首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Photoperiodic control of diapause induction was investigated in the short-day species, Colaphellus bowringi, which enters summer and winter diapause as adult in the soil. Photoperiodic responses at 25 and 28 degrees C revealed a critical night length between 10 and 12 h; night lengths > or =12 h prevented diapause, whereas night lengths <12 h induced summer diapause in different degree. Experiments using non-24-h light-dark cycles showed that the duration of scotophase played an essential role in the determination of diapause. Night-interruption experiments with T=24 h showed that diapause was effectively induced by a 2-h light pulse in most scotophases; whereas day-interruption experiments by a 2-h dark break had a little effect on the incidence of diapause. The experiments of alternating short-night cycles (LD 16:8) and long-night cycles (LD 12:12) during the sensitive larval period showed that the information of short nights as well as long nights could be accumulated. Nanda-Hamner experiments showed three declining peaks of diapause at 24 h circadian intervals. Bünsow experiments showed two very weak peaks for diapause induction, one being 8 h after lights-off, and another 8 h before lights-on, but it did not show peaks of diapause at a 24 h interval. These results suggest that the circadian oscillatory system constitutes a part of the photoperiodic clock of this beetle but plays a limited role in its photoperiodic time measurement.  相似文献   

2.
Thyrassia penangae enters winter diapause as a prepupa in a cocoon. Photoperiodism of diapause induction was systematically investigated in this moth. The photoperiodic response curves under 24-h light-dark cycles showed that this insect is a typical long-day species. The critical daylength was 13 h 30 min at 25 °C, 13 h at 30 °C and 12 h 20 min at 28 °C. Transferring experiments from a short day (LD 12:12) to a long day (LD 15:9) or vice versa indicated that photoperiodic sensitivity mainly occurs during the larval period. In experiments using non-24-h light-dark cycles, when the length of photophase exceeded the critical daylength (13.5 h), was diapause inhibited effectively, even when the length of scotophase exceeded the critical nightlength (10.5 h). Only when a long scotophase was combined with a short photophase, diapause was induced effectively. This result suggests that daylength measurement is more important than nightlength measurement in T. penangae. Night interruption experiments under 24-h light-dark cycles exhibited two points of apparent light sensitivity, but the photosensitive position was highly influenced by temperature and the length of scotophase. Nanda-Hamner experiments failed to reveal the involvement of a circadian system in this photoperiodic time measurement. All light-dark cycles from LD 12:12 to LD 12:72 resulted in a short day response, and all cycles from LD 14:4 to LD 14:72 resulted in a long day response, suggesting that photoperiodic time measurement in this moth is performed by a day-interval timer or an hourglass-like clock.  相似文献   

3.
Wei X  Xue F  Li A 《Journal of insect physiology》2001,47(12):1367-1375
Pseudopidorus fasciata enters diapause as fourth instar larvae at short day lengths. Using 24-h light-dark cycles, the photoperiodic response curves in this species appeared to be similar with a critical night length of 10.5h at temperatures below 30 degrees C. At an average temperature of 30.5 degrees C, the critical night length had shifted to between 15 and 17h. In experiments using non-24-h light-dark cycles, it was clearly demonstrated that the dark period (scotophase) was the decisive phase for a diapause determination. In night interruption experiments using 24-h light-dark cycles, a 1-h light pulse at LD12:12 completely reversed the long night effect and averted diapause in all treatments. At LD 9:15 light pulses of 1-h, 30- or 15-min also averted diapause effectively when both the pre-interruption (D(1)) or the post-interruption scotophases (D(2)) did not exceed the critical night length. If D(1) or D(2) exceeded the critical night length diapause was induced. The most crucial event for the photoperiodic time measurement in this species is the length of the scotophase. A 10-min light pulse placed in the most photosensitive phase reversed diapause in over 50% of the individuals. Night interruption experiments under non-24-h light-dark cycles indicated that the photoperiodic clock measured only D(1) regardless of the length of D(2), suggesting that the most inductive cycles are often those in which L+D are close to 24h. In resonance experiments, this species showed a circadian periodicity at temperatures of 24.5 or 26 degrees C, but not at 30.5 and 23.3 degrees C. On the other hand, Bünsow and skeleton photoperiod experiments failed to reveal the involvement of a circadian system in this photoperiodic clock. These results suggest the photoperiodic clock in this species is a long-night measuring hourglass and the circadian effect found in the final expression of the photoperiodic response in the resonance experiments may be caused by a disturbing effect of the circadian system in unnatural regimes.  相似文献   

4.
Some diapause characteristics were studied in a strain of the spider mite. Tetranychus urticae. which had been reared on bean plants in the laboratory for over 15 yr. The diapause induction response curve was of the long-day type, showing a sharply defined critical daylength of 13 hr 50 min. In constant darkness no diapause induction occurred, but with a photoperiod of 1L:23D diapause incidence was already complete. A thermoperiod with a 5°C amplitude induced diapause in combination with a short-day photoperiod only when the low phase of the thermoperiod coincided with the scotophase. The same thermoperiod did not induce any diapause in constant darkness. The photoperiodic reaction of the laboratory strain used in these experiments appeared to remain constant over a very long period of time and to be independent of the diapause history of previous generations of mites.Although photoperiodic sensitivity was demonstrated during the whole postembryonic development, sensitivity was maximal at the end of the protonymphal instar and declined rapidly during the deutonymphal instar. Only 2 inductive cycles of 10L:14D were required to induce up to 62% diapause if the mites were kept in continuous darkness during the remainder of their development. Long days or continuous light could reverse the inductive effect of a sequence of short-day cycles previously applied to the mites.Light breaks of 1 hr duration applied at different times during the dark period of a 10L:14D photoperiod generated a sharp bimodal response curve with two discrete points of sensitivity to the light breaks at 10 hr after ‘dusk’ and 10 hr before ‘dawn’, thus showing a remarkable similarity with the results obtained in light break experiments with some species of insects.  相似文献   

5.
6.
Abstract:  Dendrolimus tabulaeformis overwinters as third to fourth instar larvae at short days in autumn. Using 24-h light–dark cycles, the photoperiodic response curves were similar at 24 and 28°C. The critical night length was 9 h 20 min at 24°C and 9 h 50 min at 28°C. Under non-24 h light–dark cycles, duration of scotophase proved crucial in the determination of diapause. In night interruption experiments using 24-h light–dark cycle, a 1-h light pulse falling 8 h in the darkness strongly averted diapause in comparison with other light pulses. Nanda–Hamner experiments showed two weak troughs of diapause inhibition, suggesting the possible involvement of the circadian system. However, Bünsow experiments did not support the evidence of the involvement of circadian oscillatory system in photoperiodic time measurement. These results suggest that photoperiodic time measurement in this moth shows a non-oscillatory 'hourglass-like' response model or a rapidly damping oscillator model.  相似文献   

7.
The diapause response of the Kanzawa spider mite (KSM), Tetranychus kanzawai, was examined. KSMs were reared in aluminum bottles at 18°C with different combinations of light and dark periods created by the light-control unit. The developmental periods for all immature stages tended to decrease as the light period increased. The photoperiodic response curve for diapause induction showed that the critical (=50% diapause) light period was around 13 h days−1. No diapause induction was observed when the light period was longer than 13.5 h days−1 or under continuous light. At 13-h days−1 light period, the developmental period for deutonymphal stage as well as for the total immature stages was longer in diapaused females than in non-diapaused females. These results indicate that immature development as well as diapause induction are affected by photoperiod and further suggest that diapause-inducing stimuli prolong the developmental period especially for the deutonymphal stage of KSMs.  相似文献   

8.
Some basic properties of the adult locomotor activity rhythm and of the maternal induction of larval diapause in Calliphora vicina are described. Diapause responses in Nanda-Hamner experiments indicate that circadian rhythmicity is involved in photoperiodic time measurement (PPTM). However, although the locomotor rhythm shows long-lasting changes in free-running period (aftereffects of photoperiod and constant light) and occasional "splitting," thereby indicating a structural complexity to the circadian system, the overt rhythm may be used as an indicator of phase relationships (or "hands") of the covert system involved in PPTM, within the framework of a simple external-coincidence model for the diapause clock. Thus, in light-dark (LD) cycles close to "resonance" with the circadian pacemaker(s) (T 24, LD 12:12; T 48, LD 12:36; and T 72, LD 12:60), light is restricted to the subjective day and diapause incidence is high. In T 36 (LD 12:24) and T 60 (LD 12:48), light falls into the subjective night and illuminates the postulated light-sensitive phase (phi i), and diapause incidence is low. Within the primary range of entrainment, light invades the late subjective night in T 20 (LD 12:8), illuminates phi i, and causes low incidence of diapause; however, it invades the early subjective night in T 30 (LD 12:18) and diapause remains high.  相似文献   

9.
The mature larvae of the rice stem borer, Chilo suppressalis Walker (Lepidoptera: Crambidae) enters facultative diapause in response to short‐day conditions in the autumn (August–September). Diapause induction and photoperiodic clock mechanism were investigated in C. suppressalis larvae reared on an artificial diet in the present study. The critical night length for diapause induction was about 9 h 53 min to 10 h 39 min at 22 to 28°C. The third‐instar larvae were found to be relatively sensitive to diapause induction. Photoperiodic response under non‐24‐h light–dark cycles showed that scotophase length played an essential role in the induction of larval diapause in C. suppressalis, and consecutive exposure to long‐night cycles was necessary for a high diapause incidence. In the Nanda–Hamner experiment, diapause incidence peaked at scotophase of 12 h and dropped rapidly at scotophases > 24 h. In the Bünsow experiment, diapause incidence was clearly suppressed, especially at the light pulse located 8 h in the scotophase. Both the Nanda–Hamner and Bünsow experiments showed no rhythmic fluctuations with a period of about 24 h; thus the photoperiodic clock in C. suppressalis is a non‐oscillatory hourglass timer or a rapidly damping circadian oscillator.  相似文献   

10.
Female two‐spotted spider mite Tetranychus urticae are grown under different photoperiods and the photoperiodic regulation of diapause is examined. The photoperiodic response curve for diapause induction was of the long day–short day type, with critical day lengths (CDLs) of 2 and 12.5 h; diapause was induced between these CDLs. The preimaginal period is significantly longer in diapausing females than in non‐diapausing females; moreover, a significant positive correlation is detected between diapause incidence and deutonymphal period. Diapause incidence is high when long‐night photoperiods are applied against a background of continuous darkness in the stages including the deutonymph; this stage appears to be the most sensitive to photoperiod. These observations suggest that diapause‐inducing conditions inhibit nymphal development, particularly in the deutonymphal stage when photoperiodic time measurement for determination of reproduction or diapause is carried out.  相似文献   

11.
Using a population of Calliphora vicina from southern Scotland (55 degrees N), showing a critical day length for maternal induction of diapause of about 14.5 h per day, strains of flies were selected for a high incidence of larval diapause under long day length (LD 16:8 h). Diapause incidence was raised from under 10% to almost 100% within five or six generations. The selected flies showed an increase in their critical day length to over 16 h per day, and a high incidence of larval diapause under very long photophases. Selected flies, however, showed mean circadian periods for locomotor activity little different from the original stock, or from flies selected for high diapause under LD 12:12 h, and a Nanda-Hamner profile lacking peaks and troughs of diapause incidence at about 24 h intervals. These results are interpreted to show that the photoperiodic regulation of diapause and the control of overt behavioural rhythmicity are 'separate' physiological systems.  相似文献   

12.
Photoperiodic control of diapause induction was systematically investigated in the cabbage butterfly, Pieris melete, which enters summer and winter diapause as a pupa. Summer and winter diapause are induced principally by short and long scotophases, respectively; the intermediate scotophases (11-12 h) permit pupae to develop without diapause. Photoperiodic responses under 24-h light-dark cycles at 16.9, 18, 20 and 22 °C showed that the hibernation response was temperature compensated, whereas aestivation response was strongly temperature-dependent. The incidence of diapause for both aestivation and hibernation showed a decline at the ultra-short and ultra-long scotophases. Experiments using non-24-h light-dark cycles showed that the length of the scotophase played an essential role in the determination of diapause. The highest photosensitivity differed under hibernation and aestivation conditions. With a 3 × LD 12:12 interruption, a maximal inhibition of aestivation occurred in the L3/2 stage, and of hibernation it occurred in the L4/0 stage. A long-night of LD 10:14 induced hibernation diapause but inhibited aestivation diapause and, conversely, a short-night of LD 14:10 inhibited hibernation diapause but induced aestivation diapause. With a 1-h light pulse at LD 11:13, a maximal inhibition of hibernation occurred 3 h before lights-on (late scotophase), whereas, with a 1-h light pulse at LD 12.5:11.5, a maximal induction of aestivation occurred 2-3 h after the onset of darkness (early scotophase). Nanda-Hamner and Bünsow experiments failed to reveal the involvement of a circadian system, suggesting that the photoperiodic time measurement for diapause induction in this butterfly resembles an hourglass-like timer or a damped circadian oscillator.  相似文献   

13.
Abstract.  To reveal circadian characteristics and entrainment mechanisms in the Japanese honeybee Apis cerana japonica , the locomotor-activity rhythm of foragers is investigated under programmed light and temperature conditions. After entrainment to an LD 12 : 12 h photoperiodic regime, free-running rhythms are released in constant dark (DD) or light (LL) conditions with different free-running periods. Under the LD 12 : 12 h regime, activity offset occurs approximately 0.4 h after lights-off transition, assigned to circadian time (Ct) 12.4 h. The phase of activity onset, peak and offset, and activity duration depends on the photoperiodic regimes. The circadian rhythm can be entrained to a 24-h period by exposure to submultiple cycles of LD 6 : 6 h, as if the locomotive rhythm is entrained to LD 18 : 6 h. Phase shifts of delay and advance are observed when perturbing single light pulses are presented during free-running under DD conditions. Temperature compensation of the free-running period is demonstrated under DD and LL conditions. Steady-state entrainment of the locomotor rhythm is achieved with square-wave temperature cycles of 10 °C amplitude, but a 5 °C amplitude fails to entrain.  相似文献   

14.
The photoperiodic control of sexual rest in Armadillidium vulgare was investigated using various experimental protocols. When reared in conditions of a Nanda-Hamner (i.e. resonance) protocol from their first parturial moult to their post experimental moult, females showed a weak resonance effect in sexual rest incidence. The transfer from a long day cycle to a symmetrical skeleton photoperiod--consisting of two equal light pulses per 24 h of continuous darkness--revealed the involvement of a circadian oscillatory system in the photoperiodic clock of this species. The data, obtained in the whole experiments, suggested that both oscillator and hourglass features are involved in the photoperiodic response controlling the sexual rest in Armadillidium vulgare. Moreover, when non-24-h light-dark cycles (with a long photophase) were applied, a mechanism responsible of arrest of reproduction also implied a photoperiodic counter which accumulated and added up the photoperiodic information within a sensitive period during post parturial intermoult.  相似文献   

15.
Background and Aims An endogenous rhythm synchronized to dawn cannot time photosynthesis-linked genes to peak consistently at noon since the interval between sunrise and noon changes seasonally. In this study, a solar clock model that circumvents this limitation is proposed using two daily timing references synchronized to noon and midnight. Other rhythmic genes that are not directly linked to photosynthesis, and which peak at other times, also find an adaptive advantage in entrainment to the solar rhythm.Methods Fourteen datasets extracted from three published papers were used in a meta-analysis to examine the cyclic behaviour of the Arabidopsis thaliana photosynthesis-related gene CAB2 and the clock oscillator genes TOC1 and LHY in T cycles and N–H cycles.Key Results Changes in the rhythms of CAB2, TOC1 and LHY in plants subjected to non-24-h light:dark cycles matched the hypothesized changes in their behaviour as predicted by the solar clock model, thus validating it. The analysis further showed that TOC1 expression peaked ∼5·5 h after mid-day, CAB2 peaked close to noon, while LHY peaked ∼7·5 h after midnight, regardless of the cycle period, the photoperiod or the light:dark period ratio. The solar clock model correctly predicted the zeitgeber timing of these genes under 11 different lighting regimes comprising combinations of seven light periods, nine dark periods, four cycle periods and four light:dark period ratios. In short cycles that terminated before LHY could be expressed, the solar clock correctly predicted zeitgeber timing of its expression in the following cycle.Conclusions Regulation of gene phases by the solar clock enables the plant to tell the time, by which means a large number of genes are regulated. This facilitates the initiation of gene expression even before the arrival of sunrise, sunset or noon, thus allowing the plant to ‘anticipate’ dawn, dusk or mid-day respectively, independently of the photoperiod.  相似文献   

16.
Artificial lighting is a merit of a ‘plant factory’, which might be utilized to suppress an increase in pest population. We investigated the effects of extending the light phase on diapause induction in the two-spotted spider mite (TSSM), Tetranychus urticae. TSSM were reared at 18°C under light phases ranging from 2 to 64 h combined with a constant dark phase of 16 h in aluminum bottles, with white light emitting diodes attached inside to minimize fluctuations in air temperature between the light and dark phases. Diapause was induced in adult TSSM females when the light phase was 24 h or shorter, and diapause induction was inhibited when the light phase extended over 32 h. The development of deutonymphs was delayed under a diapause-inducing photoperiod. Diapause inducing photoperiods may suppress an increase in the TSSM population, by slowing down development and reproduction.  相似文献   

17.
Abstract. Insects and mites may measure photoperiods eitfier by classifying them as long or short relative to a critical value (qualitative time measurement) or by using the absolute value (quantitative time measurement). The spider mite Tetranychus urticae is thought to use a qualitative mechanism of time measurement. In this paper we present the results of experiments with an inbred line of the spider mite (to keep genetic variation in photoperiodic responses small), to test whether quantitative aspects also play a role. Differences in diapause incidence in different long-night photoperiods at different temperatures may be an indication of quantitative responses to photoperiod. The effect of temperature on the photoperiodic response curve was studied at 16oC, 19oC and 22oC. The response curves appeared to be similar at 16oC and 19oC, with a critical nightlength between 10 and 11 h. At 22oC, diapause induction was less than 100% in all long-night regimens and die critical nightlength had shifted to 12 h. Maximum diapause induction (93%) occurred in a light-dark cycle with a 16 h dark phase (LD 8:16 h). Diapause induction was lowest in long-night photoperiods with dark phases of 20 h and longer. The number of light-dark cycles needed for 50% diapause induction at 19oC varied. between 12.1 and 14.7 for LD 6:18 h, between 10.9 and 12.5 for LD 8:16 h, between 10.6 and 11.6 for LD 10:14 h, and between 10.1 and 10.7 for LD 12:12 h. Independent of die light-dark regimen, diapause induction took place in some individuals after receiving 8 cycles and virtually all individuals entered diapause after 16 cycles. No effect was found of the photoperiodic treatment during prediapause development (LD 6:18 h, LD 8:16 h, LD 10:14 h, LD 12:12 h) on diapause duration. The average diapause duration at LD 10:14 h and 19oC was 61 days over all four treatments. We explained the results by hypothesising that nightlengths are assessed qualitatively and mat the photoperiodic clock operates more accurately near the critical nightlength.  相似文献   

18.
The photoperiodic clock in the flesh-fly, Sarcophaga argyrostoma   总被引:1,自引:0,他引:1  
Larval cultures of the flesh-fly, Sarcophaga argyrostoma, were raised in experimental light cycles with periods (T) of 21 to 72 hr, each cycle containing a photoperiod of 4 to 20 hr of white light. This ‘resonance’ technique revealed periodic maxima (~24 hr apart) of pupal diapause, thereby demonstrating an endogenous circadian component in the photoperiodic clock. The positions of these maxima of pupal diapause suggested that the oscillation, like that controlling the pupal eclosion rhythm in Drosophila pseudoobscura, is ‘damped out’ by photoperiods longer than about 11 to 12 hr, but restarts at dusk whereupon it runs with circadian periodicity in a protracted dark period. With photoperiods shorter than 12 hr, however, the two diapause maxima were less than 24 hr apart, suggesting that an additional component, possibly a ‘dawn hour-glass’, was modifying the position of the first peak.Both photoperiod and the period of the driving light cycle (T) were shown to affect the length of larval development (the sensitive period) and the number of calendar days needed to raise the incidence of pupal diapause to 50 per cent (the required day number, RDN). Peaks of diapause induction were shown to be the result of an interaction between a long sensitive period (slow development) and a low RDN, whereas troughs in diapause induction were the result of an interaction between a short sensitive period (fast development) and a higher RDN.Larvae of S. argyrostoma are unable to distinguish (in a photoperiodic sense) between 12 and 18 hr of red light (600 nm).  相似文献   

19.
The dark period (scotophase) is the most photoperiodically important part of a light-dark cycle in Aleyrodes proletella. Night-interruption studies have revealed three distinct dark stages: the photosensitive stage 1 lasts for about 3 h after dusk and 1-h light breaks both stop and re-set the photoperiodic clock; stage 2 also lasts about 3 h, but is photorefractory to some degree; stage 3 is photosensitive, but short light breaks do not re-set the clock although a 4-h light break (equivalent to a main photophase) does restore the capacity to respond to a normal critical night length in the post-interruption scotophase.Action spectra revealed peak photoperiodic sensitivity to blue light (410–430 nm) with 50% responses., at 1.5 μWcm−2 and 2.5 μWcm−2 for the dusk and dawn peaks respectively. These data are consistent with the view that the photopigment is a carotenoprotein.The results are interpreted in terms of the photoperiodic clock in A. proletella operating on the hour glass principle.  相似文献   

20.
When pupae of Delia antiqua were transferred to constant darkness (DD) from light-dark (LD) cycles or constant light (LL), the sensitivity to light of the circadian clock controlling eclosion increased with age. The daily rhythm of eclosion appeared in both non-diapause and diapause pupae only when this transfer was made during late pharate adult development. When transferred from LL to DD in the early pupal stage, the adult eclosion was weakly rhythmic in non-diapause pupae but arrhythmic in diapause pupae. However, the sensitivity of the circadian clock to temperature cycles or steps was higher in diapause pupae than in non-diapause pupae; in the transfer to a constant 20 degrees C from a thermoperiod of 25 degrees C (12 h)/20 degrees C (12 h) on day 10 after pupation or from chilling (7.5 degrees C) in DD, the adult eclosion from diapause pupae was rhythmic but that from non-diapause pupae arrhythmic. In a transfer to 20 degrees C from the thermoperiod after the initiation of eclosion, rhythmicity was observed in both types of pupae. The larval stage was insensitive to the effect of LD cycle initiating the eclosion rhythm. In D. antiqua pupae in the soil under natural conditions, therefore, the thermoperiod in the late pupal stage would be the most important 'Zeitgeber' for the determination of eclosion timing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号