首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ever since its discovery 20 years ago, caspase-2 has been enigmatic and its function somewhat controversial. Although many in vitro studies suggested that caspase-2 was important for apoptosis, demonstrating an in vivo cell death role for this caspase has been more problematic, with caspase-2-deficient mice showing limited, tissue-specific cell death defects. Recent results from different laboratories suggest that at least one of its physiological roles in animals is to protect against cellular stress and transformation. As such, loss of caspase-2 augments tumorigenesis in some mouse models of cancer, assigning a tumour suppressor function to this enigmatic caspase. This review focuses on this seemingly non-apoptotic function of caspase-2 as a tumour suppressor and reconciles some of the recent findings in the field.  相似文献   

2.
The ARF tumour suppressor is a product of the INK4a/ARF locus; a sequence that is frequently altered in human cancer. ARF is upregulated by oncogenic stimuli and is a critical regulator of p53 stability through interactions with the mdm2 and ARF-BP1/Mule ubiquitin ligases. Cellular stress signals liberate ARF from the nucleolus where it is bound to B23/nucleophosmin. This nucleolar location of ARF may serve as a reservoir for the rapid induction of p53, but may also serve to co-ordinate effects on cell cycle, survival and growth. The biological functions of ARF interactions with other binding partners remain uncertain, but ARF-mediated sumoylation may represent a unifying effector pathway.  相似文献   

3.
4.

Background  

The Adenomatous polyposis coli (APC) tumour suppressor is found in multiple discrete subcellular locations, which may reflect sites of distinct functions. In Drosophila epithelial cells, the predominant APC relative (E-APC) is concentrated at the apicolateral adherens junctions. Genetic analysis indicates that this junctional association is critical for the function of E-APC in Wnt signalling and in cellular adhesion. Here, we ask whether the junctional association of E-APC is stable, or whether E-APC shuttles between the plasma membrane and the cytoplasm.  相似文献   

5.
PTEN: a tumour suppressor that functions as a phospholipid phosphatase   总被引:22,自引:0,他引:22  
The tumour suppressor PTEN has been implicated in a large number of human tumours and is conserved from humans to worms. Characterization of PTEN protein showed that it is a phosphatase that acts on proteins and on 3-phosphorylated phosphoinositides, including phosphatidylinositol (3,4,5)-trisphosphate, and can therefore modulate signal-transduction pathways that involve lipid second messengers. Recent results indicate that at least part of its role is to regulate the activity of the serine/threonine kinase AKT/PKB, and thus influence cell survival signalling. This article discusses the function of PTEN and how this could be linked to its activity as a tumour suppressor.  相似文献   

6.
DLC-1:a Rho GTPase-activating protein and tumour suppressor   总被引:2,自引:0,他引:2  
The deleted in liver cancer 1 (DLC-1) gene encodes a GTPase activating protein that acts as a negative regulator of the Rho family of small GTPases. Rho proteins transduce signals that influence cell morphology and physiology, and their aberrant up-regulation is a key factor in the neoplastic process, including metastasis. Since its discovery, compelling evidence has accumulated that demonstrates a role for DLC-1 as a bona fide tumour suppressor gene in different types of human cancer. Loss of DLC-1 expression mediated by genetic and epigenetic mechanisms has been associated with the development of many human cancers, and restoration of DLC-1 expression inhibited the growth of tumour cells in vivo and in vitro. Two closely related genes, DLC-2 and DLC-3, may also be tumour suppressors. This review presents the current status of progress in understanding the biological functions of DLC-1 and its relatives and their roles in neoplasia.  相似文献   

7.
SnoN represses TGF‐β signalling to promote cell proliferation and has been defined as a proto‐oncogene partly due to its elevated expression in many human cancer cells. Although the anti‐tumourigenic activity of SnoN has been suggested, the molecular basis for this has not been defined. We showed here that high levels of SnoN exert anti‐oncogenic activity by inducing senescence. SnoN interacts with the promyelocytic leukaemia (PML) protein and is recruited to the PML nuclear bodies where it stabilizes p53, leading to premature senescence. Furthermore, overexpression of SnoN inhibits oncogenic transformation induced by Ras and Myc in vitro and significantly blocks papilloma development in vivo in a carcinogen‐induced skin tumourigenesis model. The few papillomas that were developed displayed high levels of senescence and spontaneously regressed. Our study has revealed a novel Smad‐independent pathway of SnoN function that mediates its anti‐oncogenic activity.  相似文献   

8.
Understanding the molecular aberrations involved in the development and progression of metastatic melanoma (MM) is essential for a better diagnosis and targeted therapy. We identified breast cancer suppressor candidate-1 (BCSC-1) as a novel tumor suppressor in melanoma. BCSC-1 expression is decreased in human MM, and its ectopic expression in MM-derived cell lines blocks tumor formation in vivo and melanoma cell proliferation in vitro while increasing cell migration. We demonstrate that BCSC-1 binds to Sox10, which down regulates MITF, and results in a switch of melanoma cells from a proliferative to a migratory phenotype. In conclusion, we have identified BCSC-1 as a tumor suppressor in melanoma and as a novel regulator of the MITF pathway.  相似文献   

9.
10.
Target of Rapamycin (TOR) mediates a signalling pathway that couples amino acid availability to S6 kinase (S6K) activation, translational initiation and cell growth. Here, we show that tuberous sclerosis 1 (Tsc1) and Tsc2, tumour suppressors that are responsible for the tuberous sclerosis syndrome, antagonize this amino acid-TOR signalling pathway. We show that Tsc1 and Tsc2 can physically associate with TOR and function upstream of TOR genetically. In Drosophila melanogaster and mammalian cells, loss of Tsc1 and Tsc2 results in a TOR-dependent increase of S6K activity. Furthermore, although S6K is normally inactivated in animal cells in response to amino acid starvation, loss of Tsc1-Tsc2 renders cells resistant to amino acid starvation. We propose that the Tsc1-Tsc2 complex antagonizes the TOR-mediated response to amino acid availability. Our studies identify Tsc1 and Tsc2 as regulators of the amino acid-TOR pathway and provide a new paradigm for how proteins involved in nutrient sensing function as tumour suppressors.  相似文献   

11.
12.
The completion of the Drosophila genome sequencing project [Science 287 (2000) 2185] has reconfirmed the fruit fly as a model organism to study human disease. Comparison studies have shown that two thirds of genes implicated in human cancers have counterparts in the fly [Curr. Opin. Genet. Dev. 11 (2001) 274; J. Cell Biol. 150 (2000) F23], including the tumour suppressor, p53. The suitability of the fruit fly to study the function of the tumour suppressor p53 is further exemplified by the lack of p53 family members within the fly genome, i.e., no homologues to p63 and p73 have been identified. Hence, there is no redundancy between family members greatly facilitating the analysis of p53 function. In addition, studying p53 in Drosophila provides an opportunity to learn about the evolution of tumour suppressors. Here, we will discuss what is known about Drosophila p53 in relation to human p53.  相似文献   

13.
The tumour suppressor candidate 3 (TUSC3) gene is located on chromosome region 8p22 and encodes the 34 kD TUSC3 protein, which is a subunit of the oligosaccharyl transferase responsible for the N‐glycosylation of nascent proteins. Known to be related to autosomal recessive mental retardation for several years, TUSC3 has only recently been identified as a potential tumour suppressor gene. Based on the structure and function of TUSC3, specific mechanisms in various diseases have been investigated. Several studies have demonstrated that TUSC3 is an Mg2+‐transporter involved in magnesium transport and homeostasis, which is important for learning and memory, embryonic development and testis maturation. Moreover, dysfunction or deletion of TUSC3 exerts its oncological effects as a modulator by inhibiting glycosylation efficiency and consequently inducing endoplasmic reticulum stress and malignant cell transformation. In this study, we summarize the advances in the studies of TUSC3 and comment on the potential roles of TUSC3 in diagnosis and treatment of TUSC3‐related diseases, especially cancer.  相似文献   

14.
Caretaker tumour suppressor genes that defend genome integrity   总被引:7,自引:0,他引:7  
Cancers arise as a result of genetic changes that impact upon cell proliferation through promoting cell division and/or inhibiting cell death. Tumour suppressor (TS) genes are the targets for many of these genetic changes. In general, both alleles of TS genes must be disrupted to observe a phenotypic effect. Broadly speaking, there are two types of TS gene: 'gatekeepers' and 'caretakers'. In contrast to gatekeepers, caretaker genes do not directly regulate proliferation, but act to prevent genomic instability. Thus, mutation of caretaker genes leads to accelerated conversion of a normal cell to a neoplastic cell. Many caretaker genes are required for the maintenance of genome integrity. This review focuses on those caretaker genes that play a role, directly or indirectly, in the repair of DNA strand breaks by the homologous recombination pathway, and that are associated with cancer-prone clinical syndromes, in particular ataxia telangiectasia, hereditary breast cancer, Bloom's syndrome and Werner's syndrome.  相似文献   

15.
Transgelin is a shape change sensitive 22 kDa actin-binding protein of the calponin family. It contains a C-terminal calponin-like module (CLIK(23)) and an upstream positively charged amino acid region required for actin binding. Transgelin is ubiquitous to vascular and visceral smooth muscle and is an early marker of smooth muscle differentiation, where its expression is driven by CArG box, smooth muscle gene promoter. It is also present in fibroblasts, and some epithelium where expression is likely driven by TGF-beta1. Transgelin null mice reveal that, whilst it is not required for smooth muscle development, transgelin may be involved in calcium-independent smooth muscle contraction. Recent evidence suggests that transgelin acts as a tumour suppressor. Its expression is lost in prostate, breast and colon cancers. This is consistent with suppression of the metallo matrix protease-9 (MMP-9) by transgelin, where MMP-9 is upregulated in these common cancers.  相似文献   

16.
17.
18.
Iturrioz X  Parker PJ 《FEBS letters》2007,581(7):1397-1402
PKCzetaII is a rapidly degraded variant of PKCzeta that suppresses epithelial cell polarisation. It is shown here that PKCzetaII is a target for the E3 ligase and tumour suppressor Von Hippel-Lindau protein (pVHL). Deletion studies demonstrate that the C-terminal region is required for the pVHL and proteasome dependent turnover of PKCzetaII, however it is the N-terminal PB1 domain of PKCzetaII that is required for pVHL complex formation. Reciprocal deletion studies define the pVHL effector domain as the dominant PKCzetaII binding site. The results indicate that pVHL recruits PKCzetaII via its PB1 domain and causes ubiquitination and degradation via the distal C-terminus of PKCzetaII.  相似文献   

19.
20.
RBM5/LUCA-15/H37 is a nuclear SR-related RNA binding protein with the ability to modulate both apoptosis and the cell cycle, and retard tumour formation. How RBM5 functions to carry out these, potentially interrelated, biological activities is unknown. Since reversible phosphorylation has been shown to play an important role in the regulation of SR protein function, apoptosis and cell cycle control, in an attempt to elucidate the underlying mechanisms regulating RBM5 function, the phosphorylation status of RBM5 was investigated. Whole cell lysate from growing cell cultures was treated with the broad phosphatase spectrum of CIP, resulting in a decrease in the molecular mass of RBM5. A similar decrease in molecular mass, of a subset of RBM5 proteins, was observed during growth factor deprivation, in a manner consistent with partial dephosphorylation of RBM5. Molecular mass increased upon growth factor addition, demonstrating that this apoptosis-associated alteration in molecular mass was a reversible process. Immunoprecipitation and mutagenesis experiments strongly suggested that phosphotyrosines are not present in RBM5 under normal growth conditions, and that serine 69 is phosphorylated, but not by Akt kinase. Taken together, these results suggest that reversible phosphorylation of RBM5 is a mechanism capable of regulating RBM5 participation in modulating apoptosis, and perhaps tumour suppression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号