首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Activation of fibroblasts in cancer stroma   总被引:1,自引:0,他引:1  
Tumor microenvironment has emerged as an important target for cancer therapy. In particular, cancer-associated fibroblasts (CAF) seem to regulate many aspects of tumorigenesis. CAFs secrete a variety of soluble factors that act in a paracrine manner and thus affect not only cancer cells, but also other cell types present in the tumor stroma. Acting on cancer cells, CAFs promote tumor growth and invasion. They also enhance angiogenesis by secreting factors that activate endothelial cells and pericytes. Tumor immunity is mediated via cytokines secreted by immune cells and CAFs. Both immune cells and CAFs can exert tumor-suppressing and -promoting effects. CAFs, and the factors they produce, are attractive targets for cancer therapy, and they have proven to be useful as prognostic markers. In this review we focus mainly on carcinomas and discuss the recent findings regarding the role of activated fibroblasts in driving tumor progression.  相似文献   

2.
3.
Prognosis of cholangiocarcinoma, a devastating liver epithelial malignancy characterized by early invasiveness, remains very dismal, though its incidence has been steadily increasing. Evidence is mounting that in cholangiocarcinoma, tumor epithelial cells establish an intricate web of mutual interactions with multiple stromal components, largely determining the pervasive behavior of the tumor. The main cellular components of the tumor microenvironment (i.e. myofibroblasts, macrophages, lymphatic endothelial cells), which has been recently termed as ‘tumor reactive stroma’, are recruited and activated by neoplastic cells, and in turn, deleteriously mold tumor behavior by releasing a huge variety of paracrine signals, including cyto/chemokines, growth factors, morphogens and proteinases. An abnormally remodeled and stiff extracellular matrix favors and supports these cell interactions. Although the mechanisms responsible for the generation of tumor reactive stroma are largely uncertain, hypoxia presumably plays a central role. In this review, we will dissect the intimate relationship among the different cell elements cooperating within this complex ‘ecosystem’, with the ultimate goal to pave the way for a deeper understanding of the mechanisms underlying cholangiocarcinoma aggressiveness, and possibly, to foster the development of innovative, combinatorial therapies aimed at halting tumor progression. This article is part of a Special Issue entitled: Cholangiocytes in Health and Diseaseedited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.  相似文献   

4.
The stroma is a main driver of metastasis and aggressiveness in pancreatic cancer (PC), one of the deadliest malignancies worldwide. Pancreatic stellate cells (PSCs) form approximately 50% of the pancreatic tumor stroma, causing desmoplasia, extracellular matrix (ECM) deposition, epithelial-to-mesenchymal transition (EMT) and metastatic spread. Furthermore, activated PSCs can remodel the pancreatic tumor microenvironment (TME) via dynamic and complex interactions and feedback loops with PC cells, thus facilitating tumor growth through various signalling and immune pathways. Hence, increased understanding of these cellular cross-talks and how they shape the TME in PC might guide the development of novel treatment approaches against this stubborn and deadly malignancy that has so far resisted therapeutic advances. In this review, we will explore the role of the stroma and PSCs in PC development, invasion and metastasis, examine their interaction with PC cells and discuss potential treatment approaches aimed at targeting PSCs in order to reprogram the pancreatic tumor environment.  相似文献   

5.
Colorectal cancer (CRC) remains the third most prevalent cancer disease and involves a multi-step process in which intestinal cells acquire malignant characteristics. It is well established that the appearance of distal metastasis in CRC patients is the cause of a poor prognosis and treatment failure. Nevertheless, in the last decades, CRC aggressiveness and progression have been attributed to a specific cell population called CRC stem cells (CCSC) with features like tumor initiation capacity, self-renewal capacity, and acquired multidrug resistance. Emerging data highlight the concept of this cell subtype as a plastic entity that has a dynamic status and can be originated from different types of cells through genetic and epigenetic changes. These alterations are modulated by complex and dynamic crosstalk with environmental factors by paracrine signaling. It is known that in the tumor niche, different cell types, structures, and biomolecules coexist and interact with cancer cells favoring cancer growth and development. Together, these components constitute the tumor microenvironment (TME). Most recently, researchers have also deepened the influence of the complex variety of microorganisms that inhabit the intestinal mucosa, collectively known as gut microbiota, on CRC. Both TME and microorganisms participate in inflammatory processes that can drive the initiation and evolution of CRC. Since in the last decade, crucial advances have been made concerning to the synergistic interaction among the TME and gut microorganisms that condition the identity of CCSC, the data exposed in this review could provide valuable insights into the biology of CRC and the development of new targeted therapies.  相似文献   

6.
Tumor microenvironment: the role of the tumor stroma in cancer   总被引:1,自引:0,他引:1  
The tumor microenvironment, composed of non-cancer cells and their stroma, has become recognized as a major factor influencing the growth of cancer. The microenvironment has been implicated in the regulation of cell growth, determining metastatic potential and possibly determining location of metastatic disease, and impacting the outcome of therapy. While the stromal cells are not malignant per se, their role in supporting cancer growth is so vital to the survival of the tumor that they have become an attractive target for chemotherapeutic agents. In this review, we will discuss the various cellular and molecular components of the stromal environment, their effects on cancer cell dynamics, and the rationale and implications of targeting this environment for control of cancer. Additionally, we will emphasize the role of the bone marrow-derived cell in providing cells for the stroma.  相似文献   

7.
甲状腺结节是最常见的疾病之一,其精确诊断对于患者的有效临床管理十分重要。分子标志物是一项非常有效的诊断和预后评估工具,尤其在细胞学不确定的甲状腺癌结节。近年来,分子标志物的临床应用发展已经取得显著的进步。随着新一代基因检测技术的发展,能够同时检测多个基因,这不仅可为甲状腺癌的诊断提供依据,而且也可为预测甲状腺癌患者的预后提供参考,本文就甲状腺癌的诊断及预后相关的分子标志物进行综述。  相似文献   

8.
Fibroblast activation protein alpha (FAPα) is a 95-kDa serine protease of post-prolyl peptidase family on cell surface. FAPoL is widely expressed in tumor microenviron- ment. The wide spread association of FAPα expression with cancer suggests that it has important functions in the disease. However, the nature of FAPα's roles in cancer cell activity is not well-determined. It has been showed that FAPα silencing in SKOV3 cells induces ovarian tumors but significantly reduces tumor growth in a xenograft mouse model. To further determine the role of FAPoL in epithelial ovarian cancer cells, SKOV3-FAPα and HO8910-FAPα cell lines, which over-expressed FAPα stably, were con- structed and then their biological behaviors were investi- gated. It was found that FAPoL promoted ovarian cancer cell proliferation, drug resistance, invasiveness, and migra- tion in vitro. Immunochemistry assay showed that FAPα significantly facilitated tumor growth in xenograft tumor tissues. These results suggested that FAPα might directly promote tumor growth and invasiveness in ovarian cancer cells.  相似文献   

9.
10.
The major cellular components of tumor microenvironment, referred to as the cancer stroma, are composed of cancer-associated fibroblasts that support tumor epithelial growth, invasion and therapeutic resistance. Thus when we speak of developing therapies that address tumor heterogeneity it is not only a matter of different mutations within the tumor epithelia. While individual mutations in the stromal compartment are controversial, the heterogeneity in fibroblastic population in a single tumor is not up for debate. Cooperative interaction among heterotypic fibroblasts and tumor cells contribute to cancer progression. Therefore to tackle solid tumors, we need to understand its complex microenvironment. Here we review some seminal developments in the field of tumor microenvironment, mainly focusing on cancer-associated fibroblast.  相似文献   

11.
The major cellular components of tumor microenvironment, referred to as the cancer stroma, are composed of cancer-associated fibroblasts that support tumor epithelial growth, invasion and therapeutic resistance. Thus when we speak of developing therapies that address tumor heterogeneity it is not only a matter of different mutations within the tumor epithelia. While individual mutations in the stromal compartment are controversial, the heterogeneity in fibroblastic population in a single tumor is not up for debate. Cooperative interaction among heterotypic fibroblasts and tumor cells contribute to cancer progression. Therefore to tackle solid tumors, we need to understand its complex microenvironment. Here we review some seminal developments in the field of tumor microenvironment, mainly focusing on cancer-associated fibroblast.  相似文献   

12.
The stroma in human carcinomas consists of extracellular matrix and various types of non-carcinoma cells, mainly leukocytes, endothelial cells, fibroblasts, myofibroblasts and bone marrow-derived progenitors. The tumor-associated stroma actively supports tumor growth by stimulating neo-angiogenesis, as well as proliferation and invasion of apposed carcinoma cells. It has long been accepted that alterations within carcinoma cells mediate metastasis in a cell-autonomous fashion. Recent studies have, however, suggested an additional notion that cancer cells instigate local and systemic changes in the tumor microenvironment and contribute to niche formation for metastasis. Research, aiming to establish the roles of the tumor-associated stroma in facilitating the spread of carcinoma cells into distant organs, has provided an abundance of data and greater knowledge of the biology of metastatic carcinoma cells and associated stromal cells. This has stimulated further advances in the development of novel therapeutic approaches targeting tumor metastasis.  相似文献   

13.
Survival and recurrence rates in breast cancer are variable for common diagnoses, and therefore the biological underpinnings of the disease that determine those outcomes are yet to be fully understood. As a result, translational medicine is one of the fastest growing arenas of study in tumor biology. With advancements in genetic and imaging techniques, archived biopsies can be examined for purposes other than diagnosis. There is a great deal of evidence that points to the stroma as the major regulator of tumor progression following the initial stages of tumor formation, and the stroma may also contribute to risk factors determining tumor formation. Therefore, aspects of stromal biology are well-suited to be a focus for studies of patient outcome, where statistical differences in survival among patients provide evidence as to whether that stromal component is a signpost for tumor progression. In this review we summarize the latest research done where breast cancer patient survival was correlated with aspects of stromal biology, which have been put into four categories: reorganization of the extracellular matrix (ECM) to promote invasion, changes in the expression of stromal cell types, changes in stromal gene expression, and changes in cell biology signaling cascades to and from the stroma.  相似文献   

14.
15.
Abnormally alternative splicing events are common hallmark of diverse types of cancers. Splicing variants with aberrant functions play an important role in cancer development. Most importantly, a growing body of evidence has supported that alternative splicing might play a significant role in the therapeutic resistance of tumors. Targeted therapy and immunotherapy are the future directions of tumor therapy; however, the loss of antigen targets on the tumor cells surface and alterations in drug efficacy have resulted in the failure of targeted therapy and immunotherapy. Interestingly, abnormal alternative splicing, as a strategy to regulate gene expression, is reportedly involved in the reprogramming of cell signaling pathways and epitopes on the tumor cell surface by changing splicing patterns of genes, thus rendering tumors resisted to targeted therapy and immunotherapy. Accordingly, increased knowledge regarding abnormal alternative splicing in tumors may help predict therapeutic resistance during targeted therapy and immunotherapy and lead to novel therapeutic approaches in cancer. Herein, we provide a brief synopsis of abnormal alternative splicing events in cancer progression and therapeutic resistance.  相似文献   

16.
17.
《遗传学报》2022,49(10):913-926
Ferroptosis has emerged as a crucial regulated cell death involved in a variety of physiological processes or pathological diseases, such as tumor suppression. Though initially being found from anticancer drug screening and considered not essential as apoptosis for growth and development, numerous studies have demonstrated that ferroptosis is tightly regulated by key genetic pathways and/or genes, including several tumor suppressors and oncogenes. In this review, we introduce the basic concepts of ferroptosis, characterized by the features of non-apoptotic, iron-dependent, and overwhelmed accumulation of lipid peroxides, and the underlying regulated circuits are considered to be pro-ferroptotic pathways. Then, we discuss several established lipid peroxidation defending systems within cells, including SLC7A11/GPX4, FSP1/CoQ, GCH1/BH4, and mitochondria DHODH/CoQ, all of which serve as anti-ferroptotic pathways to prevent ferroptosis. Moreover, we provide a comprehensive summary of the genetic regulation of ferroptosis via targeting the above-mentioned pro-ferroptotic or anti-ferroptotic pathways. The regulation of pro- and anti-ferroptotic pathways gives rise to more specific responses to the tumor cells in a context-dependent manner, highlighting the unceasing study and deeper understanding of mechanistic regulation of ferroptosis for the purpose of applying ferroptosis induction in cancer therapy.  相似文献   

18.
The Edmonston vaccine strain of measles virus has potent and selective activity against a wide range of tumors. Tumor cells infected by this virus or genetically modified strains express viral proteins that allow them to fuse with neighboring cells to form syncytia that ultimately die. Moreover, infected cells may produce new virus particles that proceed to infect additional tumor cells. We present a model of tumor and virus interactions based on established biology and with proper accounting of the free virus population. The range of model parameters is estimated by fitting to available experimental data. The stability of equilibrium states corresponding to complete tumor eradication, therapy failure and partial tumor reduction is discussed. We use numerical simulations to explore conditions for which the model predicts successful therapy and tumor eradication. The model exhibits damped, as well as stable oscillations in a range of parameter values. These oscillatory states are organized by a Hopf bifurcation.  相似文献   

19.
肿瘤新生血管及分子靶向治疗新策略   总被引:4,自引:0,他引:4  
肿瘤血管靶向治疗是基于肿瘤新生血管与正常血管的不同,药物专一识别并阻断肿瘤新生血管,使肿瘤细胞“饿死”,而不影响正常细胞。从1971年Folkman提出“饿死肿瘤”的假说到2004年第一个血管靶向药物上市,记载着30多年领域发展的传奇经历。当今,肿瘤血管已成为生物医学和临床研究的热点,新的发现层出不穷。该文重点介绍肿瘤血管新靶点、新机制、新药物与未来发展。  相似文献   

20.
Tumor associated macrophages (TAMs) are well known to play a very important role in tumor angiogenesis and metastasis. The suppression of TAMs in the tumor-microenvironment (TME) provides a novel strategy to inhibit tumor growth and dissemination by remodeling the tumor’s stroma. Here, we tested our hypothesis that suppression of TAMs can be achieved in syngeneic BALB/c mice with oral minigene vaccines against murine MHC class I antigen epitopes of Legumain, an asparaginyl endopeptidase and a member of the C13 family of cystine proteases which is overexpressed on TAMs in the tumor stroma. Vaccine vectors were constructed and transformed into attenuated Salmonella typhimurium (Dam , AroA ) for oral delivery. Groups of mice received either the expression vectors encoding the Legumain H-2D or 2K epitopes or the control empty vector by gavage. The efficacy of the minigene vaccines was determined by their ability to protect mice from lethal tumor cell challenges, the induction of a specific CTL response as well as IFN-γ release, and inhibition of tumor angiogenesis. We demonstrated that the Legumain minigene vaccine provided effective protection against tumor cell challenge by inducing a specific CD8+ T-cell response against Legumain+ TAMs in our breast tumor model. The protection, induced by this T-cell response, mediated by the Legumain Kd minigene, is also responsible for lysing D2F2 breast carcinoma cells in syngeneic BALB/c mice and for suppressing tumor angiogenesis. Importantly, in a prophylactic setting, the minigene vaccine proved to be of similar anti-tumor efficacy as a vaccine encoding the entire Legumain gene. Together, our findings establish proof of concept that a Legumain minigene vaccine provides a more flexible alternative to the whole gene vaccine, which may facilitate the future design and clinical applications of such a vaccine for cancer prevention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号