首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Central nerve terminals contain a small number of synaptic vesicles (SVs) that must sustain the fidelity of neurotransmission across a wide range of stimulation intensities. For this to be achieved, nerve terminals integrate a number of complementary endocytosis modes whose activation spans the breadth of these neuronal stimulation patterns. Two such modes are ultrafast endocytosis and activity‐dependent bulk endocytosis, which are triggered by stimuli at either end of the physiological range. Both endocytosis modes generate endosomes directly from the nerve terminal plasma membrane, before the subsequent production of SVs from these structures. This review will discuss the current knowledge relating to the molecular mechanisms involved in the generation of SVs from nerve terminal endosomes, how this relates to other mechanisms of SV production and the functional role of such SVs.   相似文献   

2.
Aim: Intractable epilepsy is characterized of seizure resistance to the anti-epileptic drugs. The underlying mechanisms are still elusive. Alterations of synaptic vesicle traffic may be one of the candidate mechanisms. Methods: Phenytoin-resistant and phenytoin-non resistant epileptic rats were selected in the amygdala kindled adult male Wistar rats. Synaptotagmin-I and clathrin were determined by cDNA microarry analysis and Western blotting in the hippocampus of phenytoin-resistant and phenytoin-nonresistant kindled rats, which were associated with the exocytosis and endocytosis of the synaptic vesicle traffic. Results: Microarry analysis showed both synaptotagmin-I and clathrin mRNA were up-regulated at least 3.06 fold accompanied with their correspondent proteins increased by 52.3 ± 6.4 % and 76.7 ± 12.4 % respectively in the hippocampus of phenytoin-resistant rats as compared with those in phenytoin-nonresistant rats. There were no significant differences in plasma phenytoin concentrations between the two groups. Conclusions: The increased expressions of synaptotagmin-I and clathrin in the hippocampus of phenytoin-resistant kindled rats play a role in the development of intractable epilepsy.  相似文献   

3.
We have investigated the function of the synaptic vesicle protein Rabphilin-3A in neurotransmitter release at the squid giant synapse. Presynaptic microinjection of recombinant Rabphilin-3A reversibly inhibited the exocytotic release of neurotransmitter. Injection of fragments of Rabphilin-3A indicate that at least two distinct regions of the protein inhibit neurotransmitter release: the NH2-terminal region that binds Rab3A and is phosphorylated by protein kinases and the two C2 domains that interact with calcium, phospholipid, and β-adducin. Each of the inhibitory fragments and the full-length protein had separate effects on presynaptic morphology, suggesting that individual domains were inhibiting a subset of the reactions in which the full-length protein participates. In addition to inhibiting exocytosis, constructs containing the NH2 terminus of Rabphilin-3A also perturbed the endocytotic pathway, as indicated by changes in the membrane areas of endosomes, coated vesicles, and the plasma membrane. These results indicate that Rabphilin-3A regulates synaptic vesicle traffic and appears to do so at distinct stages of both the exocytotic and endocytotic pathways.  相似文献   

4.
Presynaptic calcium influx triggers synaptic vesicle (SV) exocytosis and modulates subsequent SV endocytosis. A number of calcium clearance mechanisms are present in central nerve terminals that regulate intracellular free calcium levels both during and after stimulation. During action potential stimulation, mitochondria rapidly accumulate presynaptic calcium via the mitochondrial calcium uniporter (MCU). The role of mitochondrial calcium uptake in modulating SV recycling has been debated extensively, but a definitive conclusion has not been achieved. To directly address this question, we manipulated the expression of the MCU channel subunit in primary cultures of neurons expressing a genetically encoded reporter of SV turnover. Knockdown of MCU resulted in ablation of activity-dependent mitochondrial calcium uptake but had no effect on the rate or extent of SV exocytosis. In contrast, the rate of SV endocytosis was increased in the absence of mitochondrial calcium uptake and slowed when MCU was overexpressed. MCU knockdown did not perturb activity-dependent increases in presynaptic free calcium, suggesting that SV endocytosis may be controlled by calcium accumulation and efflux from mitochondria in their immediate vicinity.  相似文献   

5.
6.
Excessive land use and suburbanisation around densely populated urban areas has gone hand in hand with a growth in overall transportation and discussions about causality of traffic congestions. The objective of this paper is to gain new insight regarding the composition of traffic flows, and to reveal how and to what extent suburbanites’ travelling affects rush hour traffic. We put forward an alternative methodological approach using call detail records of mobile phones to assess the composition of traffic flows during the evening rush hour in Tallinn, Estonia. We found that daily commuting and suburbanites influence transportation demand by amplifying the evening rush hour traffic, although daily commuting trips comprises only 31% of all movement at that time. The geography of the Friday evening rush hour is distinctive from other working days, presumably in connection with domestic tourism and leisure time activities. This suggests that the rise of the overall mobility of individuals due to societal changes may play a greater role in evening rush hour traffic conditions than does the impact of suburbanisation.  相似文献   

7.
In this overview current insights in the regulation of presynaptic transmitter release, mainly acquired in studies using isolated CNS nerve terminals are highlighted. The following aspects are described. (i) The usefulness of pinched-off nerve terminals, so-called synaptosomes, for biochemical and ultrastructural studies of presynaptic stimulus-secretion coupling. (ii) The regulation of neurotransmitter release by multiple Ca2+ channels, with special emphasis on the specificity of different classes of these channels with respect to the release of distinct types of neurotransmitters, that are often co-localized, such as amino acids and neuropeptides. (iii) Possible molecular mechanisms involved in targeting synaptic vesicle (SV) traffic toward the active zone. (iv) The role of presynaptic receptors in regulating transmitter release, with special emphasis on different glutamate subtype receptors. Isolated nerve terminals are of great value as model system in order to obtain a better understanding of the regulation of the release of distinct classes of neurotransmitters in tiny CNS nerve endings.  相似文献   

8.
The functional integrity of neurons requires the bidirectional active transport of synaptic vesicles (SVs) in axons. The kinesin motor KIF1A transports SVs from somas to stable SV clusters at synapses, while dynein moves them in the opposite direction. However, it is unclear how SV transport is regulated and how SVs at clusters interact with motor proteins. We addressed these questions by isolating a rare temperature-sensitive allele of Caenorhabditis elegans unc-104 (KIF1A) that allowed us to manipulate SV levels in axons and dendrites. Growth at 20° and 14° resulted in locomotion rates that were ∼3 and 50% of wild type, respectively, with similar effects on axonal SV levels. Corresponding with the loss of SVs from axons, mutants grown at 14° and 20° showed a 10- and 24-fold dynein-dependent accumulation of SVs in their dendrites. Mutants grown at 14° and switched to 25° showed an abrupt irreversible 50% decrease in locomotion and a 50% loss of SVs from the synaptic region 12-hr post-shift, with no further decreases at later time points, suggesting that the remaining clustered SVs are stable and resistant to retrograde removal by dynein. The data further showed that the synapse-assembly proteins SYD-1, SYD-2, and SAD-1 protected SV clusters from degradation by motor proteins. In syd-1, syd-2, and sad-1 mutants, SVs accumulate in an UNC-104-dependent manner in the distal axon region that normally lacks SVs. In addition to their roles in SV cluster stability, all three proteins also regulate SV transport.  相似文献   

9.
Axonal transport of synaptic vesicles (SVs) is a KIF1A/UNC-104 mediated process critical for synapse development and maintenance yet little is known of how SV transport is regulated. Using C. elegans as an in vivo model, we identified SAM-4 as a novel conserved vesicular component regulating SV transport. Processivity, but not velocity, of SV transport was reduced in sam-4 mutants. sam-4 displayed strong genetic interactions with mutations in the cargo binding but not the motor domain of unc-104. Gain-of-function mutations in the unc-104 motor domain, identified in this study, suppress the sam-4 defects by increasing processivity of the SV transport. Genetic analyses suggest that SAM-4, SYD-2/liprin-α and the KIF1A/UNC-104 motor function in the same pathway to regulate SV transport. Our data support a model in which the SV protein SAM-4 regulates the processivity of SV transport.  相似文献   

10.
Synaptic vesicles need to be mobile to reach their release sites during synaptic activity. We investigated vesicle mobility throughout the synaptic vesicle cycle using both conventional and subdiffraction-resolution stimulated emission depletion fluorescence microscopy. Vesicle tracking revealed that recently endocytosed synaptic vesicles are highly mobile for a substantial time period after endocytosis. They later undergo a maturation process and integrate into vesicle clusters where they exhibit little mobility. Despite the differences in mobility, both recently endocytosed and mature vesicles are exchanged between synapses. Electrical stimulation does not seem to affect the mobility of the two types of vesicles. After exocytosis, the vesicle material is mobile in the plasma membrane, although the movement appears to be somewhat limited. Increasing the proportion of fused vesicles (by stimulating exocytosis while simultaneously blocking endocytosis) leads to substantially higher mobility. We conclude that both high- and low-mobility states are characteristic of synaptic vesicle movement.  相似文献   

11.
突触泡蛋白2(SV2)是一类跨膜糖蛋白,定位于脊椎动物神经元及内分泌细胞,与神经递质的释放、内分泌泡胞吐作用、突触泡稳态的维持、神经肌肉接头的形成及肾上腺素能受体α2C的定位密切相关。最近还发现SV2是肉毒神经毒素BoNT/A的受体,介导BoNT/A进入神经元。SV2可作为突触泡标记蛋白,广泛应用于生物学研究及肿瘤诊断。此外,SV2还是抗癫痫药物的作用靶标。  相似文献   

12.
13.
Fusion of Endosomes Involved in Synaptic Vesicle Recycling   总被引:4,自引:4,他引:4       下载免费PDF全文
Recycling of vesicles of the regulated secretory pathway presumably involves passage through an early endosomal compartment as an intermediate step. To learn more about the involvement of endosomes in the recycling of synaptic and secretory vesicles we studied in vitro fusion of early endosomes derived from pheochromocytoma (PC12) cells. Fusion was not affected by cleavage of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins synaptobrevin and syntaxin 1 that operate at the exocytotic limb of the pathway. Furthermore, fusion was inhibited by the fast Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetra-acetic acid but not by the slow Ca2+ chelator EGTA. Endosome fusion was restored by the addition of Ca2+ with an optimum at a free Ca2+ concentration of 0.3 × 10−6 M. Other divalent cations did not substitute for Ca2+. A membrane-permeant EGTA derivative caused inhibition of fusion, which was reversed by addition of Ca2+. We conclude that the fusion of early endosomes participating in the recycling of synaptic and neurosecretory vesicles is mediated by a set of SNAREs distinct from those involved in exocytosis and requires the local release of Ca2+ from the endosomal interior.  相似文献   

14.
Caenorhabditis elegans TOM-1 is orthologous to vertebrate tomosyn, a cytosolic syntaxin-binding protein implicated in the modulation of both constitutive and regulated exocytosis. To investigate how TOM-1 regulates exocytosis of synaptic vesicles in vivo, we analyzed C. elegans tom-1 mutants. Our electrophysiological analysis indicates that evoked postsynaptic responses at tom-1 mutant synapses are prolonged leading to a two-fold increase in total charge transfer. The enhanced response in tom-1 mutants is not associated with any detectable changes in postsynaptic response kinetics, neuronal outgrowth, or synaptogenesis. However, at the ultrastructural level, we observe a concomitant increase in the number of plasma membrane-contacting vesicles in tom-1 mutant synapses, a phenotype reversed by neuronal expression of TOM-1. Priming defective unc-13 mutants show a dramatic reduction in plasma membrane-contacting vesicles, suggesting these vesicles largely represent the primed vesicle pool at the C. elegans neuromuscular junction. Consistent with this conclusion, hyperosmotic responses in tom-1 mutants are enhanced, indicating the primed vesicle pool is enhanced. Furthermore, the synaptic defects of unc-13 mutants are partially suppressed in tom-1 unc-13 double mutants. These data indicate that in the intact nervous system, TOM-1 negatively regulates synaptic vesicle priming.  相似文献   

15.
Synaptic vesicles dock at active zones on the presynaptic plasma membrane of a neuron’s axon terminals as a precondition for fusing with the membrane and releasing their neurotransmitter to mediate synaptic impulse transmission. Typically, docked vesicles are next to aggregates of plasma membrane-bound macromolecules called active zone material (AZM). Electron tomography on tissue sections from fixed and stained axon terminals of active and resting frog neuromuscular junctions has led to the conclusion that undocked vesicles are directed to and held at the docking sites by the successive formation of stable connections between vesicle membrane proteins and proteins in different classes of AZM macromolecules. Using the same nanometer scale 3D imaging technology on appropriately stained frog neuromuscular junctions, we found that ∼10% of a vesicle’s luminal volume is occupied by a radial assembly of elongate macromolecules attached by narrow projections, nubs, to the vesicle membrane at ∼25 sites. The assembly’s chiral, bilateral shape is nearly the same vesicle to vesicle, and nubs, at their sites of connection to the vesicle membrane, are linked to macromolecules that span the membrane. For docked vesicles, the orientation of the assembly’s shape relative to the AZM and the presynaptic membrane is the same vesicle to vesicle, whereas for undocked vesicles it is not. The connection sites of most nubs on the membrane of docked vesicles are paired with the connection sites of the different classes of AZM macromolecules that regulate docking, and the membrane spanning macromolecules linked to these nubs are also attached to the AZM macromolecules. We conclude that the luminal assembly of macromolecules anchors in a particular arrangement vesicle membrane macromolecules, which contain the proteins that connect the vesicles to AZM macromolecules during docking. Undocked vesicles must move in a way that aligns this arrangement with the AZM macromolecules for docking to proceed.  相似文献   

16.
We present a simple model of phasic neurotransmitter release whichreproduces the salient features of chemical neurotransmission. The synapticvesicle cycle has been modelled as a set of biochemical reactionsrepresented by a system of coupled differential equations. These equationshave been solved analytically to obtain the time dependent behaviour of thesystem on perturbation from the steady state. The scheme of the synapticvesicle network has been emphasized and its role in determining some of themajor experimentally observed properties of synaptic transmission has beendiscussed, which includes the biphasic decay of the rate neurotransmitterrelease even under sustained stimulation. Another interesting outcome ofthis theoretical exercise is the saturation of total release with thecalcium dependent rate constant. The theoretically calculated values oftotal release fit very well into a sigmoidal saturating function with afourth order cooperativity exponent similar to the empiricalDodge–Rahamimoff equation. It appears that the synaptic vesiclenetwork itself is responsible for some of the major properties associatedwith chemical neurotransmission.  相似文献   

17.
Tubulin: An Integral Protein of Mammalian Synaptic Vesicle Membranes   总被引:18,自引:6,他引:12  
Abstract: The major protein in isolated synaptic vesicles from bovine cerebral cortex has been compared to tubulin by sodium dodecyl sulphate-urea polyacrylamide gel electrophoresis, by two-dimensional gel electrophoresis and by peptide mapping following limited proteolysis of the protein by Staphylococcus aureus protease. The results establish in purified synaptic vesicles the presence of tubulin, which is composed of the α and β subunits. In the presence of ethyleneglycol bis (aminoethyl ether)- N, N' -tetraacetic acid (EGTA) or magnesium in the isolation buffers, the synaptic vesicles contained mainly the α-tubulin whereas the β subunit was less abundant. Similarly, synaptosomal plasma membranes that were prepared in the presence of EGTA also contained more of α-tubulin than of the β subunit. Non-ionic detergents such as Triton X-100 or Nonidet P-40 failed to solubilize the tubulin from the synaptic vesicles. Ionic detergents such as deoxycholate and sodium dodecyl sulphate solubilized all the vesicle proteins, including tubulin. The results indicate that α-tubulin is an integral vesicle membrane protein, whereas most of the β sub-unit is peripherally attached and can be easily dissociated from the vesicle membrane with EGTA.  相似文献   

18.
The neurons in the superior cervical ganglion are active in plasticity and re-modelling in order to adapt to requirements. However, so far, only a few studies dealing with synaptic vesicle related proteins during adaptive processes have been published. In the present paper, changes in content and expression of the synaptic vesicle related proteins in the neurons after decentralization (cutting the cervical sympathetic trunk) or axotomy (cutting the internal and external carotid nerves) were studied. Immunofluorescence studies were carried out using antibodies and antisera against integral membrane proteins, vesicle associated proteins, NPY, and the enzymes TH and PNMT. For colocalization studies, the sections were simultaneously double labelled. Confocal laser scanning microscopy was used for colocalization studies as well as for semi-quantification analysis, using the computer software. Westen blot analysis, in situ 3'-end DNA labelling, and in situ hybridization were also employed. After decentralization of the ganglia several of the synaptic vesicle proteins (synaptotagmin I, synaptophysin, SNAP-25, CLC and GAP-43) were increased in the iris nerve terminal network, but with different time patterns, while TH-immunoreactivity had clearly decreased. In the ganglia, these proteins had decreased at 1 day after decentralization, probably due to degeneration of the pre-ganglionic nerve fibres and terminals. At later intervals, these proteins, except SNAP-25, had increased in the nerve fibre bundles and re-appeared in nerve fibres outlining the principal neurons.  相似文献   

19.
20.
Evoked synaptic transmission is dependent on interactions between the calcium sensor Synaptotagmin I and the SNARE complex, comprised of Syntaxin, SNAP-25, and Synaptobrevin. Recent evidence suggests that Snapin may be an important intermediate in this process, through simultaneous interactions of Snapin dimers with SNAP-25 and Synaptotagmin. In support of this model, cultured neurons derived from embryonically lethal Snapin null mutant mice exhibit desynchronized release and a reduced readily releasable vesicle pool. Based on evidence that a dimerization-defective Snapin mutation specifically disrupts priming, Snapin is hypothesized to stabilize primed vesicles by structurally coupling Synaptotagmin and SNAP-25. To explore this model in vivo we examined synaptic transmission in viable, adult C. elegans Snapin (snpn-1) mutants. The kinetics of synaptic transmission were unaffected at snpn-1 mutant neuromuscular junctions (NMJs), but the number of docked, fusion competent vesicles was significantly reduced. However, analyses of snt-1 and snt-1;snpn-1 double mutants suggest that the docking role of SNPN-1 is independent of Synaptotagmin. Based on these results we propose that the primary role of Snapin in C. elegans is to promote vesicle priming, consistent with the stabilization of SNARE complex formation through established interactions with SNAP-25 upstream of the actions of Synaptotagmin in calcium-sensing and endocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号