首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The retromer protein complex assists in recycling selected integral membrane proteins from endosomes to the trans Golgi network. One protein subcomplex (Vps35p, Vps26p and Vps29p) combines with a second (Vps17p and Vps5p) to form a coat involved in sorting and budding of endosomal vesicles. Yeast Vps35p (yVps35) exhibits similarity to human Vps35 (hVps35), especially in a completely conserved PRLYL motif contained within an amino-terminal domain. Companion studies indicate that an R(98)W mutation in yVps35 causes defective retromer assembly in Saccharomyces cerevisiae. Herein, we find that the expression of hVps35 in yeast confers dominant-negative vacuolar proenzyme secretion and defective secretory proprotein processing. The mutant phenotype appears to be driven by hVps35 competing with endogenous yVps35, becoming incorporated into defective retromer complexes and causing proteasomal degradation of endogenous Vps26 and Vps29. Increased expression of yVps35 displaces some hVps35 to a 100 000 x g supernatant and suppresses the dominant-negative phenotype. Remarkably, mutation of the conserved R(107)W of hVps35 displaces some of the protein to the 100 000 x g supernatant, slows protein turnover and restores stability of Vps26p and Vps29p and completely abrogates dominant-negative trafficking behavior. We show that hVps35 coprecipitates Vps26, whereas the R(107)W mutant does not. In pancreatic beta cells, the R(107)W mutant shifts hVps35 from peripheral endosomes to a juxtanuclear compartment, affecting both mannose phosphate receptors and insulin. These data underscore importance of the Vps35 PRLYL motif in retromer subcomplex interactions and function.  相似文献   

2.
The Golgi associated retrograde protein complex (GARP) or Vps fifty-three (VFT) complex is part of cellular inter-compartmental transport systems. Here we report the identification of the VFT tethering factor complex and its interactions in mammalian cells. Subcellular fractionation shows that human Vps proteins are found in the smooth membrane/Golgi fraction but not in the cytosol. Immunostaining of human Vps proteins displays a vesicular distribution most concentrated at the perinuclear envelope. Co-staining experiments with endosomal markers imply an endosomal origin of these vesicles. Significant accumulation of VFT complex positive endosomes is found in the vicinity of the Trans Golgi Network area. This is in accordance with a putative role in Golgi associated transport processes. In Saccharomyces cerevisiae, GARP is the main effector of the small GTPase Ypt6p and interacts with the SNARE Tlg1p to facilitate membrane fusion. Accordingly, the human homologue of Ypt6p, Rab6, specifically binds hVps52. In human cells, the "orphan" SNARE Syntaxin 10 is the genuine binding partner of GARP mediated by hVps52. This reveals a previously unknown function of human Syntaxin 10 in membrane docking and fusion events at the Golgi. Taken together, GARP shows significant conservation between various species but diversification and specialization result in important differences in human cells.  相似文献   

3.
Sorting nexin (SNX) 1 and SNX2 are mammalian orthologs of Vps5p, a yeast protein that is a subunit of a large multimeric complex, termed the retromer complex, involved in retrograde transport of proteins from endosomes to the trans-Golgi network. We report the cloning and characterization of human orthologs of three additional components of the complex: Vps26p, Vps29p, and Vps35p. The close structural similarity between the yeast and human proteins suggests a similarity in function. We used both yeast two-hybrid assays and expression in mammalian cells to define the binding interactions among these proteins. The data suggest a model in which hVps35 serves as the core of a multimeric complex by binding directly to hVps26, hVps29, and SNX1. Deletional analyses of hVps35 demonstrate that amino acid residues 1-53 and 307-796 of hVps35 bind to the coiled coil-containing domain of SNX1. In contrast, hVps26 binds to amino acid residues 1-172 of hVps35, whereas hVps29 binds to amino acid residues 307-796 of hVps35. Furthermore, hVps35, hVps29, and hVps26 have been found in membrane-associated and cytosolic compartments. Gel filtration chromatography of COS7 cell cytosol showed that both recombinant and endogenous hVps35, hVps29, and hVps26 coelute as a large complex ( approximately 220-440 kDa). In the absence of hVps35, neither hVps26 nor hVps29 is found in the large complex. These data provide the first insights into the binding interactions among subunits of a putative mammalian retromer complex.  相似文献   

4.
Rabankyrin-5 (Rank-5) has been implicated as an effector of the small GTPase Rab5 and plays an important role in macropinocytosis. We have now identified Rank-5 as an interaction partner for the recycling regulatory protein, Eps15 homology domain 1 (EHD1). We have demonstrated this interaction by glutathione S-transferase-pulldown, yeast two-hybrid assay, isothermal calorimetry and co-immunoprecipitation, and found that the binding occurs between the EH domain of EHD1 and the NPFED motif of Rank-5. Similar to EHD1, we found that Rank-5 colocalizes and interacts with components of the retromer complex such as vacuolar protein sorting 26 (Vps26), suggesting a role for Rank-5 in retromer-based transport. Indeed, depletion of Rank-5 causes mislocalization of Vps26 and affects both the retrieval of mannose 6-phosphate receptor transport to the Golgi from endosomes and biosynthetic transport. Moreover, Rank-5 is required for normal retromer distribution, as overexpression of a wild-type Rank-5-small interfering RNA-resistant construct rescues retromer mislocalization. Finally, we show that depletion of either Rank-5 or EHD1 impairs secretion of vesicular stomatitis virus glycoprotein. Overall, our data identify a new interaction between Rank-5 and EHD1, and novel endocytic regulatory roles that include retromer-based transport and secretion.  相似文献   

5.
Retromer, a peripheral membrane protein complex, plays an instrumental role in host of cellular processes by its ability to recycle receptors from endosomes to the trans‐Golgi network. It consists of two distinct sub‐complexes, a membrane recognizing, sorting nexins (SNX) complex and a cargo recognition, vacuolar protein sorting (Vps) complex. Small GTPase, Rab7 is known to recruit retromer on endosomal membrane via interactions with the Vps sub‐complex. The molecular mechanism underlying the recruitment process including the role of individual Vps proteins is yet to be deciphered. In this study, we developed a FRET‐based assay in HeLa cells that demonstrated the interaction of Rab7 with Vps35 and Vps26 in vivo. Furthermore, we showed that Rab7 recruits retromer to late endosomes via direct interactions with N‐terminal conserved regions in Vps35. However, the single point mutation, which disrupts the interaction between Vps35 and Vps26, perturbed the Rab7‐mediated recruitment of retromer in HeLa cells. Using biophysical measurements, we demonstrate that the association of Vps26 with Vps35 resulted in high affinity binding between the Vps sub‐complex and the activated Rab7 suggesting for a possible allosteric role of Vps26. Thus, this study provides molecular insights into the essential role of Vps26 and Vps35 in Rab7‐mediated recruitment of the core retromer complex.   相似文献   

6.
Proper functioning of the precisely controlled endolysosomal system is essential for maintaining the homeostasis of the entire cell. Tethering factors play pivotal roles in mediating the fusion of different transport vesicles, such as endosomes or autophagosomes with each other or with lysosomes. In this work, we uncover several new interactions between the endolysosomal tethering factors Rabenosyn-5 (Rbsn) and the HOPS and CORVET complexes. We find that Rbsn binds to the HOPS/CORVET complexes mainly via their shared subunit Vps18 and we mapped this interaction to the 773–854 region of Vps18. Based on genetic rescue experiments, the binding between Rbsn and Vps18 is required for endosomal transport and is dispensable for autophagy. Moreover, Vps18 seems to be important for β1 integrin recycling by binding to Rbsn and its known partner Vps45.  相似文献   

7.
Retromer is a heteromeric protein complex with important roles in endosomal membrane trafficking, most notably in the retrograde transport of lysosomal hydrolase receptors from endosomes to the Golgi. The core of retromer is composed of three subunits vacuolar protein sorting (Vps)35, Vps26 and Vps29, and in mammals, there are two paralogues of the medium subunit Vps26A and Vps26B. We find that both Vps26A and Vps26B bind to Vps35/Vps29 with nanomolar affinity and compete for a single-binding site to define distinct retromer complexes in vitro and in vivo. We have determined the crystal structure of mouse Vps26B and compare this structure with that of Vps26A. Vps26 proteins have a striking similarity to the arrestin family of proteins that regulate the signalling and endocytosis of G-protein-coupled receptors, although we observe that surface residues involved in arrestin function are not conserved in Vps26. Using structure-based mutagenesis, we show that both Vps26A and Vps26B are incorporated into retromer complexes through binding of Vps35 to a highly conserved surface patch within the C-terminal subdomain and that this interaction is required for endosomal recruitment of the proteins.  相似文献   

8.
The retromer complex is involved in the retrograde transport of the CI-M6PR (cation-independent mannose 6-phosphate receptor) from endosomes to the Golgi. It is a hetero-trimeric complex composed of Vps26 (vacuolar sorting protein 26), Vps29 and Vps35 proteins, which are conserved in eukaryote evolution. Recently, elucidation of the crystal structure of Vps29 revealed that Vps29 contains a metallo-phosphoesterase fold [Wang, Guo, Liang, Fan, Zhu, Zang, Zhu, Li, Teng, Niu et al. (2005) J. Biol. Chem. 280, 22962-22967; Collins, Skinner, Watson, Seaman and Owen (2005) Nat. Struct. Mol. Biol. 12, 594-602]. We demonstrate that recombinant hVps29 (human Vps29) displays in vitro phosphatase activity towards a serine-phosphorylated peptide, containing the acidic-cluster dileucine motif of the cytoplasmatic tail of the CI-M6PR. Efficient dephosphorylation required the additional presence of recombinant hVps26 and hVps35 proteins, which interact with hVps29. Phosphatase activity of hVps29 was greatly decreased by alanine substitutions of active-site residues that are predicted to co-ordinate metal ions. Using inductively coupled plasma MS, we demonstrate that recombinant hVps29 binds zinc. Moreover, hVps29-dependent phosphatase activity is greatly reduced by non-specific and zinc-specific metal ion chelators, which can be completely restored by addition of excess ZnCl2. The binuclear Zn2+ centre and phosphate group were modelled into the hVps29 catalytic site and pKa calculations provided further insight into the molecular mechanisms of Vps29 phosphatase activity. We conclude that the retromer complex displays Vps29-dependent in vitro phosphatase activity towards a serinephosphorylated acidic-cluster dileucine motif that is involved in endosomal trafficking of the CI-M6PR. The potential significance of these findings with respect to regulation of transport of cycling trans-Golgi network proteins is discussed.  相似文献   

9.
The penta-subunit retromer complex of yeast mediates selective retrieval of membrane proteins from the prevacuolar endosome to the trans Golgi network. In this study, we set out to generate a panel of vps35 dominant-negative mutants that disrupt retromer-mediated cargo sorting. Mapping of the mutations revealed two types of alterations leading to dominant-negative behavior of the 944-amino acid protein: (i) mutations at or near the R(98) residue or (ii) C-terminal truncations exemplified by a nonsense mutation at codon 733. Both could be suppressed by overexpression of wild-type Vps35p, suggesting that these dominant-negative mutants compete for interactions with other retromer subunits. Interestingly, Vps35-R(98)W expression destabilized Vps26p while having no effect on Vps29p stability, while Vps35-Q(733)* expression affected Vps29p stability but had no effect on Vps26p. Measurement of Vps35/Vps26 and Vps35/Vps29 pairwise associations by coimmunoprecipitation in the presence or absence of other retromer subunits indicated that the R(98) residue, which is part of a conserved PRLYL motif, is critical for Vps35p binding to Vps26p, while both R(98) and residues 733-944 are needed for efficient binding to Vps29p.  相似文献   

10.
Wang D  Guo M  Liang Z  Fan J  Zhu Z  Zang J  Zhu Z  Li X  Teng M  Niu L  Dong Y  Liu P 《The Journal of biological chemistry》2005,280(24):22962-22967
Vacuolar protein sorting protein 29 (Vps29p), which is involved in retrograde trafficking from prevacuolar endosomes to the trans-Golgi network, performs its biological functions by participating in the formation of a "retromer complex." In human cells, this complex comprises four conserved proteins: hVps35p, hVps29p, hVps26p, and sorting nexin 1 protein (SNX1). Here, we report the crystal structure of hVps29p at 2.1 Angstroms resolution, the first three-dimensional structure of the retromer subunits. This novel structure adopts a four-layered alpha-beta-beta-alpha sandwich fold. hVps29p contains a metal-binding site that is very similar to the active sites of some proteins of the phosphodiesterase/nuclease protein family, indicating that hVps29p may carry out chemically similar functions. Structure and sequence conservation analysis suggests that hVps29p contains two protein-protein interaction sites. One site, which potentially serves as the interface between hVps29p and hVps35p, comprises 5 conserved hydrophobic and 8 hydrophilic residues. The other site is relatively more hydrophilic and may serve as a binding interface with hVps26p, SNX1, or other target proteins.  相似文献   

11.
Traffic through late endolysosomal compartments is regulated by sequential signaling of small G proteins of the Rab5 and Rab7 families. The Saccharomyces cerevisiae Vps-C protein complexes CORVET (class C core vacuole/endosome tethering complex) and HOPS (homotypic fusion and protein transport) interact with endolysosomal Rabs to coordinate their signaling activities. To better understand these large and intricate complexes, we performed interaction surveys to assemble domain-level interaction topologies for the eight Vps-C subunits. We identified numerous intersubunit interactions and up to six Rab-binding sites. Functional modules coordinate the major Rab interactions within CORVET and HOPS. The CORVET-specific subunits, Vps3 and Vps8, form a subcomplex and physically and genetically interact with the Rab5 orthologue Vps21. The HOPS-specific subunits, Vps39 and Vps41, also form a subcomplex. Both subunits bind the Rab7 orthologue Ypt7, but with distinct nucleotide specificities. The in vivo functions of four RING-like domains within Vps-C subunits were analyzed and shown to have distinct functions in endolysosomal transport. Finally, we show that the CORVET- and HOPS-specific subunits Vps3 and Vps39 bind the Vps-C core through a common region within the Vps11 C-terminal domain (CTD). Biochemical and genetic experiments demonstrate the importance of these regions, revealing the Vps11 CTD as a key integrator of Vps-C complex assembly, Rab signaling, and endosomal and lysosomal traffic.  相似文献   

12.
The retromer complex mediates retrograde transport of transmembrane cargo from endosomes to the trans-Golgi network (TGN). Mammalian retromer is composed of a sorting nexin (SNX) dimer that binds to phosphatidylinositol 3-phosphate–enriched endosomal membranes and a vacuolar protein sorting (Vps) 26/29/35 trimer that participates in cargo recognition. The mammalian SNX dimer is necessary but not sufficient for recruitment of the Vps26/29/35 trimer to membranes. In this study, we demonstrate that the guanosine triphosphatase Rab7 contributes to this recruitment. The Vps26/29/35 trimer specifically binds to Rab7–guanosine triphosphate (GTP) and localizes to Rab7-containing endosomal domains. Interference with Rab7 function causes dissociation of the Vps26/29/35 trimer but not the SNX dimer from membranes. This blocks retrieval of mannose 6-phosphate receptors to the TGN and impairs cathepsin D sorting. Rab5-GTP does not bind to the Vps26/29/35 trimer, but perturbation of Rab5 function causes dissociation of both the SNX and Vps26/29/35 components from membranes through inhibition of a pathway involving phosphatidylinositol 3-kinase. These findings demonstrate that Rab5 and Rab7 act in concert to regulate retromer recruitment to endosomes.  相似文献   

13.
Transport of soluble cargo molecules to the lytic vacuole of plants requires vacuolar sorting receptors (VSRs) to divert transport of vacuolar cargo from the default secretory route to the cell surface. Just as important is the trafficking of the VSRs themselves, a process that encompasses anterograde transport of receptor–ligand complexes from a donor compartment, dissociation of these complexes upon arrival at the target compartment, and recycling of the receptor back to the donor compartment for a further round of ligand transport. We have previously shown that retromer‐mediated recycling of the plant VSR BP80 starts at the trans‐Golgi network (TGN). Here we demonstrate that inhibition of retromer function by either RNAi knockdown of sorting nexins (SNXs) or co‐expression of mutants of SNX1/2a specifically inhibits the ER export of VSRs as well as soluble vacuolar cargo molecules, but does not influence cargo molecules destined for the COPII‐mediated transport route. Retention of soluble cargo despite ongoing COPII‐mediated bulk flow can only be explained by an interaction with membrane‐bound proteins. Therefore, we examined whether VSRs are capable of binding their ligands in the lumen of the ER by expressing ER‐anchored VSR derivatives. These experiments resulted in drastic accumulation of soluble vacuolar cargo molecules in the ER. This demonstrates that the ER, rather than the TGN, is the location of the initial VSR–ligand interaction. It also implies that the retromer‐mediated recycling route for the VSRs leads from the TGN back to the ER.  相似文献   

14.
Rab22 and Rab31 belong to the Rab5 subfamily of GTPases that regulates endocytic traffic and endosomal sorting. Rab22 and Rab31 (a.k.a. Rab22b) are closely related and share 87% amino acid sequence similarity, but they show distinct intracellular localization and function in the cell. Rab22 is localized to early endosomes and regulates early endosomal recycling, while Rab31 is mostly localized to the Golgi complex with only a small fraction in the endosomes at steady state. The specific determinants that affect this differential localization, however, are unclear. In this study, we identify a novel membrane targeting domain (MTD) consisting of the C-terminal hypervariable domain (HVD), interswitch loop (ISL), and N-terminal domain as a major determinant of endosomal localization for Rab22 and Rab31, as well as Rab5. Rab22 and Rab31 share the same N-terminal domain, but we find Rab22 chimeras with Rab31 HVD exhibit phenotypic Rab31 localization to the Golgi complex, while Rab31 chimeras with the Rab22 HVD localize to early endosomes, similar to wildtype Rab22. We also find that the Rab22 HVD favors interaction with the early endosomal effector protein Rabenosyn-5, which may stabilize the Rab localization to the endosomes. The importance of effector interaction in endosomal localization is further demonstrated by the disruption of Rab22 endosomal localization in Rabenosyn-5 knockout cells and by the shift of Rab31 to the endosomes in Rabenosyn-5-overexpressing cells. Taken together, we have identified a novel MTD that mediates localization of Rab5 subfamily members to early endosomes via interaction with an effector such as Rabenosyn-5.  相似文献   

15.
The plant toxin ricin is transported from the plasma membrane via early endosomes and the Golgi apparatus to the endoplasmic reticulum. From this compartment, it enters the cytosol and inhibits protein synthesis. Lipid phosphorylation is an important regulator of vesicular transport, and in the present study we have investigated the role of the phosphatidylinositol (PI) 3-kinase hVps34 in retrograde transport of ricin. Our data demonstrate that transport of ricin from endosomes to the Golgi apparatus in human embryonic kidney cells (HEK 293) is dependent on PI(3)P. By using PI 3-kinase inhibitors, by sequestering the hVps34 product PI(3)P and by expressing mutants of hVps34 or small interfering RNA targeted against its messenger RNA, we show that hVps34 and its product PI(3)P are involved in transport of ricin from endosome to Golgi apparatus. Furthermore, we identify two effector proteins in the hVps34-dependent pathway, namely sorting nexin (SNX) 2 and SNX4. Knockdown of SNX2 or SNX4 inhibits ricin transport to the Golgi apparatus to the same extent as when hVps34 is perturbed. Furthermore, inhibition or knockdown of hVps34 redistributes these proteins. Interestingly, knocking down both SNX2 and SNX4 results in a better inhibition than knocking down only one of them, suggesting that they may act on separate pathways.  相似文献   

16.
The trimeric Vps29-Vps35-Vps26 sub-complex of retromer mediates retrograde transport of transmembrane proteins from endosomes to the trans-Golgi network. Our group has recently identified a Vps26 paralogue, Vps26B, which is able to suppress the expression of Vps26A when exogenously expressed in mammalian cells and defines a distinct retromer complex (Vps26B-retromer) in vivo and in vitro. In this study, we use HEK293 cells stably expressing either Vps26A-myc or Vps26B-myc to address the role of retromer cargo transport and subcellular localization of the two core retromer complexes as defined by the two mammalian-specific Vps26 paralogues. Vps26B-retromer, like Vps26A-retromer, associates with TBC1D5 and GOLPH3. In contrast, no interaction between Vps26B-retromer and cation-independent mannose 6-phosphate receptor (CI-M6PR) was detected, leading to a degradation of this receptor and an increase in cathepsin D secretion. Colocalization of Vps26 paralogues with different endosomally located Rab proteins shows prolonged association of Vps26B-retromer with maturing endosomes relative to Vps26A-retromer. Interestingly, the cycling of CI-M6PR is restored upon deletion of the variable Vps26B C-terminal region indicating that this region is directly responsible for the differential function of the two paralogues. In summary, we show that the two distinct retromer complexes defined by different Vps26 paralogues are not functionally equivalent and that the Vps26B C-terminal region can control cargo selection of the Vps26B-retromer.  相似文献   

17.
EHD1 has been implicated in the recycling of internalized proteins to the plasma membrane. However, the mechanism by which EHD1 mediates recycling and its relationship to Rab-family-controlled events has yet to be established. To investigate further the mode of EHD1 action, we sought to identify novel interacting partners. GST-EHD1 was used as bait to isolate a approximately 120-kDa species from bovine and murine brain cytosol, which was identified by mass spectrometry as the divalent Rab4/Rab5 effector Rabenosyn-5. We mapped the sites of interaction to the EH domain of EHD1, and the first two of five NPF motifs of Rabenosyn-5. Immunofluorescence microscopy studies revealed that EHD1 and Rabenosyn-5 partially colocalize to vesicular and tubular structures in vivo. To address the functional roles of EHD1 and Rabenosyn-5, we first demonstrated that RNA interference (RNAi) dramatically reduced the level of expression of each protein, either individually or in combination. Depletion of either EHD1 or Rabenosyn-5 delayed the recycling of transferrin and major histocompatibility complex class I to the plasma membrane. However, whereas depletion of EHD1 caused the accumulation of internalized cargo in a compact juxtanuclear compartment, Rabenosyn-5-RNAi caused its retention within a dispersed peripheral compartment. Simultaneous RNAi depletion of both proteins resulted in a similar phenotype to that observed with Rabenosyn-5-RNAi alone, suggesting that Rabenosyn-5 acts before EHD1 in the regulation of endocytic recycling. Our studies suggest that Rabenosyn-5 and EHD1 act sequentially in the transport of proteins from early endosomes to the endosomal recycling compartment and back to the plasma membrane.  相似文献   

18.
Sortilin has been implicated in the sorting of one soluble hydrolase and two sphingolipid activator proteins to the lysosomes. While the GGA adaptor proteins have been demonstrated to play a role in the targeting of sortilin to the endosomes, the recycling of sortilin has not yet been elucidated. Here we examine the role of two adaptor protein complexes, AP-1 and retromer. Our results demonstrate that AP-1 is required for the transport of sortilin to the endosomes and retromer for the recycling of sortilin to the Golgi apparatus. While inhibition of AP-1 causes accumulation of sortilin in the Golgi apparatus, RNAi depletion of retromer results in retention of sortilin in the lysosomes. We also demonstrate that the interaction of sortilin with retromer occurs through a YXXΦ site in its cytosolic tail. In conclusion, our observations indicate that retromer and AP-1 play opposite roles in the trafficking of sortilin.  相似文献   

19.
The retromer complex, which mediates retrograde transport from endosomes to the trans-Golgi network, is a heteropentameric complex that contains a multifunctional cargo recognition heterotrimer consisted of the vacuolar protein sorting (Vps) subunits Vps26, Vps29, and Vps35. In mammals, there are two different isoforms of Vps26, Vps26a and Vps26b, that localize to the endosome, and to the plasma membrane, respectively. To elucidate the biological significance of the Vps26b isoform, we generated Vps26b knockout mice and studied their molecular, histological, and behavioral phenotypes. We found that the loss of Vps26b results in no significant defects in the behavior, body size, and health of the mice. Vps26b-deficient mice showed a severe reduction of Vps35 protein at cellular level and lacked the Vps26b-Vps29-Vps35 retromer complex, despite the normal presence of the Vps26a-Vps29-Vps35 retromer complex. Relatively, the amount of sortilin was increased approximately 20% in the Vps26b-deficient mice, whereas the sorLA was normal. These results suggest that mouse Vps26b-Vps29-Vps35 retromer complex is implicated in the transport of sortilin from endosomes to the trans-Golgi network (TGN).  相似文献   

20.
The retromer complex facilitates the sorting of integral membrane proteins from the endosome to the late Golgi. In mammalian cells, the efficient recruitment of retromer to endosomes requires the lipid phosphatidylinositol 3-phosphate (PI3P) as well as Rab5 and Rab7 GTPases. However, in yeast, the role of Rabs in recruiting retromer to endosomes is less clear. We identified novel physical interactions between retromer and the Saccharomyces cerevisiae VPS9-domain Rab5-family guanine nucleotide exchange factors (GEFs) Muk1 and Vps9. Furthermore, we identified a new yeast VPS9 domain-containing protein, VARP-like 1 (Vrl1), which is related to the human VARP protein. All three VPS9 domain–containing proteins show localization to endosomes, and the presence of any one of them is necessary for the endosomal recruitment of retromer. We find that expression of an active VPS9-domain protein is required for correct localization of the phosphatidylinositol 3-kinase Vps34 and the production of endosomal PI3P. These results suggest that VPS9 GEFs promote retromer recruitment by establishing PI3P-enriched domains at the endosomal membrane. The interaction of retromer with distinct VPS9 GEFs could thus link GEF-dependent regulatory inputs to the temporal or spatial coordination of retromer assembly or function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号