首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lysosome-associated membrane glycoprotein 3 (LAMP3) is a type I transmembrane protein of the LAMP protein family with a cell-type-specific expression in alveolar type II cells in mice and hitherto unknown function. In type II pneumocytes, LAMP3 is localized in lamellar bodies, secretory organelles releasing pulmonary surfactant into the extracellular space to lower surface tension at the air/liquid interface. The physiological function of LAMP3, however, remains enigmatic. We generated Lamp3 knockout mice by CRISPR/Cas9. LAMP3 deficient mice are viable with an average life span and display regular lung function under basal conditions. The levels of a major hydrophobic protein component of pulmonary surfactant, SP-C, are strongly increased in the lung of Lamp3 knockout mice, and the lipid composition of the bronchoalveolar lavage shows mild but significant changes, resulting in alterations in surfactant functionality. In ovalbumin-induced experimental allergic asthma, the changes in lipid composition are aggravated, and LAMP3-deficient mice exert an increased airway resistance. Our data suggest a critical role of LAMP3 in the regulation of pulmonary surfactant homeostasis and normal lung function.  相似文献   

2.
Pulmonary surfactant is a surface active material composed of both lipids and proteins that is produced by alveolar type II pneumocytes. Abnormalities of surfactant in the immature lung or in the acutely inflamed mature lung are well described. However, in a variety of subacute diseases of the mature lung, abnormalities of lung surfactant may also be of importance. These diseases include chronic obstructive pulmonary disease, asthma, cystic fibrosis, interstitial lung disease, pneumonia, and alveolar proteinosis. Understanding of the mechanisms that disturb the lung surfactant system may lead to novel rational therapies for these diseases.  相似文献   

3.
Pulmonary surfactant is a surface active material composed of both lipids and proteins that is produced by alveolar type II pneumocytes. Abnormalities of surfactant in the immature lung or in the acutely inflamed mature lung are well described. However, in a variety of subacute diseases of the mature lung, abnormalities of lung surfactant may also be of importance. These diseases include chronic obstructive pulmonary disease, asthma, cystic fibrosis, interstitial lung disease, pneumonia, and alveolar proteinosis. Understanding of the mechanisms that disturb the lung surfactant system may lead to novel rational therapies for these diseases.  相似文献   

4.
Platelet-activating factor (PAF) and leukotrienes (LTs) are potent pulmonary hypertensive and inflammatory mediators produced by the lung. Previously we showed that a rapid injection of PAF into the pulmonary artery of an isolated rat lung produced an extended elevation in mean pulmonary arterial pressure (PAP). The objective of the present study was to determine whether the extended pressor response induced by PAF was caused by prolonged activation of the 5-lipoxygenase pathway or slow clearance of LTs from the lung parenchyma. Rat lungs were perfused with a nonrecirculating physiological salt solution that contained indomethacin and albumin. Five minutes after a rapid injection of PAF into the pulmonary artery catheter, the following elevations (mean % above baseline) were observed: PAP (83%), LTB4 (3,260%), LTC4 (1,490%), LTD4 (970%), and LTE4 (1,500%). At 20 min these levels declined but were still significantly elevated above baseline. The 5-lipoxygenase inhibitor diethylcarbamazine (DEC), administered before the PAF injection, inhibited the elevations of PAP and all LTs. DEC administration that began 5 min after PAF reduced PAP and only LTC4 levels at 20 min in comparison to lungs with no DEC. The 5-lipoxygenase-activating protein inhibitor MK886, administered orally 2-6 h before perfusion, also inhibited the pressor response to PAF as well as LT production, as did DEC. We conclude that 1) the extended pulmonary hypertension induced by PAF was caused mainly by prolonged activation of 5-lipoxygenase with LTC4 production, 2) the relative overall lung clearance of LTB4, LTD4, and LTE4 was slower than that of LTC4, and 3) LTB4, LTD4, and LTE4 had no appreciable pressor effect.  相似文献   

5.
Although diethylcarbamazine citrate (DEC) is successful drug in eliminating human filariasis, yet, its mode of action is still debatable. Herein, the effect of DEC to treat albino rats infected with the animal filarial parasite Setaria equina was tested. Microfilarial (mf) counts and sections from liver, lung, kidney as well as spleen were investigated at different time points after treatment by light microscopy. After 45 and 300 min of treatment, a significant decrease in blood mf was observed accompanied by adherence of degenerated mf to both kupffer cells and leukocyte in liver sections. In lung sections, loss of sheath was observed at 45 min, while degeneration was observed at later time points. In kidney sections, more mf counts and less matrix were observed in the glomeruli at all time points after treatment. Degenerated mf were observed in spleen sections only at, late time point, 480 min after treatment. In conclusion, one of the possible mechanisms by which DEC reduces blood microfilarial count is trapping larvae in organs and killing them through cellular adherence.  相似文献   

6.
Comparison has been made of injury to the rat pulmonary alveolar parenchyma evoked by intravenous injection of N-nitrosomethylurethane, intratracheal instillation of 3-methylcholanthrene or repeated inhalation for up to 15 days of carbon tetrachloride, trichloroethylene or gasoline vapour. Biochemical analyses, including assessment of rates of RNA and DNA synthesis and secretion of pulmonary surfactant, were correlated with morphological changes determined by electron microscopy. Single doses of N-nitrosomethylurethane or 3-methylcholanthrene inhibited incorporation of [14C] orotate into lung RNA 1--3 days after treatment. Daily exposure for 30 min to carbon tetrachloride or trichloroethylene vapour caused less marked reduction in orotate incorporation. Ultrastructural examination revealed that 3-methylcholanthrene toxicity was characterised by cytoplasmic change including disruption of surfactant lamellaie of Type 2 pneumocytes and variable degenerative changes Type 1 pneumocytes. Eight to ten days after treatment, the morphological evidence of hypertrophy/hyperplasia and transformation of Type 2 pneumocytes correlated well with biochemical evidence of stimulated incorporation of [3H]thymidine. Inhalation of carbon tetrachloride or trichloroethylene vapour produced milder responses including occasional degenerative changes in Type 1 pneumocytes, reduced numbers of surfactant lamellae in Type 2 pneumocytes and no change in [3H]thymidine incorporation. In contrast to the gradation of injury produced by the various chemicals, all procedures caused a marked and reproducible reduction in secretion of pulmonary surfactant as determined by endobronchial lavage. Following solvent inhalation, reduced recovery of surfactant was detected within 5 days of repeated exposure and thereafter no further change in this depressed level resulted from continued exposure for a further 10 days. The data are discussed in terms of a generalised pattern of response by pulmonary alveolar tissue to chemical injury and the apparent sensitivity of surfactant secretion as an indicator of damage to the lung.  相似文献   

7.
Inflammation and altered immunity are recognized components of severe pulmonary arterial hypertension in human patients and in animal models of PAH. While eicosanoid metabolites of cyclooxygenase and lipoxygenase pathways have been identified in the lungs from pulmonary hypertensive animals their role in the pathogenesis of severe angioobliterative PAH has not been examined. Here we investigated whether a cyclooxygenase-2 (COX-2) inhibitor or diethylcarbamazine (DEC), that is known for its 5-lipoxygenase inhibiting and antioxidant actions, modify the development of PAH in the Sugen 5416/hypoxia (SuHx) rat model. The COX-2 inhibitor SC-58125 had little effect on the right ventricular pressure and did not prevent the development of pulmonary angioobliteration. In contrast, DEC blunted the muscularization of pulmonary arterioles and reduced the number of fully obliterated lung vessels. DEC treatment of SuHx rats, after the lung vascular disease had been established, reduced the degree of PAH, the number of obliterated arterioles and the degree of perivascular inflammation. We conclude that the non-specific anti-inflammatory drug DEC affects developing PAH and is partially effective once angioobliterative PAH has been established.  相似文献   

8.
In mammalian lung, type II pneumocytes are especially critical in normal alveolar functioning, as they are the major source of surfactant and the progenitors of type I alveolar cells. Moreover, they undergo proliferation and transformation into type I cells in most types of cellular injury, where flattened type I pneumocytes are selectively destroyed. Hyperplasia of alveolar type II cells has also been described in some human chronic lung diseases. In lung, type II pneumocytes and non-ciliated bronchiolar cells are the unique cell types that contain a considerable amount of peroxisomes. Due to the presence of dihydroxyacetone phosphate acyltransferase and non-specific lipid-transfer protein, these organelles have been suggested to be involved in the synthesis and/or transport of the lipid moiety of surfactant. In the present research, the peroxisomal marker enzyme catalase was immunolocalised at the light microscopic level, utilising the avidin-biotin complex method, in lung specimens excised from newborn, adult and aged rats. In all the examined stages the immunoreactivity was so selective for type II pneumocytes it allowed quantitation of these cells by an automated detection system. This was accomplished on specimens from newborn rat lung, in which labelled alveolar cells were counted by a grey level-based procedure and their main morphometric parameters were determined.  相似文献   

9.
Type II pneumocyte changes during hyperoxic lung injury and recovery   总被引:2,自引:0,他引:2  
Adult rabbits exposed to 100% O2 for 64 h and then returned to room air for up to 200 h, develop a lung injury characterized by decreased levels of alveolar surfactant followed by a rebound recovery. In the present study we isolated alveolar type II cells from rabbits at various times during hyperoxic exposure and recovery and measured rates of phosphatidylcholine (PC) synthesis, cellular lipid content, and the specific activity of glycerol 3-phosphate (G-3-P) acyltransferase, an enzyme that catalyzes one of the early reactions in phosphoglyceride biosynthesis. These biochemical parameters were compared with measurements of cell size and cell cycle phase by laser flow cytometry. Results showed that alterations in alveolar phospholipid levels in vivo correlated consistently with cellular lipid metabolic changes measured in isolated type II pneumocytes. In particular, alveolar pneumocytes isolated from lungs of rabbits exposed to 100% O2 for 64 h exhibited a 60% decrease in PC synthesis, cell lipid content, and G-3-P acyltransferase activity. All variables then followed a pattern of recovery to normal and ultimately supranormal levels beginning at approximately 3 days postexposure, at which point there was also a measured increase in the number of type II cells in S phase. These findings suggest that O2-induced changes in type II cell surfactant biosynthesis may account, at least in part, for observed changes in lung phospholipid levels in vivo.  相似文献   

10.
Alkaline phosphatase (AP) isozymes are surfactant-associated proteins (SPs). Since several different AP isozymes have been detected in the pneumocytes of lung cancer patients, we attempted to identify the relationship between pulmonary surfactant aggregate subtypes and AP isozymes. Pulmonary surfactant aggregates were isolated from carcinoma and non-carcinoma tissues of patients with non-small cell carcinoma of the lung. Upon analysis, ultraheavy, heavy, and light surfactant aggregates were detected in the non-carcinoma tissues, but no ultraheavy surfactant aggregates were found in the carcinoma tissues. Surfactant-associated protein A (SP-A) was detected as two bands (a 27-kDa band and a 54-kDa band) in the ultraheavy, heavy, and light surfactant aggregates found in the non-carcinoma tissues. Although both SP-A bands were detected in the heavy and light surfactant aggregates from adenocarcinoma tissues, the 54-kDa band was not detected in squamous cell carcinoma tissues. Liver AP (LAP) was detected in the heavy and light surfactant aggregates from both non-carcinoma and squamous carcinoma tissues, but not in heavy surfactant aggregates from adenocarcinoma tissues. A larger amount of bone type AP (BAP) was found in light surfactant aggregate fractions from squamous cell carcinomas than those from adenocarcinoma tissues or non-carcinoma tissues from patients with either type of cancer. LAP, BAP, and SP-A were identified immunohistochemically in type II pneumocytes from non-carcinoma tissues and adenocarcinoma cells, but no distinct SP-A staining was observed in squamous cell carcinoma tissues. The present study has thus revealed several differences in pulmonary surfactant aggregates and AP isozymes between adenocarcinoma tissue and squamous cell carcinoma tissue.  相似文献   

11.
12.
Idiopathic pulmonary alveolar proteinosis (PAP) is a rare lung disease characterized by accumulation of surfactant. Surfactant synthesis and secretion are restricted to epithelial type 2 (T2) pneumocytes (also called T2 cells). Clearance of surfactant is dependent upon T2 cells and macrophages. ABCG1 is highly expressed in both T2 cells and macrophages. ABCG1-deficient mice accumulate surfactant, lamellar body-loaded T2 cells, lipid-loaded macrophages, B-1 lymphocytes, and immunoglobulins, clearly demonstrating that ABCG1 has a critical role in pulmonary homeostasis. We identify a variant in the ABCG1 promoter in patients with PAP that results in impaired activation of ABCG1 by the liver X receptor α, suggesting that ABCG1 basal expression and/or induction in response to sterol/lipid loading is essential for normal lung function. We generated mice lacking ABCG1 specifically in either T2 cells or macrophages to determine the relative contribution of these cell types on surfactant lipid homeostasis. These results establish a critical role for T2 cell ABCG1 in controlling surfactant and overall lipid homeostasis in the lung and in the pathogenesis of human lung disease.  相似文献   

13.
The Niemann-Pick C (NPC) pathway plays an essential role in the intracellular trafficking of cholesterol by facilitating the release of lipoprotein-derived sterol from the lumen of lysosomes. Regulation of cellular cholesterol homeostasis is of particular importance to lung alveolar type II cells because of the need for production of surfactant with an appropriate lipid composition. We performed microscopic and biochemical analysis of NPC proteins in isolated rat type II pneumocytes. NPC1 and NPC2 proteins were present in the lung, isolated type II cells in culture, and alveolar macrophages. The glycosylated and nonglycosylated forms of NPC1 were prominent in the lung and the lamellar body organelles. Immunocytochemical analysis of isolated type II pneumocytes showed localization of NPC1 to the limiting membrane of lamellar bodies. NPC2 and lysosomal acid lipase were found within these organelles, as confirmed by z-stack analysis of confocal images. All three proteins also were identified in small, lysosome-like vesicles. In the presence of serum, pharmacological inhibition of the NPC pathway with compound U18666A resulted in doubling of the cholesterol content of the type II cells. Filipin staining revealed a striking accumulation of cholesterol within lamellar bodies. Thus the NPC pathway functions to control cholesterol accumulation in lamellar bodies of type II pneumocytes and, thereby, may play a role in the regulation of surfactant cholesterol content.  相似文献   

14.
The electronmicroscopic investigation of five lung tumors histodiagnosed as macrocellular carcinomas showed the ultrastructural monomorphism of large, variedly shaped neoplastic cells, lack of intercellular junctions, voluminous nuclei with many indentations of nuclear membrane, dispersed euchromatin, large and multiple nucleoli, and nuclear bodies. A reduced number of cytoplasmic organelles was characteristic for these cells, represented mainly by mitochondria, rare rough endoplasmic reticulum, free ribosomes rare Golgi vesicles and flattened tubules, and a various amount of tonofilaments. These features characterized the poorly differentiated proliferation forming these tumors. The elements of differential diagnosis from other poorly differentiated lung tumors (epidermoid and cylindrocubic) are discussed, allowing the consideration of this proliferation type with repressed differentiation and maturation as a real one in the framework of lung carcinomas.  相似文献   

15.
The pluripotency and high proliferative index of embryonic stem (ES) cells make them a good potential source of cells for tissue engineering purposes. We have shown that ES cells can be induced to differentiate in vitro into pulmonary epithelial cells (type II pneumocytes) using a serum-free medium designed for the maintenance of mature distal lung epithelial cells in culture (SAGM). However, the resulting cell cultures were heterogeneous. Our aim in this study was to attempt to increase pneumocyte yield and differentiation state by determining which medium components enhance the differentiation of pneumocytes and modifying the medium accordingly. Quantitative RT-PCR was used to measure changes in the expression of a type II pneumocyte-specific gene, surfactant protein C (SPC), in response to alterations in the cell culture medium. Results suggested that most individual SAGM growth factors were inhibitory for type II pneumocyte differentiation, with the largest increases in SPC expression (approximately threefold) being observed upon removal of retinoic acid and triiodothryonine. However, large standard deviations occurred between replicates, illustrating the highly variable nature of ES cell differentiation. Nevertheless, these observations represent an initial step towards achieving directed differentiation of pneumocytes from stem cells that could lead to their purification for tissue engineering purposes.  相似文献   

16.
After 4 h hypoxia, platelet activating factor (PAF-acether or 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) and its deacetylated derivative, lyso-PAF-acether, accumulate in rat lung surfactant, the latter in a 1000-fold excess (Prévost, M.C., Cariven, C., Simon, M.F., Chap, H. and Douste-Blazy, L. (1984) Biochem. Biophys. Res. Commun. 119, 58-63). In order to determine the origin of these two phospholipids, rat lung alveolar lavages and rat lung macrophages were examined for phospholipid composition before and after 4 h of hypoxic treatment. Our data indicate an activation of phospholipase A2 in both compartments, as detected by the accumulation of lysophosphatidylcholine. The main effect was observed in lung surfactant, where phosphatidylcholine hydrolysis attained 13%. This change was concomitant with the activation of a calcium-independent phospholipase A2 present in lung alveolar lavages, which might be responsible for the accumulation of some lyso-PAF-acether, alkylacylcholine glycerophospholipids being present in low but significant amounts in lung surfactant. However, the main source of PAF and lyso-PAF-acether appears to be alveolar macrophages, which secreted significant amounts of the two phospholipids upon in vitro hypoxic treatment, although the participation of other cells, such as type II pneumocytes, cannot be excluded. The relative amounts of the two compounds might be regulated by both an intracellular and an extracellular acetylhydrolase, the two enzymes being distinct proteins on the basis of their different isoelectric points.  相似文献   

17.
CD208 DC lysosomal-associated protein is a marker of activated human dendritic cells; however, recently it was described as a marker of adult type II pneumocytes in many species including humans and sheep. Our hypothesis was that CD208 is developmentally regulated in lung pneumocytes. Lamb lungs at varying stages of development were stained immunohistochemically for CD208 and with Nile red (a fluorescent stain for lamellar bodies of type II cells) along with pulmonary markers of maturation (glycogen stores and surfactant protein A [SP-A] expression) or proliferation (Ki-67). CD208 staining and Nile red were localized to rare pneumocytes in young fetal lambs (day 115), increasing in frequency and stain intensity with age. Periodic acid-Schiff staining of glycogen granules was most prominent in the young lambs (day 115) with reduced staining through advancing lung development. SP-A was detected in pulmonary epithelia and staining in alveoli increased through gestation with decreased staining at 2 weeks of age. Intranuclear Ki-67 staining decreased through late gestation but was increased in 2-week-old lambs. Ontogeny of CD208 staining and depletion of glycogen were correlated (p<0.0001) and consistent with the premise that CD208 is localized to developing lamellar bodies. The findings suggest that CD208 antigen expression may serve as a marker for pneumocyte maturation in the developing fetal lung.  相似文献   

18.
BACKGROUND: Giant lamellar bodies are laminated, scroll-like whorls seen within alveolar spaces and have been occasionally observed in sclerosing hemangioma of the lung. However, to the best of our knowledge, the cytologic findings of giant lamellar bodies have not been reported. We describe cytologic findings of giant lamellar bodies associated with pulmonary mucosa-associated lymphoid tissue (MALT) lymphoma. CASE: A 72-year-old male had a pulmonary mass measuring 2.0 x 1.4 x 1.5 cm. Cytologic smears imprinted from a cut surface of the resected mass revealed a large number of concentrically laminated structures, giant lamellar bodies, measuring 15-40 microns in diameter. Necrotic cellular remnants were occasionally observed in the center of the structures. In the background, small to medium-sized lymphoid cells and plasmacytoid cells were observed. Histologic diagnosis of the tumor was IgG, kappa type, MALT lymphoma. An aggregate of giant lamellar bodies was observed within entrapped, dilated alveolar spaces lined with hypertrophied, type II pneumocytes. Immunohistochemically, the giant lamellar bodies were positive for KL-6. CONCLUSION: Giant lamellar bodies may be derived from surfactant and necrotic type II pneumocytes and may be observed cytologically in cases of pulmonary MALT lymphoma.  相似文献   

19.
Long-chain acyl-CoA dehydrogenase (LCAD) is a mitochondrial fatty acid oxidation enzyme whose expression in humans is low or absent in organs known to utilize fatty acids for energy such as heart, muscle, and liver. This study demonstrates localization of LCAD to human alveolar type II pneumocytes, which synthesize and secrete pulmonary surfactant. The physiological role of LCAD and the fatty acid oxidation pathway in lung was subsequently studied using LCAD knock-out mice. Lung fatty acid oxidation was reduced in LCAD−/− mice. LCAD−/− mice demonstrated reduced pulmonary compliance, but histological examination of lung tissue revealed no obvious signs of inflammation or pathology. The changes in lung mechanics were found to be due to pulmonary surfactant dysfunction. Large aggregate surfactant isolated from LCAD−/− mouse lavage fluid had significantly reduced phospholipid content as well as alterations in the acyl chain composition of phosphatidylcholine and phosphatidylglycerol. LCAD−/− surfactant demonstrated functional abnormalities when subjected to dynamic compression-expansion cycling on a constrained drop surfactometer. Serum albumin, which has been shown to degrade and inactivate pulmonary surfactant, was significantly increased in LCAD−/− lavage fluid, suggesting increased epithelial permeability. Finally, we identified two cases of sudden unexplained infant death where no lung LCAD antigen was detectable. Both infants were homozygous for an amino acid changing polymorphism (K333Q). These findings for the first time identify the fatty acid oxidation pathway and LCAD in particular as factors contributing to the pathophysiology of pulmonary disease.  相似文献   

20.
Elevated arginases including type-I (Arg-I) and type-II isoenzyme (Arg-II) are reported to play a role in aging, age-associated organ inflammaging, and fibrosis. A role of arginase in pulmonary aging and underlying mechanisms are not explored. Our present study shows increased Arg-II levels in aging lung of female mice, which is detected in bronchial ciliated epithelium, club cells, alveolar type 2 (AT2) pneumocytes, and fibroblasts (but not vascular endothelial and smooth muscle cells). Similar cellular localization of Arg-II is also observed in human lung biopsies. The age-associated increase in lung fibrosis and inflammatory cytokines, including IL-1β and TGF-β1 that are highly expressed in bronchial epithelium, AT2 cells, and fibroblasts, are ameliorated in arg-ii deficient (arg-ii−/−) mice. The effects of arg-ii/− on lung inflammaging are weaker in male as compared to female animals. Conditioned medium (CM) from human Arg-II-positive bronchial and alveolar epithelial cells, but not that from arg-ii−/− cells, activates fibroblasts to produce various cytokines including TGF-β1 and collagen, which is abolished by IL-1β receptor antagonist or TGF-β type I receptor blocker. Conversely, TGF-β1 or IL-1β also increases Arg-II expression. In the mouse models, we confirmed the age-associated increase in IL-1β and TGF-β1 in epithelial cells and activation of fibroblasts, which is inhibited in arg-ii/− mice. Taken together, our study demonstrates a critical role of epithelial Arg-II in activation of pulmonary fibroblasts via paracrine release of IL-1β and TGF-β1, contributing to pulmonary inflammaging and fibrosis. The results provide a novel mechanistic insight in the role of Arg-II in pulmonary aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号