitronectin. This antibody and one of the uPAR/uPA antagonist antibodies shows a significant combined effect in inhibiting cell invasion through Matrigel/Collagen I or Collagen I matrices. Our results indicate that these antagonistic antibodies have potential for the detection and treatment of uPAR-expressing tumors.  相似文献   

7.
G-CSF (Granulocyte-colony stimulating factor) is a hematopoietic growth factor that has been known for 20 years, and has been named for its role in the proliferation and differentiation of cells of the myeloic lineage. We have uncovered a novel spectrum of activities of G-CSF in the central nervous system. G-CSF and its receptor are expressed by neurons in many brain regions, and are upregulated upon experimental stroke. In neurons, G-CSF acts anti-apoptotically by activating several protective pathways. In vivo, G-CSF decreases infarct volumes in acute stroke models in rodents. Moreover, G-CSF stimulates neuronal differentiation of adult neural stem cells in the brain, and improves long-term recovery in more chronic stroke models. Thus, G-CSF is a novel neurotrophic factor, and a highly attractive candidate for the treatment of neurodegenerative conditions. Here we discuss this new property of G-CSF in contrast to its known functions in the hematopoietic system, summarize data from other groups on G-CSF’s actions in cerebral ischemia, compare G-CSF to Erythropoietin (EPO) in the CNS and highlight clinical implications.  相似文献   

8.
9.
Summary To study the role of phagocytosis in periodontal tissues, internalization of fibronectin-coated latex beads by Gin-1 fibroblast populations was investigated. Demonstration of phagocytosis by internalization of beads was confirmed by immunofluorescence microscopy, electron microscopy, and flow-cytometry. The percent of cells phagocytosing beads measured by flow-cytometry was negligible at 4° and 23°C, but increased to approximately 17% at 37°C. As measured by automated image analysis, the percentage of phagocytosing cells increased linearly from 8 to 22 with increasing fibronectin concentration of the incubation solution from 30 ng to 300 g/ml. Similar linear increases in the percentage of phagocytosing cells were observed when beads were incubated with cells for periods ranging from 2 h to 2 days. To examine the role of the Arg-Gly-Asp receptor in mediating phagocytosis, fibronectin-coated beads were first coated with either Gly-Arg-Gly-Asp-Ser-Pro or Gly-Arg-Gly-Glu-Ser-Pro peptides at concentrations of 0.125, 0.5, and 1 mg/ml, or with control vehicle, and then incubated with cells. Phagocytosis was completely blocked at 1 mg/ml of the Gly-Arg-Gly-Asp-Ser-Pro peptide, but the Gly-Arg-Gly-Glu-Ser-Pro peptide showed no significant inhibition compared to control values. Blocking antibodies to the cell attachment domain of the fibronectin molecule also reduced the percentage of phagocytosing cells significantly. The data show that these phagocytic assays are sensitive enough to detect the influence of incubation temperature and time, cellular heterogeneity, ligand type, and ligand concentration on the percentage of phagocytosing cells. Further, the mechanisms which determine internalization of fibronectin-coated beads rely in part on the initial binding of ligand to the Arg-Gly-Asp receptor present on fibroblasts.  相似文献   

10.
When locomotory embryonic cells become stationary, they acquire new substratum-adhesion properties. In particular, the distribution of fibronectin receptors shifts from diffuse and highly mobile on the cell membrane to immobilized in close association with fibronectin molecules and cytoskeletal elements in focal contacts. Receptor phosphorylation has been proposed as a possible regulator of the interaction between the receptor and its intracellular and extracellular ligands. In the present study, we have compared the phosphorylation state of the fibronectin receptor in motile neural crest and somitic cells, in stationary somitic cells, and in Rous-sarcoma virus transformed-chick embryo fibroblasts, using immunoprecipitation following metabolic labeling. While no receptor phosphorylation was detected in motile embryonic cells, the beta subunit of the receptor was phosphorylated in stationary cells. This subunit was also highly phosphorylated in Rous-sarcoma virus-transformed chicken cells. These results suggest that phosphorylation of the fibronectin receptor cannot account for its distribution in the cell membrane and for the nature of the interactions between this receptor and its ligands in embryonic cells.  相似文献   

11.
Growth factor modulation of the extracellular matrix   总被引:4,自引:0,他引:4  
Two cell culture models were utilized to characterize the actions of peptide growth factors on the composition of the extracellular matrix of embryonic mesenchymal tissue. To model the three-dimensional architecture of mesenchymal tissue, chick embryonic mesenchymal cells were maintained in organ culture as adherent cell populations in small three-dimensional tissue spheroids and as sparse populations of cells embedded in a mesh of hydrated native collagen fibrils. Cell proliferation was stimulated by a variety of growth factors. All of the growth factors that elicited a mitogenic response in both of these culture systems also stimulated the deposition of an abundant fibronectin-containing extracellular matrix that colocalized with the regions of active cell proliferation. The suggestion that the matrigenic actions of growth factors for intact mesenchymal tissue are an integral part of mitogenic signaling is supported by the observation that surfaces derivatized with ProNectin, an artificial mimic of the RGD attachment domain of fibronectin, stimulated the proliferation of embryonic mesenchyme in the absence of exogenous growth factors. All of the growth factors that activated proliferation and fibronectin matrix accumulation stimulated the transformation of the mesenchymal cells into myofibroblasts that displayed the marker alpha-smooth muscle actin.  相似文献   

12.
Staphylococcal infections are a major complication in the usage of biomaterials. Different modifications of polymers have been made to reduce the incidence of such infections. We studied the effects of modifying heparinized polyethylene (H-PE) with mouse recombinant granulocyte-macrophage stimulating factor (rGM-CSF). The elimination of staphylococci (Staphylococcus aureus, S. epidermidis) from the peritoneum of mice implanted with rGM-CSF-coated H-PE was slightly more effective than the elimination of the bacteria from the peritoneum of animals implanted with uncoated H-PE. Most interestingly, the number of staphylococci present in the biofilms covering rGM-CSF-coated implants were significantly lower than the number of bacteria detected on the surface of H-PE not coated with rGM-CSF. In vitro, rGM-CSF restored the anti-bacterial potency of the phagocytes, which had been reduced by surface contact with H-PE. The results suggest that modification of biomaterials with rGM-CSF could be one way of preventing staphylococcal infections; especially in neutropenic disorders, which constitute the highest risk factor for foreign body-associated infections.  相似文献   

13.
Malaria has been reportedly increasing in incidence on the globe. Evidence from clinical studies supports a role for cytokines in the pathogenesis of cerebral malaria. Given the stimulatory effect of the ligand GM-CSF on the synthesis and release of the pyrogenic cytokine TNF alpha, the present study has been undertaken to investigate a possible role of GMCSF receptor in the pathogenesis of both Plasmodium vivax and Plasmodium falciparum malaria. An enzyme immunoassay developed by us at our laboratory for the quantitation of GM-CSF receptor has been used. No changes in the concentration of the receptor have been indicated either at the time of diagnosis or after treatment. In addition, an intercomparison of the receptor concentration between the P. vivax and P. falciparum groups does not show any significant difference. The results suggest that GM-CSF receptor has no significant role in the pathogenesis of either type of malaria.  相似文献   

14.
Cell-substrate adhesion was quantified for two cultured mesothelioma cell lines (epitheliomatus and sarcomatous) on glass, fibronectin and laminin substrates. Interference reflection microscopy (IRM) was used to image the adhesion patterns of cells and a grey level analysis was employed to quantify adhesion. Sarcomatous cells demonstrated marked adhesion to glass and fibronectin-coated substrates but not to laminin-coated substrate, with the greatest adhesion occurring on the fibronectin-coated surface. This adhesion was accompanied by cytoplasmic spreading. By contrast, epitheliomatous cells showed little tendency to adhere to any of the substrates and only showed significant spreading when in contact with the laminin substrate (P < 0.01). A bioassay was used to determine the metastatic potential of each of the cell lines. Via the intravenous route, the sarcomatous cells killed the host rats in 24.7 ± 1.5 (S.D.) days compared to 27.3 ± 0.9 (S.D.) days for the epitheliomatous cells (P < 0.01). After subcutaneous inoculation of tumour cells, the sarcomatous cells killed the host rats in 54.7 ± 0.7 (S.D.) days compared to 48.5 ± 0.5 (S.D.) days for the epitheliomatous cells (P < 0.01). We conclude that the results of the metastasis bioassays were consistent with the predicted behavior of these cell lines based on their ability to adhere to substrates in the in vitro adhesion assays.  相似文献   

15.
Vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) family members are essential and evolutionary conserved determinants of blood cell development and dispersal. In addition, VEGFs are integral to vascular growth and permeability with detrimental contributions to ischemic diseases and metastatic cancers. The PDGF/VEGF-receptor related (Pvr) protein is implicated in the migration and trophic maintenance of macrophage-like hemocytes in Drosophila melanogaster embryos. pvr mutants have a depleted hemocyte population and a breakdown in hemocyte distribution. Previous studies suggested redundant functions for the Pvr ligands, Pvf2 and Pvf3 in the regulation of hemocyte migration, proliferation, and size. However, the precise roles that Pvf2 and Pvf3 play in hematopoiesis remain unclear due to the lack of available mutants. To determine Pvf2 and Pvf3 functions in vivo, we generated a genomic deletion that simultaneously disrupts Pvf2 and Pvf3. From our studies, we identified contributions of Pvf2 and Pvf3 to the Pvr trophic maintenance of hemocytes. Furthermore, we uncovered a novel role for Pvfs in invasive migrations. We showed that Pvf2 and Pvf3 are not required for the directed migration of hemocytes, but act locally in epithelial cells to coordinate trans-epithelial migration of hemocytes. Our findings redefine Pvf roles in hemocyte migration and highlight novel Pvf roles in hemocyte invasive migration. These new parallels between the Pvr and PDGF/VEGF pathways extend the utility of the Drosophila embryonic system to dissect physiological and pathological roles of PDGF/VEGF-like growth factors.  相似文献   

16.

Background

Macrophage migration inhibitory factor (MIF) has emerged as a pivotal mediator of innate immunity and has been shown to be an important effector molecule in severe sepsis. Melioidosis, caused by Burkholderia pseudomallei, is an important cause of community-acquired sepsis in Southeast-Asia. We aimed to characterize the expression and function of MIF in melioidosis.

Methodology and Principal Findings

MIF expression was determined in leukocytes and plasma from 34 melioidosis patients and 32 controls, and in mice infected with B. pseudomallei. MIF function was investigated in experimental murine melioidosis using anti-MIF antibodies and recombinant MIF. Patients demonstrated markedly increased MIF mRNA leukocyte and MIF plasma concentrations. Elevated MIF concentrations were associated with mortality. Mice inoculated intranasally with B. pseudomallei displayed a robust increase in pulmonary and systemic MIF expression. Anti-MIF treated mice showed lower bacterial loads in their lungs upon infection with a low inoculum. Conversely, mice treated with recombinant MIF displayed a modestly impaired clearance of B. pseudomallei. MIF exerted no direct effects on bacterial outgrowth or phagocytosis of B. pseudomallei.

Conclusions

MIF concentrations are markedly elevated during clinical melioidosis and correlate with patients'' outcomes. In experimental melioidosis MIF impaired antibacterial defense.  相似文献   

17.
Stem cell factor (SCF) is essential to the migration and differentiation of melanocytes during embryogenesis because mutations in either the SCF gene, or its ligand, KIT, result in defects in coat pigmentation in mice. Using a neural crest cell (NCC) primary culture system from wild‐type mice, we previously demonstrated that KIT‐positive and/or L ‐3, 4‐dihydroxyphenylalanine (DOPA)‐positive melanocyte precursors proliferate following the addition of SCF to the culture medium. Extracellular matrix (ECM) proteins are considered to play a role in the migration and differentiation of various cells including melanocytes. We cultured mouse NCCs in the presence of SCF in individual wells coated with ECM; fibronectin (FN), collagen I (CLI), chondroitin sulphate, or dermatan sulphate. More KIT‐positive cells and DOPA‐positive cells were detected in the presence of SCF on ECM‐coated wells than on non‐coated wells. A statistically significant increase in DOPA‐positive cells was evident in FN and CLI wells. In contrast, in the absence of SCF, few DOPA‐positive cells and KIT‐positive cells were detected on either the ECM‐coated or non‐coated wells. We concluded that ECM affect melanocyte proliferation and development in the presence of SCF. To determine the key site of FN function, RGDS peptides in the FN sequence, which supports spreading of NCCs, were added to the NCC culture. The number of DOPA‐positive cells decreased with RGDS concentration in a dose‐dependent fashion. Immunohistochemical staining revealed the presence of integrin a5, a receptor of RGDS, in NCCs. These results suggest the RGDS domain of FN plays a contributory role as an active site in the induction of FN function in NCCs. In addition, we examined the effect of FN with SCF on the NCC migration by measuring cluster size, and found an increase in size following treatment with FN.  相似文献   

18.
Macrophage migration inhibitory factor (MIF) is a catalytic cytokine and an upstream mediator of the inflammatory pathway. MIF has broad regulatory properties, dysregulation of which has been implicated in the pathology of multiple immunological diseases. Inhibition of MIF activity with small molecules has proven beneficial in a number of disease models. Known small molecule MIF inhibitors typically bind in the tautomerase site of the MIF trimer, often covalently modifying the catalytic proline. Allosteric MIF inhibitors, particularly those that associate with the protein by noncovalent interactions, could reveal novel ways to block MIF activity for therapeutic benefit and serve as chemical probes to elucidate the structural basis for the diverse regulatory properties of MIF. In this study, we report the identification and functional characterization of a novel allosteric MIF inhibitor. Identified from a high throughput screening effort, this sulfonated azo compound termed p425 strongly inhibited the ability of MIF to tautomerize 4-hydroxyphenyl pyruvate. Furthermore, p425 blocked the interaction of MIF with its receptor, CD74, and interfered with the pro-inflammatory activities of the cytokine. Structural studies revealed a unique mode of binding for p425, with a single molecule of the inhibitor occupying the interface of two MIF trimers. The inhibitor binds MIF mainly on the protein surface through hydrophobic interactions that are stabilized by hydrogen bonding with four highly specific residues from three different monomers. The mode of p425 binding reveals a unique way to block the activity of the cytokine for potential therapeutic benefit in MIF-associated diseases.  相似文献   

19.
Apigenin (4',5,7,-trihydroxyflavone) is a flavonoid abundant in the common fruits, herbs and vegetables constituting the bulk of the human diet. This study was aimed at quantifying the effects of apigenin on the basic cellular traits determining cancer development, i.e. cell proliferation, gap junctional coupling, and motility, using the Dunning rat prostate MAT-LyLu cell model. We demonstrated that apigenin considerably inhibits MAT-LyLu cell proliferation and significantly enhances the intensity of connexin43-mediated gap junctional coupling. This effect correlates with an increased abundance of Cx43-positive plaques at the cell-to-cell borders seen in apigenin-treated variants. Moreover, we observed an inhibitory effect of apigenin on the motility of MAT-LyLu cells. The basic parameters characterising MAT-LyLu cell motility, especially the rate of cell displacement, considerably decreased upon apigenin administration. This in vitro data indicates that apigenin may affect cancer development in general, and prostate carcinogenesis in particular, via its influence on cellular activities decisive for both cancer promotion and progression, including cell proliferation, gap junctional coupling and cell motility and invasiveness.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号