首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have investigated the effects of adenosine on the stimulation of glucose oxidation and lipogenesis by oxytocin and insulin in rat epididymal adipocytes. The addition of adenosine deaminase (1 U/ml) to the assay medium reduced the maximal oxytocin response (glucose oxidation and lipogenesis) to between 25 and 50% of the maximum response in control cells. The maximal response to insulin was not appreciably affected under these conditions. The addition of adenosine (10 or 30 microM) increased the cell sensitivity to oxytocin by elevating the maximum rate of oxytocin-stimulated glucose metabolism. Adenosine also increased the cell sensitivity to insulin by decreasing its ED50. A change in ED50, however, was observed only when control or adenosine-treated cells were compared to adenosine deaminase-treated cells; but not when control and adenosine-treated cells were compared. On its own, adenosine also caused an appreciable increase in both glucose oxidation and lipogenesis (ED50 approximately equal to 3 microM adenosine). The difference in the effect of adenosine on oxytocin action, compared with the effect on insulin action, points to differences in the mechanisms by which insulin and oxytocin stimulate glucose metabolism in adipocytes.  相似文献   

2.
Glucose homeostasis, which is controlled by the endocrine cells of the pancreas, is disrupted in both type I and type II diabetes. Deficiency in the number of insulin-producing β cells – a primary cause of type I diabetes and a secondary contributor of type II diabetes – leads to hyperglycemia and hence an increase in the need for insulin. Although diabetes can be controlled with insulin injections, a curative approach is needed. A potential approach to curing diabetes involves regenerating the β-cell mass, e.g. by increasing β-cell proliferation, survival, neogenesis or transdifferentiation. The nucleoside adenosine and its cognate nucleotide ATP have long been known to affect insulin secretion, but have more recently been shown to increase β-cell proliferation during homeostatic control and regeneration of the β-cell mass. Adenosine is also known to have anti-inflammatory properties, and agonism of adenosine receptors can promote the survival of β-cells in an inflammatory microenvironment. In this review, both intracellular and extracellular mechanisms of adenosine and ATP are discussed in terms of their established and putative effects on β-cell regeneration.  相似文献   

3.
Reduced proliferation potential is among other T cell functional defects long known feature of diabetes. However, the mechanism responsible for this impairment is still unknown. Our study was undertaken to investigate the effect of changes in glucose and insulin concentrations on adenosine metabolism, transport and receptor-mediated action in rat T lymphocytes. Presented results indicate that vulnerability of T cells to metabolic stress is determined by insulin but not by glucose concentration. However, glucose and insulin differentially affected the activities of adenosine metabolizing enzymes in resting and proliferating T cells. The Con A-induced proliferation of cultured T lymphocytes did not depended on expression level and functional state of nucleoside transporters. Inhibition of adenosine kinase (AK) with 5-iodotubercidin lowers the proliferation potential of T cells to the level observed for insulin-deprived cells. Moreover, insulin-deprived T lymphocytes but not cells cultured in the presence of insulin released significant quantities of adenosine. Under resting conditions, the cAMP level was fivefold higher in cells deprived of insulin comparing to cells cultured in the presence of insulin. Exposition of insulin-deprived T lymphocytes to specific antagonist (ZM241385) of A2a receptor but not to specific antagonist (Alloxazine) of A2b receptor suppressed cAMP elevation and completely restored the proliferation potential of T cells. Concluding, adenosine released by insulin-deprived T cells due to suppressed AK activity by acting on A2a receptors leads to increases in cAMP level and suppression of T cell proliferation. We assume that this mechanism may significantly contribute to immune impairment observed in diabetes.  相似文献   

4.
In fat cells isolated from the parametrial adipose tissue of rats, the addition of purified adenosine deaminase increased lipolysis and cyclic adenosine 3':5'-monophosphate (cyclic AMP) accumulation. Adenosine deaminase markedly potentiated cyclic AMP accumulation due to norepinephrine. The increase in cyclic AMP due to adenosine deaminase was as rapid as that of theophylline with near maximal effects seen after only a 20-sec incubation. The increases in cyclic AMP due to crystalline adenosine deaminase from intestinal mucosa were seen at concentrations as low as 0.05 mug per ml. Further purification of the crystalline enzyme preparation by Sephadex G-100 chromatography increased both adenosine deaminase activity and cyclic AMP accumulation by fat cells. The effects of adenosine deaminase on fat cell metabolism were reversed by the addition of low concentrations of N6-(phenylisopropyl)adenosine, an analog of adenosine which is not deaminated. The effects of adenosine deaminase on cyclic AMP accumulation were blocked by coformycin which is a potent inhibitor of the enzyme. These findings suggest that deamination of adenosine is responsible for the observed effects of adenosine deaminase preparations. Protein kinase activity of fat cell homogenates was unaffected by adenosine or N6-(phenylisopropyl)adenosine. Norepinephrine-activated adenylate cyclase activity of fat cell ghosts was not inhibited by N6-(phenylisopropyl)adenosine. Adenosine deaminase did not alter basal or norepinephrine-activated adenylate cyclase activity. Cyclic AMP phosphodiesterase activity of fat cell ghosts was also unaffected by adenosine deaminase. Basal and insulin-stimulated glucose oxidation were little affected by adenosine deaminase. However, the addition of adenosine deaminase to fat cells incubated with 1.5 muM norepinephrine abolished the antilipolytic action of insulin and markedly reduced the increase in glucose oxidation due to insulin. These effects were reversed by N6-(phenylisopropyl)adenosine. Phenylisopropyl adenosine did not affect insulin action during a 1-hour incubation. If fat cells were incubated for 2 hours with phenylisopropyl adenosine prior to the addition of insulin for 1 hour there was a marked potentiation of insulin action. The potentiation of insulin action by prior incubation with phenylisopropyl adenosine was not unique as prostaglandin E1, and nicotinic acid had similar effects.  相似文献   

5.
The dose response effect of a new adenosine analogue, GR 79236 (N-[1S trans-2-hydroxycyclopentyl] adenosine) upon insulin sensitivity was examined in human adipocytes. The influence of adenosine upon insulin sensitivity for suppression of lipolysis and stimulation of glucose transport was examined. Removal of adenosine by use of adenosine deaminase stimulated lipolysis to the same extent as did 10–9 M noradrenaline. GR79236 brought about dose dependent inhibition of lipolysis with half-maximal effect at 11.3±7.8×10–9 M. When lipolysis was stimulated by noradrenaline alone the subsequent inhibition of lipolysis brought about by GR79236 was significantly greater than that of insulin. To examine adenosine effects on the insulin signalling pathway separately from those on lipolysis, the insulin sensitivity of glucose transport was examined. Removal of adenosine brought about a small but significant increase in the concentration of insulin required for half-maximal stimulation of glucose transport. Adenosine agonists offer promise as new agents for the modulation of metabolism in diabetes and other states of insulin resistance.  相似文献   

6.
The adenosine-sensitive cyclic AMP phosphodiesterase of rat adipocytes was found to reside in the same subcellular fraction as the enzyme sensitive to insulin. There were several similarities between the action of adenosine and that of insulin on the enzyme. The action of adenosine on the phosphodiesterase is probably like that of insulin, both being receptor-mediated, although different sites or different receptors could be involved. Adenosine analogues with intact ribose but a modified purine moiety elicited a response similar to that of adenosine. Added Ca2+ was also not a requirement for the action of adenosine. The action of adenosine was not synergistic with that of insulin, neither was adenosine essential for insulin action. Insulin stimulated the enzyme even at low cell concentrations and in the presence of adenosine deaminase. Adenosine, however, enhanced the effect of insulin, but only at insulin concentrations that produced submaximal effects. Thus the mechanisms of action could be similar or related. The time-course effect of a suboptimal concentration of insulin was transitory, like that of adenosine, and was influenced by the presence of adenosine, whereas that of a maximally effective concentration of insulin was sustained for at least 20 min and was not affected by the presence of adenosine. Isoprenaline enhanced phosphodiesterase activity stimulated by optimal concentrations of either adenosine or insulin, suggesting that their effects were mediated through different mechanisms of action.  相似文献   

7.
The widely used phosphodiesterase inhibitor MIX (1-methyl 3-isobutyl xanthine) blocked insulin antagonism of cAMP-stimulated glycogenolysis in rat hepatocytes but other phosphodiesterase inhibitors including Ro 20-1724 had no effect. Dose-response curves for MIX potentiation of cAMP-stimulated glycogenolysis and for MIX inhibition of the effects of insulin on cAMP-stimulated glycogenolysis suggested that at higher concentrations (250 microM) MIX may act at a site other than phosphodiesterase inhibition. MIX, at 250 microM, attenuated the insulin antagonism of glucose release stimulated by 8-bromo-cAMP, an extremely poor substrate for phosphodiesterase; other phosphodiesterase inhibitors did not. The possibility that MIX acts as an adenosine antagonist interfering with a postulated role for adenosine in insulin action was examined using N6-phenylisopropyladenosine (PIA), an Ra adenosine receptor agonist which increases hepatic cAMP levels. MIX inhibited insulin antagonism of PIA-stimulated glycogenolysis under conditions where it did not act as an adenosine antagonist (MIX and Ro 20-1724 both increased the response to PIA equally). The effect of concanavalin A on cAMP-stimulated glycogenolysis was antagonized by MIX, suggesting a post-receptor site of action for MIX. MIX paradoxically increased lactate production in the presence of 8-bromo-cAMP, reminiscent of the reported actions of calcium mobilizing hormones on lactate formation in fed hepatocytes. Cytosolic free Ca2+, as measured in Quin 2-loaded cells, was increased by MIX. In cells depleted of calcium, MIX no longer blocked insulin antagonism of 8-bromo-cAMP-stimulated glucose release, suggesting that MIX may function through an insulin-insensitive release of calcium. MIX greatly potentiated the stimulation of glycogenolysis by phenylephrine but did not alter the response to vasopressin. The relationship of this effect of MIX to the mechanism of insulin action and the ability of insulin to antagonize only alpha-adrenergic responses and not those of vasopressin is discussed.  相似文献   

8.
9.
We evaluated the effects of extremely low frequency magnetic field (ELFMF) on glucose-stimulated insulin secretion from HIT-T15 cells and investigated the mechanisms of these effects. We demonstrated that exposure to ELFMF at 5mT decreased glucose-stimulated insulin secretion by preventing the increases in cellular adenosine 5'-triphosphate/adenosine 5'-diphosphate, membrane depolarization, and cytosolic free calcium ion concentration. The glucose-induced upregulation of insulin mRNA expression was also attenuated by exposure to ELFMF, although cell viability was not affected. These findings demonstrate the potential of exposure to ELFMF for clinical use as a novel inhibitory method of insulin secretion.  相似文献   

10.
Adenosine is known to influence different kinds of cells, including beta-cells of the pancreas. However, the role of this nucleoside in the regulation of insulin secretion is not fully elucidated. In the present study, the effects of adenosine A(1) receptor antagonism on insulin secretion from isolated rat pancreatic islets were tested using DPCPX, a selective adenosine A(1) receptor antagonist. It was demonstrated that pancreatic islets stimulated with 6.7 and 16.7 mM glucose and exposed to DPCPX released significantly more insulin compared with islets incubated with glucose alone. The insulin-secretory response to glucose and low forskolin appeared to be substantially potentiated by DPCPX, but DPCPX was ineffective in the presence of glucose and high forskolin. Moreover, DPCPX failed to change insulin secretion stimulated by the combination of glucose and dibutyryl-cAMP, a non-hydrolysable cAMP analogue. Studies on pancreatic islets also revealed that the potentiating effect of DPCPX on glucose-induced insulin secretion was attenuated by H-89, a selective inhibitor of protein kinase A. It was also demonstrated that formazan formation, reflecting metabolic activity of cells, was enhanced in islets exposed to DPCPX. Moreover, DPCPX was found to increase islet cAMP content, whereas ATP was not significantly changed. These results indicate that adenosine A(1) receptor blockade in rat pancreatic islets potentiates insulin secretion induced by both physiological and supraphysiological glucose concentrations. This effect is proposed to be due to increased metabolic activity of cells and increased cAMP content.  相似文献   

11.
1. Adipocytes isolated from rats 6--9 days after adrenalectomy had significantly increased sensitivity to insulin action against noradrenaline-stimulated lipolysis. In the presence of adenosine deaminase there was no significant difference in insulin sensitivity between cells from adrenalectomized and sham-operated rats. 2. Adipocytes from adrenalectomized rats had decreased lipolytic responses to all concentrations of noradrenaline and glucagon tested and a decreased lipolytic response to low but not high concentrations of corticotropin. There was no difference in lipolytic response to theophylline after adrenalectomy. Adenosine deaminase corrected the differences in response to noradrenaline and glucagon resulting from adrenalectomy. 3. In the presence of adenosine deaminase rates of lipolysis, after stimulation by high concentrations of noradrenaline, glucagon, corticotropin or theophylline, were the same in cells from adrenalectomized or sham-operated rats. 4. These findings and previously reported effects of adenosine and adrenalectomy on adipocyte function are discussed. It is proposed that changes in adipocyte hormone responsiveness after adrenalectomy may result from changes in adenosine metabolism or release.  相似文献   

12.
L-Arginine transport and nitric oxide (NO) synthesis (L-arginine/NO pathway) are stimulated by insulin, adenosine or elevated extracellular D-glucose in human umbilical vein endothelial cells (HUVEC). Adenosine uptake via the human equilibrative nucleoside transporters 1 (hENT1) and 2 (hENT2) has been proposed as a mechanism regulating adenosine plasma concentration, and therefore its vascular effects in human umbilical veins. Thus, altered expression and/or activity of hENT1 or hENT2 could lead to abnormal physiological plasma adenosine level. We have characterized insulin effect on adenosine transport in HUVEC cultured in normal (5 mM) or high (25 mM) D-glucose. Insulin (1 nM) increased overall adenosine transport associated with higher hENT2-, but lower hENT1-mediated transport in normal D-glucose. Insulin increased hENT2 protein abundance in normal or high D-glucose, but reduced hENT1 protein abundance in normal D-glucose. Insulin did not alter the reduced hENT1 protein abundance, but blocked the reduced hENT1 and hENT2 mRNA expression induced by high D-glucose. Insulin effect on hENT1 mRNA expression in normal D-glucose was blocked by N(G)-nitro-L-arginine methyl ester (L-NAME, NO synthase inhibitor) and mimicked by S-nitroso-N-acetyl-L,D-penicillamine (SNAP, NO donor). L-NAME did not block insulin effect on hENT2 expression. In conclusion, insulin stimulation of overall adenosine transport results from increased hENT2 expression and activity via a NO-independent mechanism. These findings could be important in hyperglycemia-associated pathological pregnancies, such as gestational diabetes, where plasma adenosine removal by the endothelium is reduced, a condition that could alter the blood flow from the placenta to the fetus affecting fetus growth and development.  相似文献   

13.
Obesity is typically associated with elevated levels of free fatty acids (FFAs) and is linked to glucose intolerance and type 2 diabetes. FFAs exert divergent effects on insulin secretion from beta cells: acute exposure to FFAs stimulates insulin secretion, whereas chronic exposure impairs insulin secretion. The G protein-coupled receptor GPR40 is selectively expressed in beta cells and is activated by FFAs. We show here that GPR40 mediates both acute and chronic effects of FFAs on insulin secretion and that GPR40 signaling is linked to impaired glucose homeostasis. GPR40-deficient beta cells secrete less insulin in response to FFAs, and loss of GPR40 protects mice from obesity-induced hyperinsulinemia, hepatic steatosis, hypertriglyceridemia, increased hepatic glucose output, hyperglycemia, and glucose intolerance. Conversely, overexpression of GPR40 in beta cells of mice leads to impaired beta cell function, hypoinsulinemia, and diabetes. These results suggest that GPR40 plays an important role in the chain of events linking obesity and type 2 diabetes.  相似文献   

14.
ATP or adenosine (1 mM) added to extracellular buffer abolished both chloroquine- and monensin-dependent accumulation of [125I]iodoinsulin in isolated rat adipocytes. The effects of ATP were not secondary to its conversion to adenosine and were mimicked by beta, gamma-methyleneadenosine 5'-triphosphate. ATP, but not adenosine, partially inhibited the binding of insulin to the cellular receptor. Neither ATP nor adenosine had any significant effect on both internalization of cell-bound insulin and externalization of the internalized hormone. The degradation of cell-bound insulin was reduced to a considerable extent by both 0.1 mM chloroquine and 5 mM ATP, to a lesser degree by 1 mM ATP, and not significantly by 1 or 5 mM adenosine. Physiologically, (a) 1 mM ATP had a strong, while 1 mM adenosine had a mild inhibitory effect on the insulin-stimulated glucose transport without affecting its basal activity, (b) both ATP and adenosine moderately stimulated basal as well as insulin-stimulated glycogen synthase, and (c) ATP, but not adenosine, transiently stimulated basal cAMP phosphodiesterase without affecting the insulin-stimulated enzyme. Phosphodiesterase in cells that had been exposed to ATP for 30 min was refractory to ATP added afresh, but not to insulin. These data suggest that (a) extracellular ATP may block the degradative pathway of insulin processing, (b) adenosine might render the ordinarily irreversible intracellular traffic of insulin reversible or modulate a pathway which is yet to be identified, (c) the previously reported effect of ATP on glycogen synthase may not involve phosphorylation, (d) ATP stimulates cAMP phosphodiesterase by a mechanism which is distinct from that of insulin, and (e) the degradative pathway of insulin processing may not be involved in the physiologic actions of the hormone on glycogen synthase and phosphodiesterase.  相似文献   

15.
Insulin resistance is a primary characteristic of type 2 diabetes and likely causally related to the pathogenesis of the disease. It is a result of defects in signal transduction from the cell surface receptor of insulin to target effects. We found that insulin-stimulated phosphorylation of serine 307 (corresponding to serine 302 in the murine sequence) in the immediate downstream mediator protein of the insulin receptor, insulin receptor substrate-1 (IRS1), is required for efficient insulin signaling and that this phosphorylation is attenuated in adipocytes from patients with type 2 diabetes. Inhibition of serine 307 phosphorylation by rapamycin mimicked type 2 diabetes and reduced the sensitivity of IRS1 tyrosine phosphorylation in response to insulin, while stimulation of the phosphorylation by okadaic acid, in cells from patients with type 2 diabetes, rescued cells from insulin resistance. EC(50) for insulin-stimulated phosphorylation of serine 307 was about 0.2 nM with a t(1/2) of about 2 min. The amount of IRS1 was similar in cells from non-diabetic and diabetic subjects. These findings identify a molecular mechanism for insulin resistance in non-selected patients with type 2 diabetes.  相似文献   

16.
Purinergic signalling is involved in both the physiology and pathophysiology of the liver. Hepatocytes, Kupffer cells, vascular endothelial cells and smooth muscle cells, stellate cells and cholangiocytes all express purinoceptor subtypes activated by adenosine, adenosine 5′-triphosphate, adenosine diphosphate, uridine 5′-triphosphate or UDP. Purinoceptors mediate bile secretion, glycogen and lipid metabolism and indirectly release of insulin. Mechanical stress results in release of ATP from hepatocytes and Kupffer cells and ATP is also released as a cotransmitter with noradrenaline from sympathetic nerves supplying the liver. Ecto-nucleotidases play important roles in the signalling process. Changes in purinergic signalling occur in vascular injury, inflammation, insulin resistance, hepatic fibrosis, cirrhosis, diabetes, hepatitis, liver regeneration following injury or transplantation and cancer. Purinergic therapeutic strategies for the treatment of these pathologies are being explored.  相似文献   

17.
赵暕  苏运超  吴立玲 《生物磁学》2009,(14):2781-2784
内脂素是新近被发现的主要由内脏脂肪合成的一种脂肪细胞因子,它具有类胰岛素样作用,能降低血糖和促进脂肪组织的分化与合成。内脂素还可以调节血管平滑肌的成熟和影响胰岛细胞的胰岛素的分泌,亦具有调节炎症反应和免疫功能的作用。随着研究的发展,人们对内脂素的结构特性、分布、表达调控及其生物学功能有了更加深入的认识。2型糖尿病是以胰岛素抵抗和糖代谢紊乱为特征的代谢性疾病,研究发现内脂素与2型糖尿病密切相关,其中与肥胖、胰岛素抵抗及胰岛素分泌方面的关系尤为显著,深入研究内脂素的生理和病理生理作用将会有力地促进对2型糖尿病的进一步认识、治疗与预防。  相似文献   

18.
1. Adipocytes isolated from epididymal fat-pads of fed rats were incubated with different concentrations of glucagon, insulin, adrenaline and adenosine deaminase, and the effects of these agents on the ;initial' activity of acetyl-CoA carboxylase in the cells were studied. 2. Glucagon (at concentrations between 0.1 and 10nm) inhibited acetyl-CoA carboxylase activity. Maximal inhibition was approx. 70% of the ;control' activity in the absence of added hormone, and the concentration of hormone required for half-maximal inhibition was 0.3-0.5nm-glucagon. 3. Incubation of cells with adenosine deaminase resulted in a similar inhibition of acetyl-CoA carboxylase activity. Preincubation of adipocytes with adenosine deaminase did not alter either the sensitivity of carboxylase activity to increasing concentrations of glucagon or the maximal extent of inhibition. 4. Adrenaline inhibited acetyl-CoA carboxylase to the same extent as glucagon. Preincubation of the cells with glucagon did not alter the sensitivity of enzyme activity to adrenaline or the degree of maximal inhibition. 5. Insulin activated the enzyme by 70-80% of ;control' activity. Preincubation of the cells with glucagon did not alter the concentration of insulin required to produce half the maximal stimulatory effect (about 12muunits of insulin/ml). The effects of insulin and glucagon appeared to be mediated completely independently, and were approximately quantitatively similar but opposite. These characteristics resulted in the mutual cancellation of the effects of the two hormones when they were both present at equally effective concentrations. 6. The implications of these findings with regard to current concepts about the mechanism of regulation of acetyl-CoA carboxylase and to the regulation of the enzyme in vivo are discussed.  相似文献   

19.
In type 2 diabetes, pancreatic beta cells fail to secrete sufficient insulin to overcome peripheral insulin resistance. Intracellular lipid accumulation contributes to beta cell failure through poorly defined mechanisms. Here we report a role for the lipid-regulated protein kinase C isoform PKCepsilon in beta cell dysfunction. Deletion of PKCepsilon augmented insulin secretion and prevented glucose intolerance in fat-fed mice. Importantly, a PKCepsilon-inhibitory peptide improved insulin availability and glucose tolerance in db/db mice with preexisting diabetes. Functional ablation of PKCepsilon selectively enhanced insulin release ex vivo from diabetic or lipid-pretreated islets and optimized the glucose-regulated lipid partitioning that amplifies the secretory response. Independently, PKCepsilon deletion also augmented insulin availability by reducing both whole-body insulin clearance and insulin uptake by hepatocytes. Our findings implicate PKCepsilon in the etiology of beta cell dysfunction and highlight that enhancement of insulin availability, through separate effects on liver and beta cells, provides a rationale for inhibiting PKCepsilon to treat type 2 diabetes.  相似文献   

20.
Diabetes can be controlled with insulin injections, but a curative approach that restores the number of insulin-producing β cells is still needed. Using a zebrafish model of diabetes, we screened ~7,000 small molecules to identify enhancers of β cell regeneration. The compounds we identified converge on the adenosine signaling pathway and include exogenous agonists and compounds that inhibit degradation of endogenously produced adenosine. The most potent enhancer of β cell regeneration was the adenosine agonist 5'-N-ethylcarboxamidoadenosine (NECA), which, acting through the adenosine receptor A2aa, increased β cell proliferation and accelerated restoration of normoglycemia in zebrafish. Despite markedly stimulating β cell proliferation during regeneration, NECA had only a modest effect during development. The proliferative and glucose-lowering effect of NECA was confirmed in diabetic mice, suggesting an evolutionarily conserved role for adenosine in β cell regeneration. With this whole-organism screen, we identified components of the adenosine pathway that could be therapeutically targeted for the treatment of diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号