首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stanniocalcin-2 (STC2), the paralog of STC1, has been suggested as a novel target of oxidative stress response to protect cells from apoptosis. The expression of STC2 has been reported to be highly correlated with human cancer development. In this study, we reported that STC2 is a HIF-1 target gene and is involved in the regulation of cell proliferation. STC2 was shown to be up-regulated in different breast and ovarian cancer cells, following exposure to hypoxia. Using ovarian cancer cells (SKOV3), the underlying mechanism of HIF-1 mediated STC2 gene transactivation was characterized. Hypoxia-induced STC2 expression was found to be HIF-1α dependent and required the recruitment of p300 and HDAC7. Using STC2 promoter deletion constructs and site-directed mutagenesis, two authentic consensus HIF-1 binding sites were identified. Under hypoxic condition, the silencing of STC2 reduced while the overexpression of STC2 increased the levels of phosphorylated retinoblastoma and cyclin D in both SKOV3 and MCF7 cells. The change in cell cycle proteins correlated with the data of the serial cell counts. The results indicated that cell proliferation was reduced in STC2-silenced cells but was increased in STC2-overexpressing hypoxic cells. Solid tumor progression is usually associated with hypoxia. The identification and functional analysis of STC2 up-regulation by hypoxia, a feature of the tumor microenvironment, sheds light on a possible role for STC2 in tumors.  相似文献   

2.
Stanniocalcin (STC), a glycoprotein hormone, is expressed in a wide variety of tissues to regulate Ca2+ and PO4- homeostasis. STC2, a member of STC family, has been reported to be associated with tumor development. In this study, we investigated whether the expression of STC2 is associated with migration and invasion of breast cancer cells. We found that breast cancer cell line 231 HM transfected with STC2 shRNA displayed high motility, fibroblast morphology, and enhanced cell migration and invasion. Introduction of STC2 in 231 cells reduced cell migration and invasion. In response to irradiation, silencing of STC2 in 231 HM cells reduced apoptosis, whereas overexpression of STC2 in 231 cells promoted apoptosis, compared with in control cells. Mechanistic study showed that STC2 negatively regulated PKC to control the expression of Claudin-1, which subsequently induced the expressions of EMT-related factors including ZEB1, ZO-1, Slug, Twist, and MMP9. Suppression of PKC activity by using a PKC inhibitor (Go 6983) restored the normal motility of STC2-silenced cells. Furthermore, in vivo animal assay showed that STC2 inhibited tumorigenesis and metastasis of breast cancer cells. Collectively, these results indicate that STC2 may inhibit EMT at least partially through the PKC/Claudin-1-mediated signaling in human breast cancer cells. Thus, STC2 may be exploited as a biomarker for metastasis and targeted therapy in human breast cancer.  相似文献   

3.
4.
In general, tumors cells that are resistant to apoptosis and increase angiogenesis are a result of the hypoxic responses contributing to the malignant phenotype. In this study, we developed a chronic hypoxic cell model (HMLL), by incubating the prostate cancer MatLyLu cells in a hypoxic chamber (1% O2) over 3 weeks. Surviving cells were selected through each cell passage and were grown in the hypoxic condition up to 8 weeks. This strategy resulted in survival of only 5% of the cells. The surviving hypoxic cells displayed a greater stimulation on hypoxic adaptive response, including a greater expression of glucose transporter1 (Glut1) and VEGF secretion. In addition, higher invasion activity was observed in the chronic hypoxic HMLL cells as compared to MatLyLu cells exposed to acute hypoxia (1% O2, 5 h) using the matrigel assay. To further examine the role of HIF-1α in tumor progression, both MatLyLu and HMLL cells were transfected with dominant-negative form of HIF-1α (DNHIF-1α). The Matrigel invasion activity induced by chronic hypoxia was significantly attenuated by DNHIF-1α. These results suggest that signaling pathways leading to hypoxic response may be differentially regulated in chronic hypoxic cells and acute hypoxic cells. Chronic hypoxia may play a greater role than acute hypoxia in promoting the aggressive phenotype of tumor cells. This observation mimics the clinical scenario where tumor cells following treatment with radiation are subjected to hypoxic conditions. The reemergence of tumor following treatment usually results in tumor cells that are more aggressive and metastatic.  相似文献   

5.
In general, tumors cells that are resistant to apoptosis and increase angiogenesis are a result of the hypoxic responses contributing to the malignant phenotype. In this study, we developed a chronic hypoxic cell model (HMLL), by incubating the prostate cancer MatLyLu cells in a hypoxic chamber (1% O(2)) over 3 weeks. Surviving cells were selected through each cell passage and were grown in the hypoxic condition up to 8 weeks. This strategy resulted in survival of only 5% of the cells. The surviving hypoxic cells displayed a greater stimulation on hypoxic adaptive response, including a greater expression of glucose transporter1 (Glut1) and VEGF secretion. In addition, higher invasion activity was observed in the chronic hypoxic HMLL cells as compared to MatLyLu cells exposed to acute hypoxia (1% O(2), 5 h) using the matrigel assay. To further examine the role of HIF-1alpha in tumor progression, both MatLyLu and HMLL cells were transfected with dominant-negative form of HIF-1alpha (DNHIF-1alpha). The Matrigel invasion activity induced by chronic hypoxia was significantly attenuated by DNHIF-1alpha. These results suggest that signaling pathways leading to hypoxic response may be differentially regulated in chronic hypoxic cells and acute hypoxic cells. Chronic hypoxia may play a greater role than acute hypoxia in promoting the aggressive phenotype of tumor cells. This observation mimics the clinical scenario where tumor cells following treatment with radiation are subjected to hypoxic conditions. The reemergence of tumor following treatment usually results in tumor cells that are more aggressive and metastatic.  相似文献   

6.
7.
Ovarian cancer is one of the most common gynecologic malignancy with poor prognosis. Recently, long noncoding RNAs (lncRNAs) have been identified as key regulators in cancer development. The current study investigated the role of lncRNA P73 antisense RNA 1T (TP73‐AS1) in ovarian cancer. Quantitative real‐time polymerase chain reaction determined the expression levels of TP‐73AS1, matrix metallopeptidases (MMPs) messenger RNA. Cell proliferative ability, cell invasion, and migration were CCK‐8 and colony formation, and transwell invasion and migration assays, respectively. The protein levels of matrix metallopeptidase 2 (MMP2) and MMP9 were measured by Western blot. TP73‐AS1 was upregulated in the ovarian cancer tissues and ovarian cancer cells, and upregulation of TP73‐AS1 was associated with poor prognosis. Knockdown of TP73‐AS1 significantly suppressed cell proliferation, invasion, and migration of SKOV3 cells, and overexpression of TP73‐AS1 promoted cell proliferation, invasion, and migration of OVCA429 cells. In addition, knockdown of TP73‐AS1 suppressed the in vivo tumor growth. Tumor metastasis RT2 profiler polymerase chain reaction array showed that MMP2 and MMP9 was significantly upregulated by TP73‐AS1 overexpression in ovarian cancer cells. TP73‐AS1 overexpression enhanced the expression of MMP2 and MMP9 in ovarian cancer cells. Knockdown of MMP2 and MMP9 attenuated the effects of TP73‐AS1 overexpression on cell invasion and migration. The clinical data showed that MMP2 and MMP9 were upregulated and positively correlated with TP73‐AS1 expression in ovarian cancer tissues. Collectively, our results demonstrated the oncogenic role of TP73‐AS1 in ovarian cancer, and targeting TP73‐AS1 may represent a novel approach in battling against ovarian cancer.  相似文献   

8.
9.
SMAD ubiquitination regulatory factor 1 (SMURF1) has been described as a tumor suppressor in multiple aggressive cancers. Nevertheless, the potential role of SMURF1 in ovarian cancer invasion and epithelial-to-mesenchymal transition (EMT) remains unclear. The aim of this study was to evaluate the efficacy of SMURF1 on tumor migration and EMT and elucidate the underlying molecular mechanism in ovarian carcinoma. We found elevated SMURF1 in several ovarian cancer cells in both messenger RNA and protein. Additionally, silencing SMURF1 apparently repressed cell proliferation and invasion capacity of SKOV3 and A2780 cells and markedly attenuated expression of linked proteins such as proliferating cellnuclear antigen, matrix metalloproteinase (MMP)-2, and MMP-9. Furthermore, depletion of SMURF1 dramatically impeded EMT progress by modulating EMT biomarkers, with a notable increase in E-cadherin expression accompanied by the decrease in N-cadherin and vimentin in both SKOV3 and A2780 cells. Interestingly, elimination of SMURF1 led to disabled homolog 2 DOC-2/DAB2 interacting protein (DAB2IP) activation and dampened AKT/Skp2 signaling. Most important, depleted of DAB2IP or treatment with the AKT agonist 740Y-P effectively abolished the suppressive effects of SMURF1 knockout on cell invasiveness and EMT process. Taken all data together, these findings demonstrated that the absence of SMURF1 repressed cell proliferation, invasive capability, and EMT process in ovarian cancer through DAB2IP/AKT/Skp2 signaling loops, suggesting that SMURF1 may serve as a new potential therapeutic agent for ovarian cancer.  相似文献   

10.
11.
Alpha B‐crystallin (CRYAB) is overexpressed in a variety of cancers. However, little is known about its specific function and regulatory mechanism in gastric cancer. Here, we first explore the role of CRYAB in gastric cancer progression and metastasis. The expression of CRYAB was determined by western blot and immunohistochemistry in gastric cancer tissues. Besides, methods including stably transfected against CRYAB into gastric cancer cells, western blot, migration and invasion assays in vitro and metastasis assay in vivo were also conducted. The expression of CRYAB is up‐regulated in gastric cancer tissues compared with matched normal tissues. High expression level of CRYAB is closely correlated with cancer metastasis and shorter survival time in patients with gastric cancer. Additionally, CRYAB silencing significantly suppresses epithelial‐mesenchymal transition (EMT), migration and invasion of gastric cancer cells in vitro and in vivo, whereas CRYAB overexpression dramatically reverses these events. Mechanically, CRYAB facilitates gastric cancer cells invasion and metastasis via nuclear factor‐κ‐gene binding (NF‐κB)‐regulated EMT. These findings suggest that CRYAB expression predicts a poor prognosis in patients with gastric cancer. Besides, CRYAB contributes to gastric cancer cells migration and invasion via EMT, mediated by the NF‐κB signalling pathway, thus possibly providing a novel therapeutic target for gastric cancer.  相似文献   

12.
SHIP-1 是一个含有SH2结构域的肌醇5磷酸酶,在造血过程中起负调节作用。为了调查SHIP-1对癌细胞的迁移能力和MMP2分泌是否有影响,我们制作了鼠SHIP-1的3种突变体,△SH2-SHIP-1, △Ptase-SHIP-1, △Cter-SHIP-1,并与其野生型全长cDNA 一起分别插入到真核表达载体pcDNA3中,分别转染 src 转化的 3Y1 细胞系(SR3Y1),Western blot筛选稳定转染并表达SHIP-1的克隆。对这些克隆的MMP2、MMP9和细胞侵润能力的测定结果显示,野生型全长SHIP-1转染3Y1和SR3Y1不影响其MMP2的分泌,但能诱导MMP9分泌。但其3种突变体 SHIP-1转染却都能显著地抑制SR3Y1细胞的MMP2和MMP9分泌,并抑制其侵润能力。野生型全长SHIP-1也能抑制SR3Y1的侵润能力。研究结果肯定了SHIP-1对转化细胞的迁移和侵润是一个负调节因子,并且它的3个结构域都参与了这种负调节作用。  相似文献   

13.
14.
Epithelial cell adhesion molecule (EpCAM), which is a transmembrane glycoprotein, is related to tumor progression. We demonstrated that EpCAM plays important roles in proliferation, apoptosis, and metastasis during breast cancer (BC) progression. But the role of N-glycosylation in EpCAM in tumor aggressiveness is not clear. Here, we evaluated the role of N-glycosylation of EpCAM in stemness and epithelial–mesenchymal transition (EMT) characteristics. EpCAM overexpression increases the expression of stemness markers (NANOG,SOX2, and OCT4) and EMT markers (N-cadherin and vimentin) under the condition of hypoxia in BC. Knockdown of EpCAM and mutation of N-glycosylation of EpCAM maintained in severe hypoxia lead to a significant reduction of stemness/EMT markers. In addition, we found that N-glycosylation of EpCAM is a crucial factor during this process. This demonstrates that EpCAM has a novel regulatory role in stemness/EMT dependence of hypoxia-inducible factor 1-alpha via regulating nuclear factor kappa B in BC cells. Hence, our study reveals EpCAM glycosylation modification as a new regulator of stemness/EMT under hypoxic in BC and points out EpCAM as a potential therapeutic target.  相似文献   

15.
目的:NS398是非甾体类抗炎药物的一种,它可以抑制肿瘤细胞增殖,诱导肿瘤细胞凋亡,但其在肿瘤发展中的作用机制尚不清楚。宫颈癌是女性最常见的恶性肿瘤,其侵袭转移是患者死亡的主要原因。基质金属蛋白酶几乎能降解细胞外基质中的各种蛋白质成分,在肿瘤侵袭转移中起着十分关键的作用。本文则以宫颈癌Hela细胞为研究对象,观察NS398对Hela细胞的增殖及其基质金属蛋白酶2表达的影响,探讨NS398在宫颈癌侵袭转移过程中的作用及可能机制。方法:用不同浓度的NS398(O、25、50、75、100μmol/L)处理宫颈癌Hela细胞48小时,以噻唑蓝(MTT)比色法分析细胞生长抑制率,酶联免疫吸附实验(EuSA)与蛋白免疫印迹技术分别检测MMP2活性及蛋白表达的变化。结果:不同浓度的NS398处理Hela细胞后,MTT法分析显示,NS398可明显降低细胞代谢MTT的能力(P〈0.05);ELISA检测发现,NS398可减少细胞培养液中活性MMP2含量(P〈0.05);Western免疫印迹检测显示,NS398可下调细胞MMP2蛋白的表达(P〈0.05),这些效应均呈剂量依赖性。结论:Ns398呈剂量依赖性抑制Hela细胞的增殖,抑制细胞中MMP2的活性,并下调细胞MMP2的表达。结果提示,NS398可通过抑制肿瘤细胞的增殖而抑制宫颈癌的生长,通过抑制MMP2的活性和下调MMP2蛋白的表达而抑制宫颈癌的侵袭转移,这为NS398在宫颈癌防治中的应用提供了新的实验依据。  相似文献   

16.
Glioblastoma is a malignant brain tumor of glial origin. These tumors are thought to be derived from astrocytic cells that undergo malignant transformation. A growing body of evidence suggests that upregulation of MMP expression plays a significant role in promoting glioma pathogenesis. Elevated expression of MMP14 not only promotes glioma invasion and tumor cell proliferation but also plays a role in angiogenesis. Despite the fact that levels of MMP14 correlate with breast cancer progression, the controversial role of MMP14 in gliomagenesis needs to be elucidated. In the present review, we discuss the role of MMP14 in glioma progression as well as the mechanisms of MMP14 regulation in the context of future therapeutic manipulations.  相似文献   

17.
Wang J  Chen L  Li Y  Guan XY 《PloS one》2011,6(9):e24967
The aim of this study was to characterize the oncogenic function and mechanism of Cathepsin Z (CTSZ) at 20q13.3, a frequently amplified region in hepatocellular carcinoma (HCC). Real-time PCR were used to compare CTSZ expression between paired HCC tumor and non-tumor specimens. CTSZ gene was stably transfected into HCC line QGY-7703 cells and its role in tumorigenicity and cell motility was characterized by soft agar, wound-healing, transwell invasion and cell adhesion assay, and tumor xenograft mouse model. Western blot analysis was used to study expression of proteins associated with epithelial-mesenchymal transition (EMT).Upregulation of CTSZ was detected in 59/137 (43%) of primary HCCs, which was significantly associated with advanced clinical stage (P = 0.000). Functional study found that CTSZ could increase colony formation in soft agar and promote cell motility. Further study found that the metastatic effect of CTSZ was associated with its role in inducing epithelial-mesenchymal transition (EMT) by upregulating mesenchymal markers (fibronectin and vimentin) and downregulating epithelial markers (E-cadherin and α-catenin). In addition, CTSZ could also upregulate proteins associated with extracellular matrix remodeling such as MMP2, MMP3 and MMP9. Taken together, our data suggested that CTSZ was a candidate oncogene within the 20q13 amplicon and it played an important role in HCC metastasis.  相似文献   

18.
Fluctuating oxygen levels characterize the microenvironment of many cancers and tumor hypoxia is associated with increased invasion and metastatic potential concomitant with a poor prognosis. Similarly, the expression of lysyl oxidase (LOX) in breast cancer facilitates tumor cell migration and is associated with estrogen receptor negative status and reduced patient survival. Here we demonstrate that hypoxia/reoxygenation drives poorly invasive breast cancer cells toward a more aggressive phenotype by up-regulating LOX expression and catalytic activity. Specifically, hypoxia markedly increased LOX protein expression; however, catalytic activity (beta-aminopropionitrile inhibitable hydrogen peroxide production) was significantly reduced under hypoxic conditions. Moreover, poorly invasive breast cancer cells displayed a marked increase in LOX-dependent FAK/Src activation and cell migration following hypoxia/reoxygenation, but not in response to hypoxia alone. Furthermore, LOX expression is only partially dependent on hypoxia inducible factor-1 (HIF-1alpha) in poorly invasive breast cancer cells, as hypoxia mimetics and overexpression of HIF-1alpha could not up-regulate LOX expression to the levels observed under hypoxia. Clinically, LOX expression positively correlates with tumor progression and co-localization with hypoxic regions (defined by HIF-1alpha expression) in ductal carcinoma in situ and invasive ductal carcinoma primary tumors. However, positive correlation is lost in metastatic tumors, suggesting that LOX expression is independent of a hypoxic environment at later stages of tumor progression. This work demonstrates that both hypoxia and reoxygenation are necessary for LOX catalytic activity which facilitates breast cancer cell migration through a hydrogen peroxide-mediated mechanism; thereby illuminating a potentially novel mechanism by which poorly invasive cancer cells can obtain metastatic competency.  相似文献   

19.
Lung cancer is the leading cause of cancer-related death worldwide. Hypoxia is known to increase cancer cell migration and invasion. We have previously reported that hypoxia induces epithelial–mesenchymal transition (EMT) in lung cancer cells. However, it is unknown whether hypoxia promotes lung cancer cell migration and invasion via EMT and whether cyclic AMP (cAMP) dependent protein kinase (PKA) plays a role in this process. We found that hypoxia increased PKA activity and induced mRNA and protein expression of PKA catalytic subunit α (PKACA), and regulatory subunits R1A and R1B. Knockdown of HIF-1/2α prevented hypoxia-mediated induction of PKACA mRNA expression and PKA activity. Inhibition of PKA activity with chemical inhibitors prevented EMT induced by hypoxia and tumor growth factor β1. However, activation of PKA by forskolin and 8-Br-cAMP did not induce EMT. Furthermore, treatment with H89 and knockdown of PKACA prevented hypoxia-mediated, EMT, cell migration, and invasion, whereas overexpression of mouse PKACA rescued hypoxia-mediated migration and invasion in PKACA deficient cancer cells. Our results suggest that hypoxia enhances PKA activity by upregulating PKA gene expression in a HIF dependent mechanism and that PKA plays a key role in hypoxia-mediated EMT, migration, and invasion in lung cancer cells.  相似文献   

20.
Abstract

Context: Colorectal cancer (CRC) is a leading cause of cancer death in recent years. It is believed that there are hypoxic regions in both early and advanced stage of tumor and hypoxia is able to reinforce the aggressiveness of tumor cells and accelerate the progression of cancer. Objective: Until now the mechanisms by which hypoxia promotes the progression of CRC are far from well understood. Integrin-linked kinase (ILK) is a crucial mediator and over-expressed in CRC patients. But whether ILK is involved in the process that hypoxia promotes CRC cells growth and silencing the ILK gene results in CRC cells apoptosis is not clear. Materials and methods: Lentivirus transfection, invasion assay, TUNEL assay, Bromodeoxyuridine incorporation and mitochondrial function assay were applied to demonstrate our hypothesis. Results: In this study, we found that hypoxia induced the expression of ILK in a time-dependent manner, and after knocking down ILK expression with ILK shRNA, the cells proliferation promoted by hypoxia was inhibited in HT29 cell line. Moreover, blocking the ILK pathway led to caspase-3 and caspase-9 activations, the decrease of mitochondrial membrane potential, and cells apoptosis. And the inhibitory effects of hypoxia on cells apoptosis were mediated by the ILK pathway. In addition, hypoxia promoted HT29 cells metastasis and invasion through the ILK pathway. Conclusions: Therefore, we conclude that the CRC cells survival and invasion enhanced by hypoxia are mediated by ILK, and ILK may be an important potential therapeutic target for CRC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号